1
|
Wu C, Li M, Chen Z, Feng S, Deng Q, Duan R, Liu TCY, Yang L. Remote photobiomodulation ameliorates behavioral and neuropathological outcomes in a rat model of repeated closed head injury. Transl Psychiatry 2025; 15:8. [PMID: 39799140 PMCID: PMC11724958 DOI: 10.1038/s41398-025-03228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits. Utilizing the "Marmarou" weight-drop model, rCHI was induced in rats on days 0, 5, and 10. Remote PBM, employing an 808 nm continuous wave laser, was administered daily in 2-min sessions per lung side over 20 days. Behavioral deficits were assessed through three-chamber social interaction, forced swim, grip strength, open field, elevated plus maze, and Barnes maze tests. Immunofluorescence staining and 3D reconstruction evaluated neuronal damage, apoptosis, degeneration, and the morphology of microglia and astrocytes, as well as astrocyte and microglia-mediated excessive synapse elimination. Additionally, 16S rDNA amplicon sequencing analyzed changes in the lung microbiome following remote PBM treatment. Results demonstrated that remote PBM significantly improved depressive-like behaviors, motor dysfunction, and social interaction impairment while enhancing grip strength and reducing neuronal damage, apoptosis, and degeneration induced by rCHI. Analysis of lung microbiome changes revealed an enrichment of lipopolysaccharide (LPS) biosynthesis pathways, suggesting a potential link to neuroprotection. Furthermore, remote PBM mitigated hyperactivation of cortical microglia and astrocytes and significantly reduced excessive synaptic phagocytosis by these cells, highlighting its potential as a preventive strategy for rCHI with neuroprotective effects.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Meng Li
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Zhe Chen
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Zhang XY, Zhang JH, Li XC, Lu H, Liu TCY. Exercise-induced upregulation of TRIM9 attenuates neuroinflammation in Alzheimer's disease-like rat. Int Immunopharmacol 2025; 144:113676. [PMID: 39580859 DOI: 10.1016/j.intimp.2024.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Exercise exerts protective effects against Alzheimer's disease (AD). However, the factors and mechanisms underlying these effects remain largely unknown. This study aims to elucidate the molecular mechanisms by which exercise exerts its protective effects against AD. METHODS Male 7-week-old Sprague-Dawley rats were randomly allocated to four groups (n = 10 per group): control (CON), exercise control (EXE), sedentary AD model induced by intracerebroventricular streptozotocin (STZ) injection, and AD model with treadmill exercise (EXE + STZ). The exercise groups underwent a 13-week treadmill exercise. An intracerebroventricular injection of STZ was used to induce a rat model of AD. The Barnes maze task was employed as an assessment of spatial learning and memory. Hippocampal tissues from three rats per group was collected for proteomic analysis. Immunofluorescence staining, western blot analysis and polymerase chain reaction were performed for the evaluation of Aβ production, tau hyperphosphorylation, differential protein and corresponding signaling pathway. RESULTS Treadmill exercise could significantly improve STZ-induced cognitive dysfunction and provide neuroprotection by reducing Aβ deposition and tau hyperphosphorylation. Proteomic analysis and further studies demonstrated that treadmill training could significantly increase the expression of tripartite motif-containing 9 (TRIM9). Subsequent research indicated that the upregulation of TRIM9 maybe due, in part,to the inhibition of the NF-κB pathway, thereby reducing the pro-inflammatory factor, and exerting an anti-inflammatory effect. CONCLUSIONS Treadmill exercise attenuates cognitive decline in AD models by upregulating TRIM9 expression, which in turn inhibits NF-κB-mediated neuroinflammation. These findings suggest that TRIM9 may serve as a potential therapeutic target for immunomodulatory strategies against AD.
Collapse
Affiliation(s)
- Xin-Yang Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Jia-Hao Zhang
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Xiao-Chuan Li
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Hui Lu
- Open Mind Digital Life and Mental Model Laboratory, Shenzhen, Guangzhou 518000, China.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Deng Q, Wu C, Parker E, Zhu J, Liu TCY, Duan R, Yang L. Mystery of gamma wave stimulation in brain disorders. Mol Neurodegener 2024; 19:96. [PMID: 39695746 DOI: 10.1186/s13024-024-00785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neuronal oscillations refer to rhythmic and periodic fluctuations of electrical activity in the central nervous system that arise from the cellular properties of diverse neuronal populations and their interactions. Specifically, gamma oscillations play a crucial role in governing the connectivity between distinct brain regions, which are essential in perception, motor control, memory, and emotions. In this context, we recapitulate various current stimulation methods to induce gamma entrainment. These methods include sensory stimulation, optogenetic modulation, photobiomodulation, and transcranial electrical or magnetic stimulation. Simultaneously, we explore the association between abnormal gamma oscillations and central nervous system disorders such as Alzheimer's disease, Parkinson's disease, stroke, schizophrenia, and autism spectrum disorders. Evidence suggests that gamma entrainment-inducing stimulation methods offer notable neuroprotection, although somewhat controversial. This review comprehensively discusses the functional role of gamma oscillations in higher-order brain activities from both physiological and pathological perspectives, emphasizing gamma entrainment as a potential therapeutic approach for neuropsychiatric disorders. Additionally, we discuss future opportunities and challenges in implementing such strategies.
Collapse
Affiliation(s)
- Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Emily Parker
- Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Jing Zhu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Cantón-Suárez A, Sánchez-Valdeón L, Bello-Corral L, Cuevas MJ, Estébanez B. Understanding the Molecular Impact of Physical Exercise on Alzheimer's Disease. Int J Mol Sci 2024; 25:13576. [PMID: 39769339 PMCID: PMC11677557 DOI: 10.3390/ijms252413576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases, characterized by a wide range of neurological symptoms that begin with personality changes and psychiatric symptoms, progress to mild cognitive impairment, and eventually lead to dementia. Physical exercise is part of the non-pharmacological treatments used in Alzheimer's disease, as it has been shown to delay the neurodegenerative process by improving the redox state in brain tissue, providing anti-inflammatory effects or stimulating the release of the brain-derived neurotrophic factor that enhances the brain structure and cognitive performance. Here, we reviewed the results obtained from studies conducted in both animal models and human subjects to comprehend how physical exercise interventions can exert changes in the molecular mechanisms underlying the pathophysiological processes in Alzheimer's disease: amyloid β-peptide pathology, tau pathology, neuroglial changes, mitochondrial dysfunction, and oxidative stress. Physical exercise seems to have a protective effect against Alzheimer's disease, since it has been shown to induce positive changes in some of the biomarkers related to the pathophysiological processes of the disease. However, additional studies in humans are necessary to address the current lack of conclusive evidence.
Collapse
Affiliation(s)
| | - Leticia Sánchez-Valdeón
- Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain; (L.S.-V.); (L.B.-C.)
- Department of Nursing and Physiotherapy, University of Leon, 24071 Leon, Spain
| | - Laura Bello-Corral
- Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain; (L.S.-V.); (L.B.-C.)
- Department of Nursing and Physiotherapy, University of Leon, 24071 Leon, Spain
| | - María J. Cuevas
- Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain;
| | - Brisamar Estébanez
- Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain;
| |
Collapse
|
5
|
Chen D, Guo Y, Zhang M, Liu X, Zhang B, Kou X. Exercise alleviates cognitive decline of natural aging rats by upregulating Notch-mediated autophagy signaling. Brain Res 2024; 1850:149398. [PMID: 39667553 DOI: 10.1016/j.brainres.2024.149398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Notch signaling, a classical signaling pathway of neurogenesis, is downregulated during the aging and age-related neurodegenerative diseases. Exercise has been proposed as an effective lifestyle intervention for delaying cognitive decline. However, it remains unclear whether exercise intervention could alleviate cognitive decline by modulating neurogenesis in naturally aging rats. In this study, 21-month-old natural aging rats were used to study brain aging. The natural aging rats underwent different forms of exercise training (aerobic exercise or strength training or comprehensive exercise with aerobic exercise and strength training) for 12 consecutive weeks. The cognitive function of natural aging rats was determined by Morris Water Maze. Notch signaling, autophagy-related proteins and hippocampal neurogenesis were examined by immunofluorescence, qRT-PCR and Western blot. Results showed that natural aging rats exhibited cognitive decline, accumulation of AD pathological proteins (APP and Aβ), and decreased neurogenesis (decreased DCX, Ki67 and GFAP), compared with the young control rats. Moreover, a significant decline in Notch signaling and autophagy was found in the hippocampus of natural aging rats. However, different forms of exercise upregulated Notch signaling and its downstream target genes, as well as autophagy-related proteins, including LC3, Beclin1, and p62. In summary, our data suggest that different forms of exercise can mitigate brain aging by upregulating Notch signaling and autophagy, thereby increasing hippocampal neurogenesis and improves spatial learning and memory abilities.
