1
|
Gökçe Y, Danisman B, Akcay G, Derin N, Yaraş N. L-Carnitine improves mechanical responses of cardiomyocytes and restores Ca 2+ homeostasis during aging. Histochem Cell Biol 2023; 160:341-347. [PMID: 37329457 DOI: 10.1007/s00418-023-02215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
L-Carnitine (β-hydroxy-γ-trimethylaminobutyric acid, LC) is a crucial molecule for the mitochondrial oxidation of fatty acids. It facilitates the transport of long-chain fatty acids into the mitochondrial matrix. The reduction in LC levels during the aging process has been linked to numerous cardiovascular disorders, including contractility dysfunction, and disrupted intracellular Ca2+ homeostasis. The aim of this study was to examine the effects of long-term (7 months) LC administration on cardiomyocyte contraction and intracellular Ca2+ transients ([Ca2+]i) in aging rats. Male albino Wistar rats were randomly assigned to either the control or LC-treated groups. LC (50 mg/kg body weight/day) was dissolved in distilled water and orally administered for a period of 7 months. The control group received distilled water alone. Subsequently, ventricular single cardiomyocytes were isolated, and the contractility and Ca2+ transients were recorded in aging (18 months) rats. This study demonstrates, for the first time, a novel inotropic effect of long-term LC treatment on rat ventricular cardiomyocyte contraction. LC increased cardiomyocyte cell shortening and resting sarcomere length. Furthermore, LC supplementation led to a reduction in resting [Ca2+]i level and an increase in the amplitude of [Ca2+]i transients, indicative of enhanced contraction. Consistent with these results, decay time of Ca2+ transients also decreased significantly in the LC-treated group. The long-term administration of LC may help restore the Ca2+ homeostasis altered during aging and could be used as a cardioprotective medication in cases where myocyte contractility is diminished.
Collapse
Affiliation(s)
- Yasin Gökçe
- Faculty of Medicine, Department of Biophysics, Harran University, Sanliurfa, Turkey.
| | - Betul Danisman
- Faculty of Medicine, Department of Biophysics, Ataturk University, Erzurum, Turkey
| | - Guven Akcay
- Faculty of Medicine, Department of Biophysics, Hitit University, Corum, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Nazmi Yaraş
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
2
|
Han JC, Tran K, Crossman DJ, Curl CL, Koutsifeli P, Neale JPH, Li X, Harrap SB, Taberner AJ, Delbridge LMD, Loiselle DS, Mellor KM. Cardiac mechanical efficiency is preserved in primary cardiac hypertrophy despite impaired mechanical function. J Gen Physiol 2021; 153:212441. [PMID: 34180944 PMCID: PMC8241536 DOI: 10.1085/jgp.202012841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Increased heart size is a major risk factor for heart failure and premature mortality. Although abnormal heart growth subsequent to hypertension often accompanies disturbances in mechano-energetics and cardiac efficiency, it remains uncertain whether hypertrophy is their primary driver. In this study, we aimed to investigate the direct association between cardiac hypertrophy and cardiac mechano-energetics using isolated left-ventricular trabeculae from a rat model of primary cardiac hypertrophy and its control. We evaluated energy expenditure (heat output) and mechanical performance (force length work production) simultaneously at a range of preloads and afterloads in a microcalorimeter, we determined energy expenditure related to cross-bridge cycling and Ca2+ cycling (activation heat), and we quantified energy efficiency. Rats with cardiac hypertrophy exhibited increased cardiomyocyte length and width. Their trabeculae showed mechanical impairment, evidenced by lower force production, extent and kinetics of shortening, and work output. Lower force was associated with lower energy expenditure related to Ca2+ cycling and to cross-bridge cycling. However, despite these changes, both mechanical and cross-bridge energy efficiency were unchanged. Our results show that cardiac hypertrophy is associated with impaired contractile performance and with preservation of energy efficiency. These findings provide direction for future investigations targeting metabolic and Ca2+ disturbances underlying cardiac mechanical and energetic impairment in primary cardiac hypertrophy.
