1
|
Weiss LJ, Drayss M, Manukjan G, Zeitlhöfler M, Kleiss J, Weigel M, Herrmann J, Mott K, Beck S, Burkard P, Lâm TT, Althaus K, Bakchoul T, Frantz S, Meybohm P, Nieswandt B, Weismann D, Schulze H. Uncoupling of platelet granule release and integrin activation suggests GPIIb/IIIa as a therapeutic target in COVID-19. Blood Adv 2023; 7:2324-2338. [PMID: 36053793 PMCID: PMC9462922 DOI: 10.1182/bloodadvances.2022008666] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Thromboembolic events are frequent and life-threating complications of COVID-19 but are also observed in patients with sepsis. Disseminated thrombosis can occur despite anticoagulation, suggesting that platelets play a direct but incompletely understood role. Several studies demonstrated altered platelet function in COVID-19 with some controversial findings, while underlying disease-specific mechanisms remain ill defined. We performed a comprehensive cohort study with 111 patients, comprising 37 with COVID-19, 46 with sepsis, and 28 with infection, compared with control participants. Platelet phenotype and function were assessed under static and flow conditions, revealing unexpected disease-specific differences. From hospital admission onward, platelets in COVID-19 failed to activate the integrin glycoprotein IIb/IIa (GPIIb/IIIa) in response to multiple agonists. Dense granule release was markedly impaired due to virtually missing granules, also demonstrated by whole-mount electron microscopy. By contrast, α-granule marker CD62P exposure was only mildly affected, revealing a subpopulation of PAC-1-/CD62P+ platelets, independently confirmed by automated clustering. This uncoupling of α-granule release was not observed in patients with sepsis, despite a similar disease severity. We found overall unaltered thrombus formation in COVID-19 and sepsis samples under venous shear rates, which was dependent on the presence of tissue factor. Unexpectedly, under arterial shear rates, thrombus formation was virtually abrogated in sepsis, whereas we detected overall normal-sized and stable thrombi in blood from patients with COVID-19. These thrombi were susceptible to subthreshold levels of GPIIb/IIIa blockers, eptifibatide, or tirofiban that had only a minor effect in control participants' blood. We provide evidence that low-dose GPIIb/IIIa blockade could be a therapeutic approach in COVID-19.
Collapse
Affiliation(s)
- Lukas J. Weiss
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Maria Drayss
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Judith Kleiss
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Mathis Weigel
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Herrmann
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Beck
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Philipp Burkard
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Dirk Weismann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Van Bael J, Vandenbulcke A, Ahmed-Belkacem A, Guichou JF, Pawlotsky JM, Samyn J, Barendrecht AD, Maas C, De Meyer SF, Vanhoorelbeke K, Tersteeg C. Small-Molecule Cyclophilin Inhibitors Potently Reduce Platelet Procoagulant Activity. Int J Mol Sci 2023; 24:ijms24087163. [PMID: 37108326 PMCID: PMC10139176 DOI: 10.3390/ijms24087163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Procoagulant platelets are associated with an increased risk for thrombosis. Procoagulant platelet formation is mediated via Cyclophilin D (CypD) mediated opening of the mitochondrial permeability transition pore. Inhibiting CypD activity could therefore be an interesting approach to limiting thrombosis. In this study, we investigated the potential of two novel, non-immunosuppressive, non-peptidic small-molecule cyclophilin inhibitors (SMCypIs) to limit thrombosis in vitro, in comparison with the cyclophilin inhibitor and immunosuppressant Cyclosporin A (CsA). Both cyclophilin inhibitors significantly decreased procoagulant platelet formation upon dual-agonist stimulation, shown by a decreased phosphatidylserine (PS) exposure, as well as a reduction in the loss of mitochondrial membrane potential. Furthermore, the SMCypIs potently reduced procoagulant platelet-dependent clotting time, as well as fibrin formation under flow, comparable to CsA. No effect was observed on agonist-induced platelet activation measured by P-selectin expression, as well as CypA-mediated integrin αIIbβ3 activation. Importantly, whereas CsA increased Adenosine 5'-diphosphate (ADP)-induced platelet aggregation, this was unaffected in the presence of the SMCypIs. We here demonstrate specific cyclophilin inhibition does not affect normal platelet function, while a clear reduction in procoagulant platelets is observed. Reducing platelet procoagulant activity by inhibiting cyclophilins with SMCypIs forms a promising strategy to limit thrombosis.