Collapse
Affiliation(s)
- Dandan Chen
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; College of Physical Education, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuan Guo
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; Wuhan Wuchang Hospital, Wuhan 430063, China
| | - Meng Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Xingran Liu
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; College of Physical Education and Health, Guangxi Medical University, Nanning 530021, China
| | - Baowen Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Xianjuan Kou
- College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China; Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan 430079, China.
| |
Collapse
|
6
|
Tang Y, Wang X, Huang M, Li Y, Liu X, Zeng H, Yang Y, Zhou M. Sports training improves motor function after spinal cord injury by regulating microtubule dynamics. Biochim Biophys Acta Mol Basis Dis 2024:167587. [PMID: 39586504 DOI: 10.1016/j.bbadis.2024.167587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Spinal cord injury (SCI) often results in persistent disabilities, primarily due to deficient axon regeneration and irreversible neuronal loss. Sports training is a widely adopted intervention in clinical practice and research to promote axonal sprouting and synaptic plasticity, thereby improving motor function after SCI. However, the precise mechanisms by which sports training improves motor function after SCI remain incompletely understood. We established a rat model of T9 spinal cord contusion and initiated sports training 1 week after SCI, which continued for eight weeks. Using transcriptome sequencing validated through western blotting and immunostaining, we demonstrated that sports training effectively reduced neuroinflammation and prevented neuronal loss. Furthermore, we discovered that sports training changed neuronal microtubule dynamics, facilitating axon regeneration and synaptic plasticity and ultimately improving motor function. These findings indicate that the modulation of neuronal microtubule dynamics may represent a critical mechanism through which sports training improves motor function after SCI.
Collapse
Affiliation(s)
- Yue Tang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Mengjie Huang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Yijie Li
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Xiaoxie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Hong Zeng
- Department of Rehabilitation Medicine, The Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Yanyan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China.
| | - Mouwang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing 100191, China.
| |
Collapse
|
7
|
Lu D, Qu C, Fang M, Zhang J. Exercise rescues cognitive impairment through inhibiting the fibrinogen neuroinflammative pathway in diabetes. Metab Brain Dis 2024; 40:2. [PMID: 39535634 DOI: 10.1007/s11011-024-01455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Fibrinogen is a pivotal factor in the activation of neuroinflammation and cognitive impairment. While exercise, especifically swimming, has demonstrated cognitive benefits, the molecular protective mechanisms orchestrated by exercise in response to blood-brain barrier (BBB) leakage in diabetes remain elusive. This study systematically investigates the impact of fibrinogen on neuroinflammation and the role of exercise in diabetic rats. Diabetic rats underwent an 8-week swimming exercise regimen, and subsequent assessments included changes in interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), astroglia activation, BBB permeability, and key epithelial tight junction proteins such as zona occludins (ZO)-1, Claudin-5, and matrix metalloproteinase-9 (MMP-9). Spatial learning and memory were evaluated using the Morris water maze test and the novel object recognition test. The study revealed that exercise significantly improved cognitive function, potentially by suppressing fibrinogen levels and astroglia activation. Intriguingly, heightened fibrinogen expression markedly attenuated the protective effects of exercise on BBB integrity. Fibrinogen emerged as a potential compromise to exercise protective effect by increasing expression levels of inflammatory factors IL-1β and TNF-α. In summary, our findings elucidate that fibrinogen may contribute to the deterioration of cognition and diminish the protective effects of exercise by amplifying the neuroinflammatory process through damaged BBB in diabetes.
Collapse
Affiliation(s)
- Dongwei Lu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chujie Qu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mei Fang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
8
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Chen F, Cheng B, Xu X, Yan W, Meng Q, Liu J, Yao R, Dong F, Liu Y. High-intensity interval training stimulates remyelination via the Wnt/β-catenin pathway in cuprizone-induced demyelination mouse model. Neurol Res 2024; 46:996-1007. [PMID: 38979727 DOI: 10.1080/01616412.2024.2376310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES This study aims to investigate the role of high-intensity interval training (HIIT) in promoting myelin sheath recovery during the remyelination phase in cuprizone (CPZ)-induced demyelination mice and elucidate the mechanisms involving the Wnt/β-catenin pathway. METHODS After 5 weeks of a 0.2% CPZ diet to induce demyelination, a 4-week recovery phase with a normal diet was followed by HIIT intervention. Mice body weight was monitored. Morris water maze (MWM) gauged spatial cognition and memory, while the open field test (OFT) assessed anxiety levels. Luxol fast blue (LFB) staining measured demyelination, and immunofluorescence examined myelin basic protein (MBP) and platelet-derived growth factor receptor-alpha (PDGFR-α). Western blotting analyzed protein expression, including MBP, PDGFR-α, glycogen synthase kinase-3β (GSK3β), β-catenin, and p-β-catenin. Real-time PCR detected mRNA expression levels of CGT and CST. RESULTS HIIT promoted remyelination in demyelinating mice, enhancing spatial cognition, memory, and reducing anxiety. LFB staining indicated decreased demyelination in HIIT-treated mice. Immunofluorescence demonstrated increased MBP fluorescence intensity and PDGFR-α+ cell numbers with HIIT. Western blotting revealed HIIT reduced β-catenin levels while increasing p-β-catenin and GSK3β levels. Real-time PCR demonstrated that HIIT promoted the generation of new myelin sheaths. Additionally, the Wnt/β-catenin pathway agonist, SKL2001, decreased MBP expression but increased PDGFR-α expression. DISCUSSION HIIT promotes remyelination by inhibiting the Wnt/β-catenin pathway and is a promising rehabilitation training for demyelinating diseases. It provides a new theoretical basis for clinical rehabilitation and care programs.