Collapse
Affiliation(s)
- June-Chiew Han
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Parisa Koutsifeli
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joshua P H Neale
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Xun Li
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Stephen B Harrap
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Andrew J Taberner
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Denis S Loiselle
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Kimberley M Mellor
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Diaconu R, Donoiu I, Mirea O, Bălşeanu TA. Testosterone, cardiomyopathies, and heart failure: a narrative review. Asian J Androl 2021; 23:348-356. [PMID: 33433530 PMCID: PMC8269837 DOI: 10.4103/aja.aja_80_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Testosterone exerts an important regulation of cardiovascular function through genomic and nongenomic pathways. It produces several changes in cardiomyocytes, the main actor of cardiomyopathies, which are characterized by pathological remodeling, eventually leading to heart failure. Testosterone is involved in contractility, in the energy metabolism of myocardial cells, apoptosis, and the remodeling process. In myocarditis, testosterone directly promotes the type of inflammation that leads to fibrosis, and influences viremia with virus localization. At the same time, testosterone exerts cardioprotective effects that have been observed in different studies. There is increasing evidence that low endogenous levels of testosterone have a negative impact in some cardiomyopathies and a protective impact in others. This review focuses on the interrelationships between testosterone and cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Rodica Diaconu
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Ionuţ Donoiu
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Oana Mirea
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Tudor Adrian Bălşeanu
- Department of Physiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| |
Collapse
|
4
|
Age, Sex and Overall Health, Measured As Frailty, Modify Myofilament Proteins in Hearts From Naturally Aging Mice. Sci Rep 2020; 10:10052. [PMID: 32572088 PMCID: PMC7308399 DOI: 10.1038/s41598-020-66903-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/04/2020] [Indexed: 01/10/2023] Open
Abstract
We investigated effects of age, sex and frailty on contractions, calcium transients and myofilament proteins to determine if maladaptive changes associated with aging were sex-specific and modified by frailty. Ventricular myocytes and myofilaments were isolated from middle-aged (~12 mos) and older (~24 mos) mice. Frailty was assessed with a non-invasive frailty index. Calcium transients declined and slowed with age in both sexes, but contractions were largely unaffected. Actomyosin Mg-ATPase activity increased with age in females but not males; this could maintain contractions with smaller calcium transients in females. Phosphorylation of myosin-binding protein C (MyBP-C), desmin, tropomyosin and myosin light chain-1 (MLC-1) increased with age in males, but only MyBP-C and troponin-T increased in females. Enhanced phosphorylation of MyBP-C and MLC-1 could preserve contractions in aging. Interestingly, the age-related decline in Hill coefficients (r = −0.816; p = 0.002) and increase in phosphorylation of desmin (r = 0.735; p = 0.010), tropomyosin (r = 0.779; p = 0.005) and MLC-1 (r = 0.817; p = 0.022) were graded by the level of frailty in males but not females. In these ways, cardiac remodeling at cellular and subcellular levels is graded by overall health in aging males. Such changes may contribute to heart diseases in frail older males, whereas females may be resistant to these effects of frailty.
Collapse
|
5
|
Abstract
Experimental models of cardiac disease play a key role in understanding the pathophysiology of the disease and developing new therapies. The features of the experimental models should reflect the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review characteristics of commonly used experimental models of cardiac physiology and pathophysiology in all translational steps including in vitro, small animal, and large animal models. Understanding their characteristics and relevance to clinical disease is the key for successful translation to effective therapies.
Collapse
|
6
|
Kong CHT, Bryant SM, Watson JJ, Gadeberg HC, Roth DM, Patel HH, Cannell MB, Orchard CH, James AF. The Effects of Aging on the Regulation of T-Tubular ICa by Caveolin in Mouse Ventricular Myocytes. J Gerontol A Biol Sci Med Sci 2019; 73:711-719. [PMID: 29236992 PMCID: PMC5946816 DOI: 10.1093/gerona/glx242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/07/2017] [Indexed: 11/25/2022] Open
Abstract
Aging is associated with diminished cardiac function in males. Cardiac excitation-contraction coupling in ventricular myocytes involves Ca influx via the Ca current (ICa) and Ca release from the sarcoplasmic reticulum, which occur predominantly at t-tubules. Caveolin-3 regulates t-tubular ICa, partly through protein kinase A (PKA), and both ICa and caveolin-3 decrease with age. We therefore investigated ICa and t-tubule structure and function in cardiomyocytes from male wild-type (WT) and caveolin-3-overexpressing (Cav-3OE) mice at 3 and 24 months of age. In WT cardiomyocytes, t-tubular ICa-density was reduced by ~50% with age while surface ICa density was unchanged. Although regulation by PKA was unaffected by age, inhibition of caveolin-3-binding reduced t-tubular ICa at 3 months, but not at 24 months. While Cav-3OE increased cardiac caveolin-3 protein expression ~2.5-fold at both ages, the age-dependent reduction in caveolin-3 (WT ~35%) was preserved in transgenic mice. Overexpression of caveolin-3 reduced t-tubular ICa density at 3 months but prevented further ICa loss with age. Measurement of Ca release at the t-tubules revealed that the triggering of local Ca release by t-tubular ICa was unaffected by age. In conclusion, the data suggest that the reduction in ICa density with age is associated with the loss of a caveolin-3-dependent mechanism that augments t-tubular ICa density.