Collapse
Affiliation(s)
- Jens Van Bael
- Laboratory for Thrombosis Research, KU Leuven Kulak Kortrijk Campus, 8500 Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, KU Leuven Kulak Kortrijk Campus, 8500 Kortrijk, Belgium
| | | | - Jean-François Guichou
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR5048, Université de Montpellier, 34090 Montpellier, France
| | - Jean-Michel Pawlotsky
- Team Viruses, Hepatology Cancer, INSERM U955, 94000 Creteil, France
- National Reference Center for Viral Hepatitis B, C and Delta, Department of Virology, Hôpital Henri Mondor, Université Paris-Est, 94000 Creteil, France
| | - Jelle Samyn
- Laboratory for Thrombosis Research, KU Leuven Kulak Kortrijk Campus, 8500 Kortrijk, Belgium
| | - Arjan D Barendrecht
- Diagnostic Laboratory Research, UMC Utrecht, 3584 CX Utrecht, The Netherlands
| | - Coen Maas
- Diagnostic Laboratory Research, UMC Utrecht, 3584 CX Utrecht, The Netherlands
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Kulak Kortrijk Campus, 8500 Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Kulak Kortrijk Campus, 8500 Kortrijk, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, KU Leuven Kulak Kortrijk Campus, 8500 Kortrijk, Belgium
| |
Collapse
|
3
|
Sh Y, Dong J, Chen Z, Yuan M, Lyu L, Zhang X. Active regression model for clinical grading of COVID-19. Front Immunol 2023; 14:1141996. [PMID: 37026015 PMCID: PMC10071017 DOI: 10.3389/fimmu.2023.1141996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Background In the therapeutic process of COVID-19, the majority of indicators that physicians have for assisting treatment have come from clinical tests represented by proteins, metabolites, and immune levels in patients' blood. Therefore, this study constructs an individualized treatment model based on deep learning methods, aiming to realize timely intervention based on clinical test indicator data of COVID-19 patients and provide an important theoretical basis for optimizing medical resource allocation. Methods This study collected clinical data from a total of 1,799 individuals, including 560 controls for non-respiratory infectious diseases (Negative), 681 controls for other respiratory virus infections (Other), and 558 coronavirus infections (Positive) for COVID-19. We first used the Student T-test to screen for statistically significant differences (Pvalue<0.05); we then used the Adaptive-Lasso method stepwise regression to screen the characteristic variables and filter the features with low importance; we then used analysis of covariance to calculate the correlation between variables and filter the highly correlated features; and finally, we analyzed the feature contribution and screened the best combination of features. Results Feature engineering reduced the feature set to 13 feature combinations. The correlation coefficient between the projected results of the artificial intelligence-based individualized diagnostic model and the fitted curve of the actual values in the test group was 0.9449 which could be applied to the clinical prognosis of COVID-19. In addition, the depletion of platelets in patients with COVID-19 is an important factor affecting their severe deterioration. With the progression of COVID-19, there is a slight decrease in the total number of platelets in the patient's body, particularly as the volume of larger platelets sharply decreases. The importance of plateletCV (count*mean platelet volume) in evaluating the severity of COVID-19 patients is higher than the count of platelets and mean platelet volume. Conclusion In general, we found that for patients with COVID-19, the increase in mean platelet volume was a predictor for SARS-Cov-2. The rapid decrease of platelet volume and the decrease of total platelet volume are dangerous signals for the aggravation of SARS-Cov-2 infection. The analysis and modeling results of this study provide a new perspective for individualized accurate diagnosis and treatment of clinical COVID-19 patients.