Collapse
Affiliation(s)
- Fei Chen
- The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Bing Cheng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xinqi Xu
- The First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jinfeng Liu
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yaping Liu
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
10
|
Wu C, Deng Q, Zhu L, Liu TCY, Duan R, Yang L. Methylene Blue Pretreatment Protects Against Repeated Neonatal Isoflurane Exposure-Induced Brain Injury and Memory Loss. Mol Neurobiol 2024; 61:5787-5801. [PMID: 38233687 DOI: 10.1007/s12035-024-03931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024]
Abstract
Perioperative neurocognitive impairment (PND) is a common medical complication in the postoperative period. General anesthesia through volatile anesthetics poses a high risk of POCD. Moreover, the developing brain is especially vulnerable to anesthesia-induced neurotoxicity. Therefore, finding a practical approach to prevent or alleviate neonatal isoflurane (ISO) exposure-induced brain injury and cognitive decline is essential for reducing medical complications following major surgery during the early postnatal period. Using a repeated neonatal ISO exposure-induced PND rat model, we investigated the effects of methylene blue (MB) pretreatment on repeated neonatal isoflurane exposure-induced brain injury and memory loss. Intraperitoneal injection of low-dose MB (1 mg/kg) was conducted three times 24 h before each ISO exposure. The Barnes maze and novel objection test were conducted to assess learning and memory. Immunofluorescence staining, F-Jade C staining, TUNEL staining, and Western blot analysis were performed to determine mitochondrial fragmentation, neuronal injury, degeneration, and apoptosis. Evans blue extravasation assay, total antioxidant capacity assay, MDA assay kit, and related inflammatory assay kits were used to test blood-brain barrier (BBB) disruption, antioxidant capacity, and neuroinflammation. Behavioral tests revealed that MB pretreatment significantly ameliorated ISO exposure-induced cognitive deficits. In addition, MB pretreatment alleviates neuronal injury, apoptosis, and degeneration. Furthermore, the BBB integrity was preserved by MB pretreatment. Additional studies revealed that ISO-induced excessive mitochondrial fragmentation, oxidative stress, and neuroinflammation were significantly attenuated by MB pretreatment in the PND rat model. Our findings suggest that MB pretreatment alleviates ISO exposure-induced brain injury and memory loss for the first time, supporting MB pretreatment as a promising approach to protect the brain against neonatal ISO exposure-induced postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L. The role of estrogen in Alzheimer's disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 2024:10.1007/s11010-024-05071-4. [PMID: 39088186 DOI: 10.1007/s11010-024-05071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Estrogens are pivotal regulators of brain function throughout the lifespan, exerting profound effects from early embryonic development to aging. Extensive experimental evidence underscores the multifaceted protective roles of estrogens on neurons and neurotransmitter systems, particularly in the context of Alzheimer's disease (AD) pathogenesis. Studies have consistently revealed a greater risk of AD development in women compared to men, with postmenopausal women exhibiting heightened susceptibility. This connection between sex factors and long-term estrogen deprivation highlights the significance of estrogen signaling in AD progression. Estrogen's influence extends to key processes implicated in AD, including amyloid precursor protein (APP) processing and neuronal health maintenance mediated by brain-derived neurotrophic factor (BDNF). Reduced BDNF expression, often observed in AD, underscores estrogen's role in preserving neuronal integrity. Notably, hormone replacement therapy (HRT) has emerged as a sex-specific and time-dependent strategy for primary cardiovascular disease (CVD) prevention, offering an excellent risk profile against aging-related disorders like AD. Evidence suggests that HRT may mitigate AD onset and progression in postmenopausal women, further emphasizing the importance of estrogen signaling in AD pathophysiology. This review comprehensively examines the physiological and pathological changes associated with estrogen in AD, elucidating the therapeutic potential of estrogen-based interventions such as HRT. By synthesizing current knowledge, it aims to provide insights into the intricate interplay between estrogen signaling and AD pathogenesis, thereby informing future research directions and therapeutic strategies for this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Reitz NL, Nunes PT, Savage LM. Exercise leads to sex-specific recovery of behavior and pathological AD markers following adolescent ethanol exposure in the TgF344-AD model. Front Behav Neurosci 2024; 18:1448691. [PMID: 39148897 PMCID: PMC11324591 DOI: 10.3389/fnbeh.2024.1448691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Human epidemiological studies suggest that heavy alcohol consumption may lead to earlier onset of Alzheimer's Disease (AD), especially in individuals with a genetic predisposition for AD. Alcohol-related brain damage (ARBD) during a critical developmental timepoint, such as adolescence, interacts with AD-related pathologies to accelerate disease progression later in life. The current study investigates if voluntary exercise in mid-adulthood can recover memory deficits caused by the interactions between adolescence ethanol exposure and AD-transgenes. Methods Male and female TgF344-AD and wildtype F344 rats were exposed to an intragastric gavage of water (control) or 5 g/kg of 20% ethanol (adolescent intermittent ethanol; AIE) for a 2 day on/off schedule throughout adolescence (PD27-57). At 6 months old, rats either remained in their home cage (stationary) or were placed in a voluntary wheel running apparatus for 4 weeks and then underwent several behavioral tests. The number of cholinergic neurons in the basal forebrain and measure of neurogenesis in the hippocampus were assessed. Results Voluntary wheel running recovers spatial working memory deficits selectively in female TgF344-AD rats exposed to AIE and improves pattern separation impairment seen in control TgF344-AD female rats. There were sex-dependent effects on brain pathology: Exercise improves the integration of recently born neurons in AIE-exposed TgF344-AD female rats. Exercise led to a decrease in amyloid burden in the hippocampus and entorhinal cortex, but only in male AIE-exposed TgF344-AD rats. Although the number of basal forebrain cholinergic neurons was not affected by AD-transgenes in either sex, AIE did reduce the number of basal forebrain cholinergic neurons in female rats. Discussion These data provide support that even after symptom onset, AIE and AD related cognitive decline and associated neuropathologies can be rescued with exercise in unique sex-specific ways.
Collapse
Affiliation(s)
| | | | - Lisa M. Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| |
Collapse
|
13
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Feng Y, Huang Z, Ma X, Zong X, Xu P, Lin HW, Zhang Q. Intermittent theta-burst stimulation alleviates hypoxia-ischemia-caused myelin damage and neurologic disability. Exp Neurol 2024; 378:114821. [PMID: 38782349 PMCID: PMC11214828 DOI: 10.1016/j.expneurol.2024.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Neonatal hypoxia-ischemia (HI) results in behavioral deficits, characterized by neuronal injury and retarded myelin formation. To date, limited treatment methods are available to prevent or alleviate neurologic sequelae of HI. Intermittent theta-burst stimulation (iTBS), a non-invasive therapeutic procedure, is considered a promising therapeutic tool for treating some neurocognitive disorders and neuropsychiatric diseases. Hence, this study aims to investigate whether iTBS can prevent the negative behavioral manifestations of HI and explore the mechanisms for associations. We exposed postnatal day 10 Sprague-Dawley male and female rats to 2 h of hypoxia (6% O2) following right common carotid artery ligation, resulting in oligodendrocyte (OL) dysfunction, including reduced proliferation and differentiation of oligodendrocyte precursor cells (OPCs), decreased OL survival, and compromised myelin in the corpus callosum (CC) and hippocampal dentate gyrus (DG). These alterations were concomitant with cognitive dysfunction and depression-like behaviors. Crucially, early iTBS treatment (15 G, 190 s, seven days, initiated one day post-HI) significantly alleviated HI-caused myelin damage and mitigated the neurologic sequelae both in male and female rats. However, the late iTBS treatment (initiated 18 days after HI insult) could not significantly impact these behavioral deficits. In summary, our findings support that early iTBS treatment may be a promising strategy to improve HI-induced neurologic disability. The underlying mechanisms of iTBS treatment are associated with promoting the differentiation of OPCs and alleviating myelin damage.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, College of Pharmacy, 715 Sumter Street, CLS609D, Columbia, SC 29208, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA.
| |
Collapse
|
15
|
Cui MF, Chen LM, Jiang C, Ma BZ, Yuan FW, Zhao C, Liu SM. Risks associated with cognitive function and management strategies in the clinical use of ADT: a systematic review from clinical and preclinical studies. Support Care Cancer 2024; 32:561. [PMID: 39085696 DOI: 10.1007/s00520-024-08753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Prostate cancer is one of the most common malignancies and a leading cause of death in men. Owing to its excellent anti-tumor effects, androgen deprivation therapy (ADT) is widely used in the treatment of prostate cancer. However, its use is controversial because of its potential for inducing cognitive decline. In this review, we summarized the findings of preclinical and clinical studies investigating the effects of ADT on cognitive function in prostate cancer. We discussed the methods used to assess cognitive function in these studies, elucidated the mechanisms through which ADT affects cognitive function, and highlighted recent advancements in cognitive assessment methods. The findings of this review serve as a valuable reference for examining the relationship between ADT and cognitive function in future studies. Besides, the findings may help clinicians understand the advantages and disadvantages of ADT and optimize the treatment plan so as to minimize the adverse effects of ADT.