Collapse
Affiliation(s)
- Cherrie H T Kong
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Simon M Bryant
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Judy J Watson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Hanne C Gadeberg
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - David M Roth
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego
| | - Mark B Cannell
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Clive H Orchard
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| | - Andrew F James
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, UK
| |
Collapse
|
7
|
Toba H, Lindsey ML. Extracellular matrix roles in cardiorenal fibrosis: Potential therapeutic targets for CVD and CKD in the elderly. Pharmacol Ther 2019; 193:99-120. [PMID: 30149103 PMCID: PMC6309764 DOI: 10.1016/j.pharmthera.2018.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas hypertension, diabetes, and dyslipidemia are age-related risk factors for cardiovascular disease (CVD) and chronic kidney disease (CKD), aging alone is an independent risk factor. With advancing age, the heart and kidney gradually but significantly undergo inflammation and subsequent fibrosis, which eventually results in an irreversible decline in organ physiology. Through cardiorenal network interactions, cardiac dysfunction leads to and responds to renal injury, and both facilitate aging effects. Thus, a comprehensive strategy is needed to evaluate the cardiorenal aging network. Common hallmarks shared across systems include extracellular matrix (ECM) accumulation, along with upregulation of matrix metalloproteinases (MMPs) including MMP-9. The wide range of MMP-9 substrates, including ECM components and inflammatory cytokines, implicates MMP-9 in a variety of pathological and age-related processes. In particular, there is strong evidence that inflammatory cell-derived MMP-9 exacerbates cardiorenal aging. This review explores the potential therapeutic targets against CVD and CKD in the elderly, focusing on ECM and MMP roles.
Collapse
Affiliation(s)
- Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan.
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA.
| |
Collapse
|
8
|
Gao J, Zhu M, Yu HY, Wang SQ, Feng XH, Xu M. Excitation-Contraction Coupling Time is More Sensitive in Evaluating Cardiac Systolic Function. Chin Med J (Engl) 2018; 131:1834-1839. [PMID: 30058581 PMCID: PMC6071456 DOI: 10.4103/0366-6999.237395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Pressure overload-induced myocardial hypertrophy is a key step leading to heart failure. Previous cellular and animal studies demonstrated that deteriorated excitation–contraction coupling occurs as early as the compensated stage of hypertrophy before the global decrease in left ventricular ejection fraction (LVEF). This study was to evaluate the cardiac electromechanical coupling time in evaluating cardiac systolic function in the early stage of heart failure. Methods: Twenty-six patients with Stage B heart failure (SBHF) and 31 healthy controls (CONs) were enrolled in this study. M-mode echocardiography was performed to measure LVEF. Tissue Doppler imaging (TDI) combined with electrocardiography (ECG) was used to measure cardiac electromechanical coupling time. Results: There was no significant difference in LVEF between SBHF patients and CONs (64.23 ± 8.91% vs. 64.52 ± 5.90%; P = 0.886). However, all four electromechanical coupling time courses (Qsb: onset of Q wave on ECG to beginning of S wave on TDI, Qst: onset of Q wave on ECG to top of S wave on TDI, Rsb: top of R wave on ECG to beginning of S wave on TDI, and Rst: top of R wave on ECG to top of S wave on TDI) of SBHF patients were significantly longer than those of CONs (Qsb: 119.19 ± 35.68 ms vs. 80.30 ± 14.81 ms, P < 0.001; Qst: 165.42 ± 60.93 ms vs. 129.04 ± 16.97 ms, P = 0.006; Rsb: 82.43 ± 33.66 ms vs. 48.30 ± 15.18 ms, P < 0.001; and Rst: 122.37 ± 36.66 ms vs. 93.25 ± 16.72 ms, P = 0.001), and the Qsb, Rsb, and Rst time showed a significantly higher sensitivity than LVEF (Rst: P =0.032; Rsb: P = 0.003; and Qsb: P = 0.004). Conclusions: The cardiac electromechanical coupling time is more sensitive than LVEF in evaluating cardiac systolic function.