Collapse
Affiliation(s)
- Yuan Sh
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- The Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, The Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, The Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Jierong Dong
- The Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, The Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, The Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Zhongqing Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Meiqing Yuan
- Key Laboratory of Forensic Genetics, Institute of Forensic Sciences, Ministry of Public Security, Beijing, China
| | - Lingna Lyu
- Department of Gastroenterology and Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Xiuli Zhang
- The Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, The Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, The Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| |
Collapse
|
4
|
Colicchia M, Schrottmaier WC, Perrella G, Reyat JS, Begum J, Slater A, Price J, Clark JC, Zhi Z, Simpson MJ, Bourne JH, Poulter NS, Khan AO, Nicolson PLR, Pugh M, Harrison P, Iqbal AJ, Rainger GE, Watson SP, Thomas MR, Mutch NJ, Assinger A, Rayes J. S100A8/A9 drives the formation of procoagulant platelets through GPIbα. Blood 2022; 140:2626-2643. [PMID: 36026606 PMCID: PMC10653093 DOI: 10.1182/blood.2021014966] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
S100A8/A9, also known as "calprotectin" or "MRP8/14," is an alarmin primarily secreted by activated myeloid cells with antimicrobial, proinflammatory, and prothrombotic properties. Increased plasma levels of S100A8/A9 in thrombo-inflammatory diseases are associated with thrombotic complications. We assessed the presence of S100A8/A9 in the plasma and lung autopsies from patients with COVID-19 and investigated the molecular mechanism by which S100A8/A9 affects platelet function and thrombosis. S100A8/A9 plasma levels were increased in patients with COVID-19 and sustained high levels during hospitalization correlated with poor outcomes. Heterodimeric S100A8/A9 was mainly detected in neutrophils and deposited on the vessel wall in COVID-19 lung autopsies. Immobilization of S100A8/A9 with collagen accelerated the formation of a fibrin-rich network after perfusion of recalcified blood at venous shear. In vitro, platelets adhered and partially spread on S100A8/A9, leading to the formation of distinct populations of either P-selectin or phosphatidylserine (PS)-positive platelets. By using washed platelets, soluble S100A8/A9 induced PS exposure but failed to induce platelet aggregation, despite GPIIb/IIIa activation and alpha-granule secretion. We identified GPIbα as the receptor for S100A8/A9 on platelets inducing the formation of procoagulant platelets with a supporting role for CD36. The effect of S100A8/A9 on platelets was abolished by recombinant GPIbα ectodomain, platelets from a patient with Bernard-Soulier syndrome with GPIb-IX-V deficiency, and platelets from mice deficient in the extracellular domain of GPIbα. We identified the S100A8/A9-GPIbα axis as a novel targetable prothrombotic pathway inducing procoagulant platelets and fibrin formation, in particular in diseases associated with high levels of S100A8/A9, such as COVID-19.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Joanne C. Clark
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhaogong Zhi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Megan J. Simpson
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Asif J. Iqbal
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - George E. Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes Centre, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alice Assinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
5
|
Denorme F, Campbell RA. Procoagulant platelets: novel players in thromboinflammation. Am J Physiol Cell Physiol 2022; 323:C951-C958. [PMID: 35993516 PMCID: PMC9484986 DOI: 10.1152/ajpcell.00252.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Platelets play a key role in maintaining hemostasis. However, dysregulated platelet activation can lead to pathological thrombosis or bleeding. Once a platelet gets activated, it will either become an aggregatory platelet or eventually a procoagulant platelet with both types playing distinct roles in thrombosis and hemostasis. Although aggregatory platelets have been extensively studied, procoagulant platelets have only recently come into the spotlight. Procoagulant platelets are a subpopulation of highly activated platelets that express phosphatidylserine and P-selectin on their surface, allowing for coagulation factors to bind and thrombin to be generated. In recent years, novel roles for procoagulant platelets have been identified and they have increasingly been implicated in thromboinflammatory diseases. Here, we provide an up-to-date review on the mechanisms resulting in the formation of procoagulant platelets and how they contribute to hemostasis, thrombosis, and thromboinflammation.