Collapse
Affiliation(s)
- Meng-Fan Cui
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Li-Ming Chen
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Cindy Jiang
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Bing-Zhe Ma
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Fu-Wen Yuan
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China
| | - Chen Zhao
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China.
| | - Shi-Min Liu
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, No, China.
| |
Collapse
|
16
|
Angelopoulou E, Bougea A, Hatzimanolis A, Scarmeas N, Papageorgiou SG. Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology. Cells 2024; 13:1164. [PMID: 38995015 PMCID: PMC11240615 DOI: 10.3390/cells13131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
The emergence of sustained neuropsychiatric symptoms (NPS) among non-demented individuals in later life, defined as mild behavioral impairment (MBI), is linked to a higher risk of cognitive decline. However, the underlying pathophysiological mechanisms remain largely unexplored. A growing body of evidence has shown that MBI is associated with alterations in structural and functional neuroimaging studies, higher genetic predisposition to clinical diagnosis of Alzheimer's disease (AD), as well as amyloid and tau pathology assessed in the blood, cerebrospinal fluid, positron-emission tomography (PET) imaging and neuropathological examination. These findings shed more light on the MBI-related potential neurobiological mechanisms, paving the way for the development of targeted pharmacological approaches. In this review, we aim to discuss the available clinical evidence on the role of amyloid and tau pathology in MBI and the potential underlying pathophysiological mechanisms. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, disruption of neurotrophic factors, such as the brain-derived neurotrophic factor (BDNF), abnormal neuroinflammatory responses including the kynurenine pathway, dysregulation of transforming growth factor beta (TGF-β1), epigenetic alterations including micro-RNA (miR)-451a and miR-455-3p, synaptic dysfunction, imbalance in neurotransmitters including acetylcholine, dopamine, serotonin, gamma-aminobutyric acid (GABA) and norepinephrine, as well as altered locus coeruleus (LC) integrity are some of the potential mechanisms connecting MBI with amyloid and tau pathology. The elucidation of the underlying neurobiology of MBI would facilitate the design and efficacy of relative clinical trials, especially towards amyloid- or tau-related pathways. In addition, we provide insights for future research into our deeper understanding of its underlying pathophysiology of MBI, and discuss relative therapeutic implications.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| | - Anastasia Bougea
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| | - Alexandros Hatzimanolis
- 1st Department of Psychiatry, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| | - Sokratis G Papageorgiou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece
| |
Collapse
|
17
|
Wu CYC, Zhang Y, Xu L, Huang Z, Zou P, Clemons GA, Li C, Citadin CT, Zhang Q, Lee RHC. The role of serum/glucocorticoid-regulated kinase 1 in brain function following cerebral ischemia. J Cereb Blood Flow Metab 2024; 44:1145-1162. [PMID: 38235747 PMCID: PMC11179613 DOI: 10.1177/0271678x231224508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Cardiopulmonary arrest (CA) is a major cause of death/disability in the U.S. with poor prognosis and survival rates. Current therapeutic challenges are physiologically complex because they involve hypoperfusion (decreased cerebral blood flow), neuroinflammation, and mitochondrial dysfunction. We previously discovered novel serum/glucocorticoid-regulated kinase 1 (SGK1) is highly expressed in brain of neurons that are susceptible to ischemia (hippocampus and cortex). We inhibited SGK1 and utilized pharmacological (specific inhibitor, GSK650394) and neuron-specific genetic approaches (shRNA) in rodent models of CA to determine if SGK1 is responsible for hypoperfusion, neuroinflammation, mitochondrial dysfunctional, and neurological deficits after CA. Inhibition of SGK1 alleviated cortical hypoperfusion and neuroinflammation (via Iba1, GFAP, and cytokine array). Treatment with GSK650394 enhanced mitochondrial function (via Seahorse respirometry) in the hippocampus 3 and 7 days after CA. Neuronal injury (via MAP2, dMBP, and Golgi staining) in the hippocampus and cortex was observed 7 days after CA but ameliorated with SGK1-shRNA. Moreover, SGK1 mediated neuronal injury by regulating the Ndrg1-SOX10 axis. Finally, animals subjected to CA exhibited learning/memory, motor, and anxiety deficits after CA, whereas SGK1 inhibition via SGK1-shRNA improved neurocognitive function. The present study suggests the fundamental roles of SGK1 in brain circulation and neuronal survival/death in cerebral ischemia-related diseases.
Collapse
Affiliation(s)
- Celeste Yin-Chieh Wu
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Yulan Zhang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Li Xu
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Zhihai Huang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Peibin Zou
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| | - Chun Li
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| | - Quanguang Zhang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| |
Collapse
|
18
|
Li M, Xu J, Li L, Zhang L, Zuo Z, Feng Y, He X, Hu X. Voluntary wheel exercise improves glymphatic clearance and ameliorates colitis-associated cognitive impairment in aged mice by inhibiting TRPV4-induced astrocytic calcium activity. Exp Neurol 2024; 376:114770. [PMID: 38580155 DOI: 10.1016/j.expneurol.2024.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic colitis exacerbates neuroinflammation, contributing to cognitive impairment during aging, but the mechanism remains unclear. The polarity distribution of astrocytic aquaporin 4 (AQP4) is crucial for the glymphatic system, which is responsible for metabolite clearance in the brain. Physical exercise (PE) improves cognition in the aged. This study aims to investigate the protective mechanism of exercise in colitis-associated cognitive impairment. METHODS To establish a chronic colitis model, 18-month-old C57BL/6 J female mice received periodic oral administration of 1% wt/vol dextran sodium sulfate (DSS) in drinking water. The mice in the exercise group received four weeks of voluntary wheel exercise. High-throughput sequencing was conducted to screen for differentially expressed genes. Two-photon imaging was performed to investigate the function of the astrocytic calcium activity and in vivo intervention with TRPV4 inhibitor HC-067047. Further, GSK1016790A (GSK1), a TRPV4 agonist, was daily intraperitoneally injected during the exercise period to study the involvement of TRPV4 in PE protection. Colitis pathology was confirmed by histopathology. The novel object recognition (NOR) test, Morris water maze test (MWM), and open field test were performed to measure colitis-induced cognition and anxiety-like behavior. In vivo two-photon imaging and ex vivo imaging of fluorescent CSF tracers to evaluate the function of the glymphatic system. Immunofluorescence staining was used to detect the Aβ deposition, polarity distribution of astrocytic AQP4, and astrocytic phenotype. Serum and brain levels of the inflammatory cytokines were tested by Enzyme-linked immunosorbent assay (ELISA). The brain TUNEL assay was used to assess DNA damage. Expression of critical molecules was detected using Western blotting. RESULTS Voluntary exercise alleviates cognitive impairment and anxiety-like behavior in aged mice with chronic colitis, providing neuroprotection against neuronal damage and apoptosis. Additionally, voluntary exercise promotes the brain clearance of Aβ via increased glymphatic clearance. Mechanistically, exercise-induced beneficial effects may be attributed, in part, to the inhibition of TRPV4 expression and TRPV4-related calcium hyperactivity, subsequent promotion of AQP4 polarization, and modulation of astrocyte phenotype. CONCLUSION The present study reveals a novel role of voluntary exercise in alleviating colitis-related cognitive impairment and anxiety disorder, which is mediated by the promotion of AQP4 polarization and glymphatic clearance of Aβ via inhibition of TRPV4-induced astrocytic calcium hyperactivity.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifeng Feng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
19
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
20
|
Huang Z, Feng Y, Zhang Y, Ma X, Zong X, Jordan JD, Zhang Q. Enhancing axonal myelination: Clemastine attenuates cognitive impairment in a rat model of diffuse traumatic brain injury. Transl Res 2024; 268:40-50. [PMID: 38246342 PMCID: PMC11081842 DOI: 10.1016/j.trsl.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/10/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) has a significant impact on cognitive function, affecting millions of people worldwide. Myelin loss is a prominent pathological feature of TBI, while well-functioning myelin is crucial for memory and cognition. Utilizing drug repurposing to identify effective drug candidates for TBI treatment has gained attention. Notably, recent research has highlighted the potential of clemastine, an FDA-approved allergy medication, as a promising pro-myelinating drug. Therefore, in this study, we aim to investigate whether clemastine can enhance myelination and alleviate cognitive impairment following mild TBI using a clinically relevant rat model of TBI. Mild diffuse TBI was induced using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA). Animals were treated with either clemastine or an equivalent volume of the vehicle from day 1 to day 14 post-injury. Following treatment, memory-related behavioral tests were conducted, and myelin pathology in the cortex and hippocampus was assessed through immunofluorescence staining and ProteinSimple® capillary-based immunoassay. Our results showed that TBI leads to significant myelin loss, axonal damage, glial activation, and a decrease in mature oligodendrocytes in both the cortex and hippocampus. The TBI animals also exhibited notable deficits in memory-related tests. In contrast, animals treated with clemastine showed an increase in mature oligodendrocytes, enhanced myelination, and improved performance in the behavioral tests. These preliminary findings support the therapeutic value of clemastine in alleviating TBI-induced cognitive impairment, with substantial clinical translational potential. Our findings also underscore the potential of remyelinating therapies for TBI.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Yulan Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| |