Collapse
Affiliation(s)
- Juan Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Min Zhu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Hai-Yi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin-Heng Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
9
|
Han YS, Schaible N, Tveita T, Sieck G. Discontinued stimulation of cardiomyocytes provides protection against hypothermia-rewarming-induced disruption of excitation-contraction coupling. Exp Physiol 2018; 103:819-826. [PMID: 29604136 DOI: 10.1113/ep086774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/27/2018] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Will discontinued stimulation of isolated cardiomyocytes (asystole) during hypothermia mitigate hypothermia-rewarming-induced cytosolic Ca2+ overload? What is the main finding and its importance? Mimicking asystole or hypothermic cardiac arrest by discontinued stimulation of cardiomyocytes during hypothermia resulted in normal contractile function after rewarming. This result suggests that asystole during severe hypothermia provides protection from hypothermia-rewarming-induced contractile dysfunction in cardiomyocytes. ABSTRACT After exposure of spontaneously beating hearts or electrically stimulated isolated cardiomyocytes to hypothermia-rewarming (H/R), cardiac dysfunction or alteration in excitation-contraction coupling, respectively, is a consequence. In contrast, hypothermic cardiac arrest, as routinely applied during cardiac surgery, will not impose any hazard to cardiac function after rewarming. We hypothesize that by maintaining asystole during H/R, cardiomyocytes will avoid Ca2+ overload attributable to the transient stimulation-evoked elevation of [Ca2+ ]i and thus, H/R-induced elevation of phosphorylated cardiac troponin I and reduced Ca2+ sensitivity after rewarming. To test this hypothesis, the aim of the study was to determine whether discontinued electrical stimulation (to imitate hypothermic cardiac arrest) versus stimulation during 3 h of H/R prevents disruption of excitation-contraction coupling in our established cardiomyocyte H/R model. Cytosolic Ca2+ and the contractile response (sarcomere length shortening) were measured using an IonOptix system, and the dynamic assessment of Ca2+ sensitivity of contraction was conducted using a phase-loop plot. Cardiomyocytes were divided into three groups. Group 1 (time-matched control) was continuously stimulated at 0.5 Hz for 3 h at 35°C. Group 2 was continuously stimulated during H/R at 0.5 Hz, whereas in group 3 stimulation was discontinued during H/R and thus the cells remained quiescent until the resumption of stimulation after rewarming. The results demonstrate that discontinued stimulation of cardiomyocytes during H/R, imitating hypothermic cardiac arrest during cardiac surgery, provides protection against H/R-induced disruption of excitation-contraction coupling. We suggest that protective effects are caused by preventing the protein kinase A-induced elevation of phosphorylated cardiac troponin I, which is a key mechanism to reduce myofilament Ca2+ sensitivity of contraction.
Collapse
Affiliation(s)
- Young Soo Han
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Niccole Schaible
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Torkjel Tveita
- Anesthesia and Critical Care Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9037, Tromsø, Norway.,Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, 9038, Tromsø, Norway
| | - Gary Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Kane AE, Howlett SE. Differences in Cardiovascular Aging in Men and Women. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:389-411. [PMID: 30051398 DOI: 10.1007/978-3-319-77932-4_25] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases increase dramatically with age in both men and women. While it is clear that advanced age allows more time for individuals to be exposed to risk factors in general, there is strong evidence that age itself is a major independent risk factor for cardiovascular disease. Indeed, there are distinct age-dependent cellular, structural, and functional changes in both the heart and blood vessels, even in individuals with no clinical evidence of cardiovascular disease. Studies in older humans and in animal models of aging indicate that this age-related remodeling is maladaptive. An emerging view is that the heart and blood vessels accumulate cellular and subcellular deficits with age and these deficits increase susceptibility to disease in older individuals. Aspects of this age-dependent remodeling of the heart and blood vessels differ between the sexes. There is also new evidence that these maladaptive changes are more prominent in older animals and humans with a high degree of frailty. These observations may help explain why men and women are susceptible to different cardiovascular diseases as they age and why frail older adults are most often affected by these diseases.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
11
|
Zhang CL, Chen ZJ, Feng H, Zhao Q, Cao YP, Li L, Wang JY, Zhang Y, Wu LL. C1q/tumor necrosis factor-related protein-3 enhances the contractility of cardiomyocyte by increasing calcium sensitivity. Cell Calcium 2017; 66:90-97. [PMID: 28807153 DOI: 10.1016/j.ceca.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 01/24/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that protects against myocardial infarction-induced cardiac dysfunction through its pro-angiogenic, anti-apoptotic, and anti-fibrotic effects. However, whether CTRP3 can directly affect the systolic and diastolic function of cardiomyocytes remains unknown. Adult rat cardiomyocytes were isolated and loaded with Fura-2AM. The contraction and Ca2+ transient data was collected and analyzed by IonOptix system. 1 and 2μg/ml CTRP3 significantly increased the contraction of cardiomyocytes. However, CTRP3 did not alter the diastolic Ca2+ content, systolic Ca2+ content, Ca2+ transient amplitude, and L-type Ca2+ channel current. To reveal whether CTRP3 affects the Ca2+ sensitivity of cardiomyocytes, the typical phase-plane diagrams of sarcomere length vs. Fura-2 ratio was performed. We observed a left-ward shifting of the late relaxation trajectory after CTRP3 perfusion, as quantified by decreased Ca2+ content at 50% sarcomere relaxation, and increased mean gradient (μm/Fura-2 ratio) during 500-600ms (-0.163 vs. -0.279), 500-700ms (-0.159 vs. -0.248), and 500-800ms (-0.148 vs. -0.243). Consistently, the phosphorylation level of cardiac troponin I at Ser23/24 was reduced by CTRP3, which could be eliminated by preincubation of okadaic acid, a type 2A protein phosphatase inhibitor. In summary, CTRP3 increases the contraction of cardiomyocytes by increasing the myofilament Ca2+ sensitivity. CTRP3 might be a potential endogenous Ca2+ sensitizer that modulates the contractility of cardiomyocytes.