Collapse
Affiliation(s)
- Frederik Denorme
- University of Utah Molecular Medicine Program in Molecular Medicine, Salt Lake City, Utah
| | - Robert A Campbell
- University of Utah Molecular Medicine Program in Molecular Medicine, Salt Lake City, Utah
- Division of Microbiology and Pathology, Department of Pathology, University of Utah, Salt Lake City, Utah
- Division of General Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
6
|
Uzun G, Singh A, Abou-Khalel W, Pelzl L, Weich K, Nowak-Harnau S, Althaus K, Bugert P, Klüter H, Bakchoul T. Platelets and Sera from Donors of Convalescent Plasma after Mild COVID-19 Show No Procoagulant Phenotype. Hamostaseologie 2022; 42:S14-S23. [DOI: 10.1055/a-1797-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
AbstractCoronavirus disease-2019 (COVID-19) is associated with increased thromboembolic complications. Long-term alteration in the coagulation system after acute COVID-19 infection is still a subject of research. Furthermore, the effect of sera from convalescent subjects on platelets is not known. In this study, we investigated platelet phenotype, coagulation, and fibrinolysis in COVID-19 convalescent plasma (CCP) donors and analyzed convalescent sera-induced effects on platelets. We investigated CCP donors who had a history of mild COVID-19 infection and donors who did not have COVID-19 were used as controls. We analyzed phosphatidylserine (PS) externalization, CD62p expression, and glycoprotein VI (GPVI) shedding both in platelet-rich plasma (PRP) and after incubation of washed healthy platelets with donors' sera using flow cytometry. Coagulation and fibrinolysis systems were assessed with thromboelastometry. Forty-seven CCP donors (22 males, 25 females; mean age (±SD): 41.4 ± 13.7 years) with a history of mild COVID-19 infection were included. Median duration after acute COVID-19 infection was 97 days (range, 34–401). We did not find an increased PS externalization, CD62p expression, or GPVI shedding in platelets from CCP donors. Sera from CCP donors did not induce PS externalization or GPVI shedding in healthy platelets. Sera-induced CD62p expression was slightly, albeit statistically significantly, lower in CCP donors than in plasma donors without a history of COVID-19. One patient showed increased maximum clot firmness and prolonged lysis time in thromboelastometry. Our findings suggest that procoagulant platelet phenotype is not present after mild COVID-19. Furthermore, CCP sera do not affect the activation status of platelets.
Collapse
Affiliation(s)
- Günalp Uzun
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Anurag Singh
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany
| | - Wissam Abou-Khalel
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Lisann Pelzl
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany
| | - Karoline Weich
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Stefanie Nowak-Harnau
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Karina Althaus
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Hessen, Mannheim, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Hessen, Mannheim, Germany
| | - Tamam Bakchoul
- Centre for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tübingen, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Guo Y, Piasecki J, Swiecicka A, Ireland A, Phillips BE, Atherton PJ, Stashuk D, Rutter MK, McPhee JS, Piasecki M. Circulating testosterone and dehydroepiandrosterone are associated with individual motor unit features in untrained and highly active older men. GeroScience 2022; 44:1215-1228. [PMID: 34862585 PMCID: PMC9213614 DOI: 10.1007/s11357-021-00482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 10/31/2022] Open
Abstract
Long-term exercise training has been considered as an effective strategy to counteract age-related hormonal declines and minimise muscle atrophy. However, human data relating circulating hormone levels with motor nerve function are scant. The aims of the study were to explore associations between circulating sex hormone levels and motor unit (MU) characteristics in older men, including masters athletes competing in endurance and power events. Forty-three older men (mean ± SD age: 69.9 ± 4.6 years) were studied based on competitive status. The serum concentrations of dehydroepiandrosterone (DHEA), total testosterone (T) and estradiol were quantified using liquid chromatography mass spectrometry. Intramuscular electromyographic signals were recorded from vastus lateralis (VL) during 25% of maximum voluntary isometric contractions and processed to extract MU firing rate (FR), and motor unit potential (MUP) features. After adjusting for athletic status, MU FR was positively associated with DHEA levels (p = 0.019). Higher testosterone and estradiol were associated with lower MUP complexity; these relationships remained significant after adjusting for athletic status (p = 0.006 and p = 0.019, respectively). Circulating DHEA was positively associated with MU firing rate in these older men. Higher testosterone levels were associated with reduced MUP complexity, indicating reduced electrophysiological temporal dispersion, which is related to decreased differences in conduction times along axonal branches and/or MU fibres. Although evident in males only, this work highlights the potential of hormone administration as a therapeutic interventional strategy specifically targeting human motor units in older age.