Collapse
|
21
|
Huuha AM, Norevik CS, Coombes JS, Røsbjørgen RN, Miguel-dos-Santos R, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Tari AR. Effects of Intravenously Administered Plasma from Exercise-Trained Donors on Microglia and Cytokines in a Transgenic Rat Model of Alzheimer's Disease. Brain Plast 2024; 9:21-41. [PMID: 38993579 PMCID: PMC11234670 DOI: 10.3233/bpl-230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 07/13/2024] Open
Abstract
Background Microglia and inflammation play a significant role in Alzheimer's disease (AD). Physical exercise and peripheral signals can influence microglial activity in the brain. Modulating the inflammatory response in the brain may provide therapeutic approaches for AD. Objective To assess the effects of intravenously administered blood plasma from exercise-trained donor rats on cognitive function, microglia, and cytokine levels in an AD rat model at two different pathological stages; an early pre-plaque stage and a later stage closer to the emergence of extracellular plaques. Methods Male transgenic McGill-R-Thy1-APP rats aged 2 and 5 months received 14 injections over 6 weeks: 1) plasma from exercise-trained rats (ExPlas), 2) plasma from sedentary rats (SedPlas), or 3) saline. Cognitive function was evaluated in a novel object recognition task. Microglia count and morphology were analyzed in cornu ammonis, dentate gyrus, entorhinal cortex, and subiculum. Amyloid plaque number and size were assessed in the rats with the later treatment start. A multiplex assay was used to measure 23 cytokines in cornu ammonis. Results In rats treated from 2 months of age, ExPlas and SedPlas increased number and length of microglial branches in cornu ammonis and dentate gyrus compared to saline. Only ExPlas-treated rats exhibited similar changes in subiculum, while entorhinal cortex showed no differences across treatments. Microglia count remained unaffected. In rats treated from 5 months of age, there were no significant differences in microglia count or morphology or the number or size of amyloid plaques in any brain region. Compared to both other treatments in early pre-plaque stage rats, SedPlas increased TNF-α levels. ExPlas upregulated GM-CSF, IL-18, and VEGF, while SedPlas increased IL-10 compared to saline. In later-stage rats, ExPlas upregulated IL-17, and SedPlas upregulated TNF-α compared to saline. There were no effects of treatments on recognition memory. Conclusions Intravenous injections of blood plasma from exercise-trained and sedentary donors differentially modulated microglial morphology and cytokine levels in the AD rat model at an early pre-plaque stage of pathology. Exercised plasma may reduce proinflammatory TNF-α signaling and promote microglial responses to early Aβ accumulation but the lack of treatment effects in the later-stage rats emphasizes the potential importance of treatment timing.
Collapse
Affiliation(s)
- Aleksi M. Huuha
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group (CERG), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie Skarstad Norevik
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group (CERG), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jeff S. Coombes
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
| | - Ragnhild N. Røsbjørgen
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group (CERG), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rodrigo Miguel-dos-Santos
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group (CERG), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil
| | - José Bianco N. Moreira
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group (CERG), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group (CERG), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atefe R. Tari
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group (CERG), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
22
|
Mohr P, Hanna C, Powell A, Penman S, Blum K, Sharafshah A, Lewandrowski KU, Badgaiyan RD, Bowirrat A, Pinhasov A, Thanos PK. Selenoprotein P in a Rodent Model of Exercise; Theorizing Its Interaction with Brain Reward Dysregulation, Addictive Behavior, and Aging. J Pers Med 2024; 14:489. [PMID: 38793071 PMCID: PMC11122084 DOI: 10.3390/jpm14050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Exercise promotes health and wellness, including its operation as a protective factor against a variety of psychological, neurological, and chronic diseases. Selenium and its biomarker, selenoprotein P (SEPP1), have been implicated in health, including cancer prevention, neurological function, and dopamine signaling. SEPP1 blood serum levels were compared with a one-way ANOVA between sedentary (SED), moderately exercised (MOD) [10 m/min starting at 10 min, increasing to 60 min], and high-intensity interval training (HIIT) exercised rats [30 min in intervals of 2-min followed by a 1-min break, speed progressively increased from 10 to 21 m/min]. HIIT rats showed significantly higher serum SEPP1 concentrations compared to MOD and SED. More specifically, HIIT exercise showed an 84% increase in SEPP1 levels compared to sedentary controls. MOD rats had greater serum SEPP1 concentrations compared to SED, a 33% increase. The results indicated that increased exercise intensity increases SEPP1 levels. Exercise-induced increases in SEPP1 may indicate an adaptive response to the heightened oxidative stress. Previous studies found a significant increase in dopamine D2 receptor (D2R) binding in these same rats, suggesting a potential association between SEPP1 and dopamine signaling during exercise. Modulating antioxidants like SEPP1 through personalized therapies, including exercise, has broad implications for health, disease, and addiction.
Collapse
Affiliation(s)
- Patrick Mohr
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Samantha Penman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht 8813833435, Iran
| | - Kai-Uwe Lewandrowski
- Department of Orthopaedics, Universitaria Sanitas, Fundación, Bogotá P.O. Box 011, Colombia
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203-1014, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Department of Psychology, University at Buffalo, Buffalo, NY 14260-4110, USA
| |
Collapse
|
23
|
Huang Z, Jordan JD, Zhang Q. Myelin Pathology in Alzheimer's Disease: Potential Therapeutic Opportunities. Aging Dis 2024; 15:698-713. [PMID: 37548935 PMCID: PMC10917545 DOI: 10.14336/ad.2023.0628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory loss and cognitive decline. Despite significant efforts over several decades, our understanding of the pathophysiology of this disease is still incomplete. Myelin is a multi-layered membrane structure ensheathing neuronal axons, which is essential for the fast and effective propagation of action potentials along the axons. Recent studies highlight the critical involvement of myelin in memory consolidation and reveal its vulnerability in various pathological conditions. Notably, apart from the classic amyloid hypothesis, myelin degeneration has been proposed as another critical pathophysiological feature of AD, which could occur prior to the development of amyloid pathology. Here, we review recent works supporting the critical role of myelin in cognition and myelin pathology during AD progression, with a focus on the mechanisms underlying myelin degeneration in AD. We also discuss the complex intersections between myelin pathology and typical AD pathophysiology, as well as the therapeutic potential of pro-myelinating approaches for this disease. Overall, these findings implicate myelin degeneration as a critical contributor to AD-related cognitive deficits and support targeting myelin repair as a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71103 USA
| |
Collapse
|
24
|
Shen H, Jiang Y, Qiu C, Xie X, Zhang H, He Z, Song Z, Zhou W. Abnormal amyloid precursor protein processing in periodontal tissue in a murine model of periodontitis induced by Porphyromonas gingivalis. J Periodontal Res 2024; 59:395-407. [PMID: 38311599 DOI: 10.1111/jre.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024]
Abstract
OBJECTIVE The study aimed to investigate the change of amyloid precursor protein (APP) processing and amyloid β (Aβ) metabolites in linking periodontitis to Alzheimer's disease (AD). BACKGROUND Aβ is one of the main pathological features of AD, and few studies have discussed changes in its expression in peripheral tissues or analyzed the relationship between the peripheral imbalance of Aβ production and clearance. METHODS A murine model of periodontitis was established by oral infection with Porphyromonas gingivalis (P. gingivalis). Micro-computed tomography (Micro-CT) was used to observe the destruction of the alveolar bone. Nested quantitative polymerase chain reaction (qPCR) was used to measure small quantities of P.gingivalis DNA in different tissues. Behavioral experiments were performed to measure cognitive function in the mice. The mRNA levels of TNF-α, IL-6, IL-8, RANKL, OPG, APP695, APP751, APP770, and BACE1 in the gingival tissues or cortex were detected by RT-PCR. The levels of Aβ1-40 and Aβ1-42 in gingival crevicular fluid (GCF) and plasma were tested by ELISA. RESULTS P. gingivalis oral infection was found to cause alveolar bone resorption and impaired learning and memory. P.gingivalis DNA was detected in the gingiva, blood and cortex of the P.gingivalis group by nested qPCR (p < .05). The mRNA expression of TNF-α, IL-6, IL-8, RANKL/OPG, and BACE1 in the gingival tissue was significantly higher than that in the control group (p < .05). Similarly, upregulated mRNA levels of APP695 and APP770 were observed in the gingival tissuses and cortex of the P. gingivalis group (p < .05). The levels of Aβ1-40 and Aβ1-42 in the GCF and plasma of the P. gingivalis group were significantly higher than those in the control group (p < .05). CONCLUSION P. gingivalis can directly invade the brain via hematogenous infection. The invasion of P. gingivalis could trigger an immune response and lead to an imbalance between Aβ production and clearance in peripheral tissues, which may trigger an abnormal Aβ metabolite in the brain, resulting in the occurrence and development of AD.