Collapse
Affiliation(s)
- Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zheng-Ju Chen
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yang-Po Cao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jin-Yu Wang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
12
|
Feridooni HA, Kane AE, Ayaz O, Boroumandi A, Polidovitch N, Tsushima RG, Rose RA, Howlett SE. The impact of age and frailty on ventricular structure and function in C57BL/6J mice. J Physiol 2017; 595:3721-3742. [PMID: 28502095 DOI: 10.1113/jp274134] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/23/2017] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Heart size increases with age (called hypertrophy), and its ability to contract declines. However, these reflect average changes that may not be present, or present to the same extent, in all older individuals. That aging happens at different rates is well accepted clinically. People who are aging rapidly are frail and frailty is measured with a 'frailty index'. We quantified frailty with a validated mouse frailty index tool and evaluated the impacts of age and frailty on cardiac hypertrophy and contractile dysfunction. Hypertrophy increased with age, while contractions, calcium currents and calcium transients declined; these changes were graded by frailty scores. Overall health status, quantified as frailty, may promote maladaptive changes associated with cardiac aging and facilitate the development of diseases such as heart failure. To understand age-related changes in heart structure and function, it is essential to know both chronological age and the health status of the animal. ABSTRACT On average, cardiac hypertrophy and contractile dysfunction increase with age. Still, individuals age at different rates and their health status varies from fit to frail. We investigated the influence of frailty on age-dependent ventricular remodelling. Frailty was quantified as deficit accumulation in adult (≈7 months) and aged (≈27 months) C57BL/6J mice by adapting a validated frailty index (FI) tool. Hypertrophy and contractile function were evaluated in Langendorff-perfused hearts; cellular correlates/mechanisms were investigated in ventricular myocytes. FI scores increased with age. Mean cardiac hypertrophy increased with age, but values in the adult and aged groups overlapped. When plotted as a function of frailty, hypertrophy was graded by FI score (r = 0.67-0.55, P < 0.0003). Myocyte area also correlated positively with FI (r = 0.34, P = 0.03). Left ventricular developed pressure (LVDP) plus rates of pressure development (+dP/dt) and decay (-dP/dt) declined with age and this was graded by frailty (r = -0.51, P = 0.0007; r = -0.48, P = 0.002; r = -0.56, P = 0.0002 for LVDP, +dP/dt and -dP/dt). Smaller, slower contractions graded by FI score were also seen in ventricular myocytes. Contractile dysfunction in cardiomyocytes isolated from frail mice was attributable to parallel changes in underlying Ca2+ transients. These changes were not due to reduced sarcoplasmic reticulum stores, but were graded by smaller Ca2+ currents (r = -0.40, P = 0.008), lower gain (r = -0.37, P = 0.02) and reduced expression of Cav1.2 protein (r = -0.68, P = 0.003). These results show that cardiac hypertrophy and contractile dysfunction in naturally aging mice are graded by overall health and suggest that frailty, in addition to chronological age, can help explain heterogeneity in cardiac aging.