Collapse
Affiliation(s)
- Yuxiao Guo
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jessica Piasecki
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, UK
| | - Agnieszka Swiecicka
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Alex Ireland
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel Stashuk
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON Canada
| | - Martin K. Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Mathew Piasecki
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham BRC, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Péterfi A, Mészáros Á, Szarvas Z, Pénzes M, Fekete M, Fehér Á, Lehoczki A, Csípő T, Fazekas-Pongor V. Comorbidities and increased mortality of COVID-19 among the elderly: A systematic review. Physiol Int 2022; 109:163-176. [PMID: 35575986 DOI: 10.1556/2060.2022.00206] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/18/2024]
Abstract
Purpose The purpose of current review is to conduct a systematic overview of articles published between 2019 and 2021 on the relationship of comorbidities and mortality due to Coronavirus Disease 2019 (COVID-19) among the elderly population. Methods We conducted a systematic search on PubMed for articles published between 2019 and 2021 to identify any cohort and case-control studies that investigated the relationship of comorbidities and COVID-19 mortality among the elderly, defined as 60 years of age and above. Databases were searched independently by two authors. Disagreements were resolved by the inclusion of a third investigator. Reviews, systematic reviews, and meta-analyses were excluded from our systematic review. Results A total of 15 studies were selected for our systematic review. Of the included studies, 3 were case-control, 3 were prospective cohort studies and 9 were retrospective cohort studies. As for size, 10 studies were conducted on populations of <1000 participants, 3 ranging from 1001 to 10,000, and 2 on populations of >10,000 individuals. The included studies found that the presence of certain conditions, such as cardiovascular, respiratory, renal diseases, malignancies, diseases of the nervous system and diabetes are associated to increased mortality in populations that consisted of elderly patients. Conclusion Results of our systematic review suggest that comorbidities contribute to increased COVID-19 mortality among the elderly. The detrimental effect of comorbidities and advanced age on the immune response could lead to a more frequent occurrence of symptomatic and severe infections with COVID-19.
Collapse
Affiliation(s)
- Anna Péterfi
- 1 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágota Mészáros
- 1 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsófia Szarvas
- 1 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Melinda Pénzes
- 1 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mónika Fekete
- 1 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Fehér
- 1 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Lehoczki
- 2 National Institute for Hematology and Infectious Diseases, Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital, Budapest, Hungary
| | - Tamás Csípő
- 1 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Vince Fazekas-Pongor
- 1 Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Veuthey L, Aliotta A, Bertaggia Calderara D, Pereira Portela C, Alberio L. Mechanisms Underlying Dichotomous Procoagulant COAT Platelet Generation-A Conceptual Review Summarizing Current Knowledge. Int J Mol Sci 2022; 23:2536. [PMID: 35269679 PMCID: PMC8910683 DOI: 10.3390/ijms23052536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Procoagulant platelets are a subtype of activated platelets that sustains thrombin generation in order to consolidate the clot and stop bleeding. This aspect of platelet activation is gaining more and more recognition and interest. In fact, next to aggregating platelets, procoagulant platelets are key regulators of thrombus formation. Imbalance of both subpopulations can lead to undesired thrombotic or bleeding events. COAT platelets derive from a common pro-aggregatory phenotype in cells capable of accumulating enough cytosolic calcium to trigger specific pathways that mediate the loss of their aggregating properties and the development of new adhesive and procoagulant characteristics. Complex cascades of signaling events are involved and this may explain why an inter-individual variability exists in procoagulant potential. Nowadays, we know the key agonists and mediators underlying the generation of a procoagulant platelet response. However, we still lack insight into the actual mechanisms controlling this dichotomous pattern (i.e., procoagulant versus aggregating phenotype). In this review, we describe the phenotypic characteristics of procoagulant COAT platelets, we detail the current knowledge on the mechanisms of the procoagulant response, and discuss possible drivers of this dichotomous diversification, in particular addressing the impact of the platelet environment during in vivo thrombus formation.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (L.V.); (A.A.); (D.B.C.); (C.P.P.)