Collapse
Affiliation(s)
- Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiting Jiang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xinyi Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huanyu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Zhou
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Martin SL, Uribe C, Strafella AP. PET imaging of synaptic density in Parkinsonian disorders. J Neurosci Res 2024; 102:e25253. [PMID: 37814917 DOI: 10.1002/jnr.25253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Synaptic dysfunction and altered synaptic pruning are present in people with Parkinsonian disorders. Dopamine loss and alpha-synuclein accumulation, two hallmarks of Parkinson's disease (PD) pathology, contribute to synaptic dysfunction and reduced synaptic density in PD. Atypical Parkinsonian disorders are likely to have unique spatiotemporal patterns of synaptic density, differentiating them from PD. Therefore, quantification of synaptic density has the potential to support diagnoses, monitor disease progression, and treatment efficacy. Novel radiotracers for positron emission tomography which target the presynaptic vesicle protein SV2A have been developed to quantify presynaptic density. The radiotracers have successfully investigated synaptic density in preclinical models of PD and people with Parkinsonian disorders. Therefore, this review will summarize the preclinical and clinical utilization of SV2A radiotracers in people with Parkinsonian disorders. We will evaluate how SV2A abundance is associated with other imaging modalities and the considerations for interpreting SV2A in Parkinsonian pathology.
Collapse
Affiliation(s)
- Sarah L Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Unitat de Psicologia Medica, Departament de Medicina, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Terao I, Kodama W. Comparative Efficacy, Tolerability, and Acceptability of Donanemab, Lecanemab, Aducanumab, Melatonin, and Aerobic Exercise for a Short Time on Cognitive Function in Mild Cognitive Impairment and Mild Alzheimer's Disease: A Systematic Review and Network Meta-Analysis. J Alzheimers Dis 2024; 98:825-835. [PMID: 38461503 DOI: 10.3233/jad-230911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background The Food and Drug Administration (FDA) has approved lecanemab and aducanumab and is reviewing donanemab, but they have questionable efficacy, serious side effects and are costly, whereas melatonin administration and aerobic exercise for a short time may overcome these problems. Objective We aim to compare the efficacy on cognitive function, tolerability and acceptability of melatonin administration and aerobic exercise for a short time with donanemab, lecanemab, and aducanumab in people with mild AD and MCI. Methods We systematically reviewed relevant randomized placebo-controlled trials (RCTs) in PubMed, the Cochrane Library, CINHAL, and ClinicalTrials.gov and performed network meta-analyses. Results The analysis included 10 randomized placebo-controlled trials with 4,599 patients. Although melatonin and aerobic exercise for a short time were significantly more effective than donanemab, lecanemab, aducanumab and placebo in the primary analysis, there was significant heterogeneity. In the sensitivity analysis excluding exercise, melatonin was significantly more effective than donanemab, lecanemab, aducanumab and placebo, with no significant heterogeneity. Aerobic exercise for a short time was significantly less acceptable than donanemab, aducanumab and placebo. Donanemab, lecanemab, and aducanumab were significantly less tolerable than placebo and donanemab and lecanemab were significantly less acceptable than placebo. CONCLUSIONS Melatonin may be a better potential disease-modifying treatment for cognitive decline in mild AD and MCI. Aerobic exercise for a short time might also be better than donanemab, lecanemab and aducanumab if continued, as it is well tolerated and more effective, although less valid due to heterogeneity. Another limitation is the small number of participants.
Collapse
Affiliation(s)
- Itsuki Terao
- Department of Psychiatry, Ikokoro Clinic Nihonbashi, Tokyo, Japan
| | - Wakako Kodama
- Department of Psychiatry, Negishi Hospital, Tokyo, Japan
| |
Collapse
|
27
|
Liu XL, Yeerlan J, Liu Z, Bai Y, Wang Q, Yan Y, Xu L, Jia C, Zhang L. Past, Present, and Future of Liver-Brain Axis in Alzheimer's Disease: A Bibliometric Review. J Alzheimers Dis 2024; 101:1267-1280. [PMID: 39302376 DOI: 10.3233/jad-240688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background No effective drugs currently exist to cure Alzheimer's disease (AD) due to its complexity and the lack of understanding of the involved molecular signaling and pathways. The relationship between liver health and AD is now widely recognized. Still, molecular links and shared pathways between the liver and brain remain unclear, making the liver-brain axis in AD therapies a new area for exploration. However, bibliometric studies on this topic are lacking. Objective This study aims to review the liver-brain axis in AD and identify future research hotspots and trends through bibliometric analysis. Methods Articles and reviews related to AD and liver and its related diseases were searched in the Web of Science Core Collection (WoSCC) database up to 2024. Data were processed and visually analyzed using VOSviewer, CiteSpace, and Pajek. Results We collected 1,777 articles on AD and liver and its related diseases from 2,517 institutions across 80 countries. Keyword cluster analysis identified 11 clusters, with 'insulin resistance,' 'amyloid-beta,' 'apolipoprotein-E,' 'oxidative stress,' and 'inflammation' appearing most frequently, and exhibiting strong total link strength. These results indicate that these topics have been the primary focus of research on the liver-brain axis in AD. Conclusions This study is the first to comprehensively analyze the liver-brain axis in AD using bibliometric methods. The research results identify recent research frontiers and hotspots, aiding scholars in gaining a deeper understanding of the correlation between AD and the liver.