Collapse
Affiliation(s)
- H A Feridooni
- Department of Pharmacology, Dalhousie University, PO Box 15000, 5850 College St, B3H 4R2, Halifax, NS, Canada
| | - A E Kane
- Department of Pharmacology, Dalhousie University, PO Box 15000, 5850 College St, B3H 4R2, Halifax, NS, Canada
| | - O Ayaz
- Department of Pharmacology, Dalhousie University, PO Box 15000, 5850 College St, B3H 4R2, Halifax, NS, Canada
| | - A Boroumandi
- Department of Biology, Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
| | - N Polidovitch
- Department of Biology, Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
| | - R G Tsushima
- Department of Biology, Muscle Health Research Centre, York University, 4700 Keele St, Toronto, ON, Canada, M3J 1P3
| | - R A Rose
- Department of Physiology and Biophysics, Dalhousie University, PO Box 15000, 5850 College St, B3H 4R2, Halifax, NS, Canada
| | - S E Howlett
- Department of Pharmacology, Dalhousie University, PO Box 15000, 5850 College St, B3H 4R2, Halifax, NS, Canada.,Department of Medicine (Geriatric Medicine), Dalhousie University, PO Box 15000, 5850 College St, B3H 4R2, Halifax, NS, Canada
| |
Collapse
|
13
|
Tepp K, Puurand M, Timohhina N, Adamson J, Klepinin A, Truu L, Shevchuk I, Chekulayev V, Kaambre T. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Mol Cell Biochem 2017; 432:141-158. [PMID: 28293876 DOI: 10.1007/s11010-017-3005-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Abstract
The role of mitochondria in alterations that take place in the muscle cell during healthy aging is a matter of debate during recent years. Most of the studies in bioenergetics have a focus on the model of isolated mitochondria, while changes in the crosstalk between working myofibrils and mitochondria in senescent cardiomyocytes have been less studied. The aim of our research was to investigate the modifications in the highly regulated ATP production and energy transfer systems in heart cells in old rat cardiomyocytes. The results of our work demonstrated alterations in the diffusion restrictions of energy metabolites, manifested by changes in the apparent Michaelis-Menten constant of mitochondria to exogenous ADP. The creatine kinase (CK) phosphotransfer pathway efficiency declines significantly in senescence. The ability of creatine to stimulate OXPHOS as well as to increase the affinity of mitochondria for ADP is falling and the most critical decline is already in the 1-year group (middle-age model in rats). Also, a moderate decrease in the adenylate kinase phosphotransfer system was detected. The importance of glycolysis increases in senescence, while the hexokinase activity does not change during healthy aging. The main result of our study is that the decline in the heart muscle performance is not caused by the changes in the respiratory chain complexes activity but mainly by the decrease in the energy transfer efficiency, especially by the CK pathway.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.,School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| |
Collapse
|
14
|
Delbridge LMD, Bienvenu LA, Mellor KM. Angiotensin-(1-9): New Promise for Post-Infarct Functional Therapy. J Am Coll Cardiol 2016; 68:2667-2669. [PMID: 27978951 DOI: 10.1016/j.jacc.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand.
| | - Laura A Bienvenu
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
16
|
Sex Differences in the Biology and Pathology of the Aging Heart. Can J Cardiol 2016; 32:1065-73. [DOI: 10.1016/j.cjca.2016.03.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/30/2023] Open
|
17
|
Tarantini S, Tucsek Z, Valcarcel-Ares MN, Toth P, Gautam T, Giles CB, Ballabh P, Wei JY, Wren JD, Ashpole NM, Sonntag WE, Ungvari Z, Csiszar A. Circulating IGF-1 deficiency exacerbates hypertension-induced microvascular rarefaction in the mouse hippocampus and retrosplenial cortex: implications for cerebromicrovascular and brain aging. AGE (DORDRECHT, NETHERLANDS) 2016; 38:273-289. [PMID: 27613724 PMCID: PMC5061685 DOI: 10.1007/s11357-016-9931-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Strong epidemiological and experimental evidence indicate that both age and hypertension lead to significant functional and structural impairment of the cerebral microcirculation, predisposing to the development of vascular cognitive impairment (VCI) and Alzheimer's disease. Preclinical studies establish a causal link between cognitive decline and microvascular rarefaction in the hippocampus, an area of brain important for learning and memory. Age-related decline in circulating IGF-1 levels results in functional impairment of the cerebral microvessels; however, the mechanistic role of IGF-1 deficiency in impaired hippocampal microvascularization remains elusive. The present study was designed to characterize the additive/synergistic effects of IGF-1 deficiency and hypertension on microvascular density and expression of genes involved in angiogenesis and microvascular regression in the hippocampus. To achieve that goal, we induced hypertension in control and IGF-1 deficient mice (Igf1 f/f + TBG-Cre-AAV8) by chronic infusion of angiotensin II. We found that circulating IGF-1 deficiency is associated with decreased microvascular density and exacerbates hypertension-induced microvascular rarefaction both in the hippocampus and the neocortex. The anti-angiogenic hippocampal gene expression signature observed in hypertensive IGF-1 deficient mice in the present study provides important clues for subsequent studies to elucidate mechanisms by which hypertension may contribute to the pathogenesis and clinical manifestation of VCI. In conclusion, adult-onset, isolated endocrine IGF-1 deficiency exerts deleterious effects on the cerebral microcirculation, leading to a significant decline in cortical and hippocampal capillarity and exacerbating hypertension-induced cerebromicrovascular rarefaction. The morphological impairment of the cerebral microvasculature induced by IGF-1 deficiency and hypertension reported here, in combination with neurovascular uncoupling, increased blood-brain barrier disruption and neuroinflammation reported in previous studies likely contribute to the pathogenesis of vascular cognitive impairment in elderly hypertensive humans.