| |
Collapse
|
10
|
Schrottmaier WC, Pirabe A, Pereyra D, Heber S, Hackl H, Schmuckenschlager A, Brunnthaler L, Santol J, Kammerer K, Oosterlee J, Pawelka E, Treiber SM, Khan AO, Pugh M, Traugott MT, Schörgenhofer C, Seitz T, Karolyi M, Jilma B, Rayes J, Zoufaly A, Assinger A. Platelets and Antiplatelet Medication in COVID-19-Related Thrombotic Complications. Front Cardiovasc Med 2022; 8:802566. [PMID: 35141292 PMCID: PMC8818754 DOI: 10.3389/fcvm.2021.802566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) induces a hypercoagulatory state that frequently leads to thromboembolic complications. Whereas anticoagulation is associated with reduced mortality, the role of antiplatelet therapy in COVID-19 is less clear. We retrospectively analyzed the effect of anticoagulation and antiplatelet therapy in 578 hospitalized patients with COVID-19 and prospectively monitored 110 patients for circulating microthrombi and plasma markers of coagulation in the first week of admission. Moreover, we determined platelet shape change and also thrombi in postmortem lung biopsies in a subset of patients with COVID-19. We observed no association of antiplatelet therapy with COVID-19 survival. Adverse outcome in COVID-19 was associated with increased activation of the coagulation cascade, whereas circulating microthrombi did not increase in aggravated disease. This was in line with analysis of postmortem lung biopsies of patients with COVID-19, which revealed generally fibrin(ogen)-rich and platelet-low thrombi. Platelet spreading was normal in severe COVID-19 cases; however, plasma from patients with COVID-19 mediated an outcome-dependent inhibitory effect on naïve platelets. Antiplatelet medication disproportionally exacerbated this platelet impairment in plasma of patients with fatal outcome. Taken together, this study shows that unfavorable outcome in COVID-19 is associated with a profound dysregulation of the coagulation system, whereas the contribution of platelets to thrombotic complications is less clear. Adverse outcome may be associated with impaired platelet function or platelet exhaustion. In line, antiplatelet therapy was not associated with beneficial outcome.
Collapse
Affiliation(s)
- Waltraud C. Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - David Pereyra
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Stefan Heber
- Institute of Physiology, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Schmuckenschlager
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonas Santol
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Kerstin Kammerer
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Justin Oosterlee
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Erich Pawelka
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Sonja M. Treiber
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | | | - Christian Schörgenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Tamara Seitz
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Mario Karolyi
- Department of Medicine IV, Clinic Favoriten, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, General Hospital Vienna, Vienna, Austria
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Gomes C, Zuniga M, Crotty KA, Qian K, Tovar NC, Lin LH, Argyropoulos KV, Clancy R, Izmirly P, Buyon J, Lee DC, Yasnot-Acosta MF, Li H, Cotzia P, Rodriguez A. Autoimmune anti-DNA and anti-phosphatidylserine antibodies predict development of severe COVID-19. Life Sci Alliance 2021; 4:4/11/e202101180. [PMID: 34504035 PMCID: PMC8441539 DOI: 10.26508/lsa.202101180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
COVID-19 induces high levels of autoimmune anti-DNA and anti-phosphatidylserine antibodies that are detected in some patients upon hospital admission and predict later development of severe disease. High levels of autoimmune antibodies are observed in COVID-19 patients but their specific contribution to disease severity and clinical manifestations remains poorly understood. We performed a retrospective study of 115 COVID-19 hospitalized patients with different degrees of severity to analyze the generation of autoimmune antibodies to common antigens: a lysate of erythrocytes, the lipid phosphatidylserine (PS) and DNA. High levels of IgG autoantibodies against erythrocyte lysates were observed in a large percentage (up to 36%) of patients. Anti-DNA and anti-PS antibodies determined upon hospital admission correlated strongly with later development of severe disease, showing a positive predictive value of 85.7% and 92.8%, respectively. Patients with positive values for at least one of the two autoantibodies accounted for 24% of total severe cases. Statistical analysis identified strong correlations between anti-DNA antibodies and markers of cell injury, coagulation, neutrophil levels and erythrocyte size. Anti-DNA and anti-PS autoantibodies may play an important role in the pathogenesis of COVID-19 and could be developed as predictive biomarkers for disease severity and specific clinical manifestations.
Collapse
Affiliation(s)
- Claudia Gomes
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Marisol Zuniga
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kelly A Crotty
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kun Qian
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Nubia Catalina Tovar
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.,Universidad de Córdoba, Montería, Córdoba, Colombia.,Universidad Del Sinú, Montería, Córdoba, Colombia
| | - Lawrence Hsu Lin
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kimon V Argyropoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Robert Clancy
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Peter Izmirly
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jill Buyon
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - David C Lee
- Department of Emergency Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Huilin Li
- Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Paolo Cotzia
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ana Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|