Collapse
Affiliation(s)
- Xin Lian Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Pathology and Pathophysiology, Institute of Neuroscience, Chengdu Medical College, Chengdu, China
| | | | - Zhirong Liu
- Department of General Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Yang Bai
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Qin Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - YiRui Yan
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - LuKe Xu
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Cui Jia
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Pathology and Pathophysiology, Institute of Neuroscience, Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Pathology and Pathophysiology, Institute of Neuroscience, Chengdu Medical College, Chengdu, China
| |
Collapse
|
28
|
Gelfo F, Petrosini L, Mandolesi L, Landolfo E, Caruso G, Balsamo F, Bonarota S, Bozzali M, Caltagirone C, Serra L. Land/Water Aerobic Activities: Two Sides of the Same Coin. A Comparative Analysis on the Effects in Cognition of Alzheimer's Disease. J Alzheimers Dis 2024; 98:1181-1197. [PMID: 38552114 DOI: 10.3233/jad-231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Evidence in the literature indicates that aerobic physical activity may have a protective role in aging pathologies. However, it has not been clarified whether different types of aerobic exercise produce different effects. In particular, these potential differences have not been explored in patients with Alzheimer's disease (AD). The present narrative review has the specific aim of evaluating whether land (walking/running) and water (swimming) aerobic activities exert different effects on cognitive functions and neural correlates in AD patients. In particular, the investigation is carried out by comparing the evidence provided from studies on AD animal models and on patients. On the whole, we ascertained that both human and animal studies documented beneficial effects of land and water aerobic exercise on cognition in AD. Also, the modulation of numerous biological processes is documented in association with structural modifications. Remarkably, we found that aerobic activity appears to improve cognition per se, independently from the specific kind of exercise performed. Aerobic exercise promotes brain functioning through the secretion of molecular factors from skeletal muscles and liver. These molecular factors stimulate neuroplasticity, reduce neuroinflammation, and inhibit neurodegenerative processes leading to amyloid-β accumulation. Additionally, aerobic exercise improves mitochondrial activity, reducing oxidative stress and enhancing ATP production. Aerobic activities protect against AD, but implementing exercise protocols for patients is challenging. We suggest that health policies and specialized institutions should direct increasing attention on aerobic activity as lifestyle modifiable factor for successful aging and age-related conditions.
Collapse
Affiliation(s)
- Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Laura Mandolesi
- Department of Humanities, Federico II University of Naples, Naples, Italy
| | | | | | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Sabrina Bonarota
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Turin, Italy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
29
|
Wu C, Ruan T, Yuan Y, Xu C, Du L, Wang F, Xu S. Alterations in Synaptic Connectivity and Synaptic Transmission in Alzheimer's Disease with High Physical Activity. J Alzheimers Dis 2024; 99:1005-1022. [PMID: 38759013 DOI: 10.3233/jad-240123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegeneration disease. Physical activity is one of the most promising modifiable lifestyles that can be effective in slowing down the progression of AD at an early stage. Objective Explore the molecular processes impaired in AD that were conversely preserved and enhanced by physical activity. Methods Integrated transcriptomic analyses were performed in datasets that contain AD patients and elders with different degrees of physical activity. The changes of the hub genes were validated through analyzing another two datasets. The expression of the hub genes was further detected in the hippocampus and cortexes of APP/PS1 transgenic mice with or without physical activity by Quantitative polymerase chain reaction (qPCR). Results Cross-comparison highlighted 195 DEGs displaying opposed regulation patterns between AD and high physical activity (HPA). The common DEGs were predominantly involved in synaptic vesicle recycling and synaptic transmission, largely downregulated in AD patients but upregulated in the elders with HPA. Two key modules and four hub genes that were related to synaptic vesicle turnover were obtained from the PPI network. The expression of these hub genes (SYT1, SYT4, SH3GL2, and AP2M1) was significantly decreased in AD transgenic mice and was reversed by HPA training. Conclusions HPA may reverse AD pathology by upregulating a range of synaptic vesicle transport related proteins which might improve the efficiency of synaptic vesicle turnover and facilitate inter-neuronal information transfer. The study provides novel insights into the mechanisms underlining the protective effects of HPA on AD.
Collapse
Affiliation(s)
- Can Wu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Tingting Ruan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yalan Yuan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chunshuang Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Lijuan Du
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, China
| | - Fang Wang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
30
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Kose S, Kutlu MD, Kara S, Polat S, Akillioglu K. Investigation of the protective effect of long-term exercise on molecular pathways and behaviours in scopolamine induced alzheimer's disease-like condition. Brain Res 2023; 1814:148429. [PMID: 37269967 DOI: 10.1016/j.brainres.2023.148429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Despite research, the role of exercise in treatment and prevention of neurodegenerative diseases remains unclear. Our study, investigated that protective effect of treadmill exercise on molecular pathways and cognitive behaviours in a scopolamine-induced model of Alzheimer's disease. For that purpose, male Balb/c mice subjected to exercise for 12 weeks. During the last 4 weeks of exercise, mice were given an injection of scopolamine (2 mg/kg). Following injection, open field test and Morris water maze test were used to assess emotional-cognitive behaviour. Hippocampus and prefrontal cortex of mice were isolated, and levels of BDNF, TrkB, and p-GSK3ßSer389 were assessed by western blotting, and levels of APP and Aß-40 were analysed by immunohistochemistry. In our study, scopolamine administration increased anxiety-like behaviour in open field test, while negatively affecting spatial learning and memory in Morris water maze test. We found that exercise had a protective effect against cognitive and emotional decline. Scopolamine decreased levels of p-GSK3ßSer389, BDNF in hippocampus and prefrontal cortex.Whereas TrkB decreased in hippocampus and increased in prefrontal cortex. There was an increase in p-GSK3ßSer389, BDNF, TrkB in the hippocampus, and p-GSK3ßSer389, BDNF in the prefrontal cortex in the exercise + scopolamine group. Immunohistochemical analysis showed that scopolamine administration increased APP and Aß-40 in hippocampus and prefrontal cortex in neuronal and perineuronal areas whereas Aß-40 and APP were reduced in exercise + scopolamine groups. In conclusion, long-term exercise may have a protective effect against scopolamine-induced impairments in cognitive-emotional behaviour. It can be suggested that this protective effect is mediated by increased BDNF levels and GSK3ßSer389 phosphorylation.
Collapse
Affiliation(s)
- Seda Kose
- Cukurova University Medical Faculty, Department of Physiology, Division of Neurophysiology, Adana 01330, Turkey.
| | - Meltem Donmez Kutlu
- Cukurova University Medical Faculty, Department of Physiology, Division of Neurophysiology, Adana 01330, Turkey
| | - Samet Kara
- Cukurova University Medical Faculty, Department of Histology and Embryology, Adana 01330, Turkey
| | - Sait Polat
- Cukurova University Medical Faculty, Department of Histology and Embryology, Adana 01330, Turkey
| | - Kubra Akillioglu
- Cukurova University Medical Faculty, Department of Physiology, Division of Neurophysiology, Adana 01330, Turkey
| |
Collapse
|
32
|
Srivastava H, Lasher AT, Nagarajan A, Sun LY. Sexual dimorphism in the peripheral metabolic homeostasis and behavior in the TgF344-AD rat model of Alzheimer's disease. Aging Cell 2023; 22:e13854. [PMID: 37095621 PMCID: PMC10352566 DOI: 10.1111/acel.13854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Alzheimer's disease (AD), a prevalent form of dementia, is characterized by the decline of cognitive abilities with age. Available treatment options for AD are limited, making it a significant public health concern. Recent research suggests that metabolic dysfunction plays a role in the development of AD. In addition, insulin therapy has been shown to improve memory in patients with cognitive decline. In this study, we report the first examination of body composition, peripheral insulin sensitivity, and glucose tolerance in relation to behavioral assessments of learning, memory, and anxiety in the TgF344-AD rat model of AD. Results from glucose and insulin tolerance tests show that female TgF344-AD rats exhibit impaired glucose clearance and reduced insulin sensitivity at both 9 and 12 months of age, while males display no differences at 9 months and even improved glucose clearance at 12 months. Results from the Morris Water Maze assessment of learning and memory reveal that male TgF344-AD rats display impairments at both 9 and 12 months of age, while female TgF344-AD rats only show impairments at 12 months. Furthermore, results from open field and elevated plus maze tests suggest that female TgF344-AD rats display increased anxiety at 9 months of age; however, no differences were detected in males or at 12 months of age. Overall, our findings suggest that impairments in metabolism, commonly associated with type 2 diabetes, occur before or simultaneously with cognitive decline and anxiety in a sexually dimorphic manner in the TgF344-AD rat model.