Collapse
Affiliation(s)
- Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zsuzsanna Tucsek
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - M Noa Valcarcel-Ares
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Peter Toth
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Cory B Giles
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Praveen Ballabh
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, Regional Neonatal Center, Maria Fareri Children's Hospital at Westchester Medical Center- New York Medical College, Valhalla, NY, USA
| | - Jeanne Y Wei
- Reynolds Institute on Aging and Department of Geriatrics, University of Arkansas for Medical Science, 4301 West Markham Street, No. 748, Little Rock, AR, 72205, USA
- Geriatric Research Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jonathan D Wren
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Research Program, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Pecs, Pecs, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Physiology, University of Pecs, Pecs, Hungary.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
18
|
Tepp K, Timohhina N, Puurand M, Klepinin A, Chekulayev V, Shevchuk I, Kaambre T. Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies. Ageing Res Rev 2016; 28:1-14. [PMID: 27063513 DOI: 10.1016/j.arr.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023]
Abstract
Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Faculty of Science, Tallinn University, Narva mnt. 25, 10120, Estonia
| |
Collapse
|
19
|
Peverill RE, Chou B, Donelan L, Mottram PM, Gelman JS. Possible Mechanisms Underlying Aging-Related Changes in Early Diastolic Filling and Long Axis Motion-Left Ventricular Length and Blood Pressure. PLoS One 2016; 11:e0158302. [PMID: 27351745 PMCID: PMC4924872 DOI: 10.1371/journal.pone.0158302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023] Open
Abstract
Background The transmitral E wave and the peak velocity of early diastolic mitral annular motion (e`) both decrease with age, but the mechanisms underlying these age-related changes are incompletely understood. This study investigated the possible contributions of blood pressure (BP) and left ventricular end-diastolic length (LVEDL) to age-related reductions in E and e`. Methods The study group were 82 healthy adult subjects <55 years of age who were not obese or hypertensive. Transmitral flow and mitral annular motion were recorded using pulsed-wave Doppler. LVEDL was measured from the mitral annular plane to the apical endocardium. Results Age was positively correlated with diastolic BP and septal wall thickness (SWT), inversely correlated with LVEDL (β = -0.25) after adjustment for sex and body surface area, but was not related to left ventricular end-diastolic diameter (LVEDD). Age was also inversely correlated with E (r = -0.36), septal e`(r = -0.53) and lateral e`(r = -0.53). On multivariable analysis, E was inversely correlated with diastolic BP and LVEDD, septal e`was inversely correlated with diastolic BP and positively correlated with SWT and LVEDL, after adjusting for body mass index, whilst lateral e`was inversely correlated with diastolic BP and positively correlated with LVEDL. Conclusion The above findings are consistent with higher BP being a contributor to age-related reductions in both E and e`and shortening of LVEDL with age being a contributor to the age-related reduction in e`. An implication of these findings is that slowing of myocyte relaxation is unlikely to be the sole, and may not be the main, mechanism underlying age-related decreases in E and e`.
Collapse
Affiliation(s)
- Roger E. Peverill
- Monash Cardiovascular Research Centre, Monash Heart and Department of Medicine (School of Clinical Sciences at Monash Medical Centre), Monash University and Monash Health, Clayton, Victoria, Australia
- * E-mail:
| | - Bon Chou
- Monash Cardiovascular Research Centre, Monash Heart and Department of Medicine (School of Clinical Sciences at Monash Medical Centre), Monash University and Monash Health, Clayton, Victoria, Australia
| | - Lesley Donelan
- Monash Cardiovascular Research Centre, Monash Heart and Department of Medicine (School of Clinical Sciences at Monash Medical Centre), Monash University and Monash Health, Clayton, Victoria, Australia
| | - Philip M. Mottram
- Monash Cardiovascular Research Centre, Monash Heart and Department of Medicine (School of Clinical Sciences at Monash Medical Centre), Monash University and Monash Health, Clayton, Victoria, Australia
| | - John S. Gelman
- Monash Cardiovascular Research Centre, Monash Heart and Department of Medicine (School of Clinical Sciences at Monash Medical Centre), Monash University and Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Wang Y, Xia L, Shen X, Han G, Feng D, Xiao H, Zhai Y, Chen X, Miao Y, Zhao C, Wang Y, Guo M, Li T, Zhu HY. A New Insight Into Sudden Cardiac Death in Young People: A Systematic Review of Cases of Takotsubo Cardiomyopathy. Medicine (Baltimore) 2015; 94:e1174. [PMID: 26266349 PMCID: PMC4616674 DOI: 10.1097/md.0000000000001174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023] Open
Abstract
Takotsubo cardiomyopathy (TTC) causes sudden cardiac death and has garnered increased attention worldwide in recent years. However, few studies have clearly classified the risk factors for this disease, including gender, race and morbidity, as well as the physical and mental stressors that can exacerbate the disease, particularly in young patients. To better analyze the characteristics of young TTC patients, we performed a systematic review of reported cases involving young patients.A computer-assisted search was performed using prominent electronic medical information sources to identify literature published between January 1965 and December 2013. Relevant studies containing clinical data of young TTC patients were included.Ninety-six records that included information about 104 cases were ultimately selected for our review. Several of the following results were noted: First, physical stress was more likely to exacerbate TTC than was mental stress in young patients. Second, more female than male TTC patients were noted among both young patients and the general population. Third, ethnicity appears to play no role in the disease, as no significant differences were noted among individuals of different races with respect to clinical characteristics, morbidity or stressors. Fourth, the clinical manifestations of TTC were similar to those of other cardiac diseases, including coronary heart disease. However, TTC may be detected using the combination of echocardiography and ventriculography.Clinicians should consider TTC if young patients present with symptoms similar to those of coronary heart disease so that harmful treatments such as coronary artery stent placement may be avoided. Moreover, the answers to questions regarding the clinical diagnostic criteria, etiology, pathophysiology, and the management of this syndrome in youth remain unclear; therefore, further research is needed.
Collapse
Affiliation(s)
- Yueyue Wang
- From the Emergency Department, Chinese PLA General Hospital, Beijing, China (YW, XS, HX, YZ, XC, YL, CZ, YW, MG, TL, HYZ); Medical Logistics Administration, Chinese PLA General Hospital, Beijing, China (LX); and Hospital Management Institute, Medical Statistic Division, Chinese PLA General Hospital, Beijing, China (DF)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Feridooni HA, Dibb KM, Howlett SE. How cardiomyocyte excitation, calcium release and contraction become altered with age. J Mol Cell Cardiol 2015; 83:62-72. [PMID: 25498213 DOI: 10.1016/j.yjmcc.2014.12.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease is the main cause of death globally, accounting for over 17 million deaths each year. As the incidence of cardiovascular disease rises markedly with age, the overall risk of cardiovascular disease is expected to increase dramatically with the aging of the population such that by 2030 it could account for over 23 million deaths per year. It is therefore vitally important to understand how the heart remodels in response to normal aging for at least two reasons: i) to understand why the aged heart is increasingly susceptible to disease; and ii) since it may be possible to modify treatment of disease in older adults if the underlying substrate upon which the disease first develops is fully understood. It is well known that age modulates cardiac function at the level of the individual cardiomyocyte. Generally, in males, aging reduces cell shortening, which is associated with a decrease in the amplitude of the systolic Ca(2+) transient. This may arise due to a decrease in peak L-type Ca(2+) current. Sarcoplasmic reticulum (SR) Ca(2+) load appears to be maintained during normal aging but evidence suggests that SR function is disrupted, such that the rate of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA)-mediated Ca(2+) removal is reduced and the properties of SR Ca(2+) release in terms of Ca(2+) sparks are altered. Interestingly, Ca(2+) handling is modulated by age to a lesser degree in females. Here we review how cellular contraction is altered as a result of the aging process by considering expression levels and functional properties of key proteins involved in controlling intracellular Ca(2+). We consider how changes in both electrical properties and intracellular Ca(2+) handling may interact to modulate cardiomyocyte contraction. We also reflect on why cardiovascular risk may differ between the sexes by highlighting sex-specific variation in the age-associated remodeling process. This article is part of a Special Issue entitled CV Aging.
Collapse
Affiliation(s)
- Hirad A Feridooni
- Department of Pharmacology, Dalhousie University, PO Box 15000, 5850 College St, Halifax, NS B3H 4R2, Canada.
| | - Katharine M Dibb
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, PO Box 15000, 5850 College St, Halifax, NS B3H 4R2, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, PO Box 15000, 5850 College St, Halifax, NS B3H 4R2, Canada; Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|