Collapse
Affiliation(s)
- Hemant Srivastava
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Akash Nagarajan
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
33
|
Feng S, Wu C, Zou P, Deng Q, Chen Z, Li M, Zhu L, Li F, Liu TCY, Duan R, Yang L. High-intensity interval training ameliorates Alzheimer's disease-like pathology by regulating astrocyte phenotype-associated AQP4 polarization. Theranostics 2023; 13:3434-3450. [PMID: 37351177 PMCID: PMC10283053 DOI: 10.7150/thno.81951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Alzheimer's disease (AD), one of the most common forms of dementia, is a widely studied neurodegenerative disease characterized by Aβ accumulation and tau hyperphosphorylation. Currently, there is no effective cure available for AD. The astrocyte AQP4 polarized distribution-mediated glymphatic system is essential for Aβ and abnormal tau clearance and is a potential therapeutic target for AD. However, the role of exercise on the AQP4 polarized distribution and the association between the AQP4 polarized distribution and astrocyte phenotype polarization are poorly understood. Methods: Using a streptozotocin (STZ)-induced sporadic AD rat model, we investigated the effects of high-intensity interval training on AD pathologies. The Branes maze task was conducted to measure spatial learning and memory. Immunofluorescence staining of NeuN with TUNEL, Fluoro-Jade C, and relative neuronal damage markers was applied to measure neuronal apoptosis, neurodegeneration, and damage. Sholl analysis was carried out to analyze the morphology of microglia. Line-scan analysis, 3D rendering, and the orthogonal view were applied to analyze the colocalization. Western blot analysis and enzyme-linked immunosorbent assay (ELISA) analysis were conducted to examine AQP4 and Aβ, respectively. An APP/PS1 transgenic AD mice model was used to confirm the key findings. Results: High-intensity interval training (HIIT) alleviates cognitive dysfunction in STZ-induced AD-like rat models and provides neuroprotection against neurodegeneration, neuronal damage, and neuronal loss. Additionally, HIIT improved the drainage of abnormal tau and Aβ from the cortex and hippocampus via the glymphatic system to the kidney. Further mechanistic studies support that the beneficial effects of HIIT on AD might be due, in part, to the polarization of glial cells from a neurotoxic phenotype towards a neuroprotective phenotype. Furthermore, an intriguing finding of our study is that the polarized distribution of AQP4 was strongly correlated with astrocyte phenotype. We found A2 phenotype exhibited more evident AQP4 polarization than the A1 phenotype. Conclusion: Our findings indicate that HIIT ameliorates Alzheimer's disease-like pathology by regulating astrocyte phenotype and astrocyte phenotype-associated AQP4 polarization. These changes promote Aβ and p-tau clearance from the brain tissue through the glymphatic system and the kidney.
Collapse
Affiliation(s)
- Shu Feng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Peibin Zou
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Zhe Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Meng Li
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Ling Zhu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Fanghui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
34
|
Zhang Y, Chen Y, Yuan S, Yu Q, Fu J, Chen L, Liu J, He Y. Effect of gastrodin against cognitive impairment and neurodegeneration in APP/PS1 mice via regulating gut microbiota-gut-brain axis. Exp Brain Res 2023; 241:1661-1673. [PMID: 37199774 DOI: 10.1007/s00221-023-06632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Gastrodin (Gas) has exhibited protective activity in neurological disorders. Here, we investigated the neuroprotective effect and potential mechanisms of Gas against cognitive impairment via regulating gut microbiota. APPswe/PSEN1dE9 transgenic (APP/PS1) mice were treated intragastrically with Gas for 4 weeks, and then cognitive deficits, deposits of amyloid-β (Aβ) and phosphorylation of tau were analyzed. The expression levels of insulin-like growth factor-1 (IGF-1) pathway-related proteins, such as cAMP response element-binding protein (CREB), were detected. Meanwhile, gut microbiota composition was evaluated. Our results showed that Gas treatment significantly improved cognitive deficits and Aβ deposition in APP/PS1 mice. Moreover, Gas treatment increased the level of Bcl-2 and decreased level of Bax and ultimately inhibited neuronal apoptosis. Gas treatment markedly increased the expression levels of IGF-1 and CREB in APP/PS1 mice. Moreover, Gas treatment improved abnormal composition and structure of gut microbiota in APP/PS1 mice. These findings revealed that Gas actively participated in regulating the IGF-1 pathway to inhibit neuronal apoptosis via the gut-brain axis and that it can be considered a new therapeutic strategy against Alzheimer's disease.
Collapse
Affiliation(s)
- Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yan Chen
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311899, Zhejiang, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qingxia Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianjiong Fu
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311899, Zhejiang, China
| | - Luyun Chen
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311899, Zhejiang, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yuping He
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, 311899, Zhejiang, China.
| |
Collapse
|
35
|
Jin Y, Kim T, Kang H. Forced treadmill running modifies gut microbiota with alleviations of cognitive impairment and Alzheimer's disease pathology in 3xTg-AD mice. Physiol Behav 2023; 264:114145. [PMID: 36889489 DOI: 10.1016/j.physbeh.2023.114145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Physical exercise has been recommended as a non-pharmacologic treatment for delaying the onset or slowing the progression of Alzheimer's disease (AD). The therapeutic potential of exercise training-induced changes in symbiotic gut microbiota against AD neuropathology is not well understood, yet. This study investigated the effects of a 20-week forced treadmill exercise program on the makeup of the gut microbiota, the integrity of the blood-brain barrier (BBB), and the development of AD-like cognitive deficits and neuropathology in triple transgenic AD mice. Our findings show that forced treadmill running causes symbiotic changes in the gut microbiota, such as increased Akkermansia muciniphila and decreased Bacteroides species, as well as increased BBB-related protein expression and reduced AD-like cognitive impairments and neuropathology progression. The current findings of this animal study suggest that the interaction between the gut microbiota and the brain, possibly via the BBB, is responsible for exercise training-induced cognitive benefits and alleviation of AD pathology.
Collapse
Affiliation(s)
- Youngyun Jin
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taewan Kim
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunsik Kang
- College of Sport Science, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
36
|
Huang Z, Jordan JD, Zhang Q. Early life adversity as a risk factor for cognitive impairment and Alzheimer's disease. Transl Neurodegener 2023; 12:25. [PMID: 37173751 PMCID: PMC10182702 DOI: 10.1186/s40035-023-00355-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Neurological conditions, including cognitive impairment and Alzheimer's disease (AD), impose a huge burden on society, affecting millions of people globally. In addition to genetic factors, recent studies indicate that environmental and experiential factors may contribute to the pathogenesis of these diseases. Early life adversity (ELA) has a profound impact on brain function and health later in life. In rodent models, exposure to ELA results in specific cognitive deficits and aggravated AD pathology. Extensive concerns have been raised regarding the higher risk of developing cognitive impairments in people with a history of ELA. In this review, we scrutinize findings from human and animal studies focusing on the connection of ELA with cognitive impairment and AD. These discoveries suggest that ELA, especially at early postnatal stages, increases susceptibility to cognitive impairment and AD later in life. In terms of mechanisms, ELA could lead to dysregulation of the hypothalamus-pituitary-adrenal axis, altered gut microbiome, persistent inflammation, oligodendrocyte dysfunction, hypomyelination, and aberrant adult hippocampal neurogenesis. Crosstalks among these events may synergistically contribute to cognitive impairment later in life. Additionally, we discuss several interventions that may alleviate adverse consequences of ELA. Further investigation into this crucial area will help improve ELA management and reduce the burden of related neurological conditions.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - J Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
37
|
Ye X, Zhang H, Li Q, Ren H, Xu X, Li X. Structural-Activity Relationship of Rare Ginsenosides from Red Ginseng in the Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24108625. [PMID: 37239965 DOI: 10.3390/ijms24108625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Rare ginsenosides are the major components of red ginseng. However, there has been little research into the relationship between the structure of ginsenosides and their anti-inflammatory activity. In this work, BV-2 cells induced by lipopolysaccharide (LPS) or nigericin, the anti-inflammatory activity of eight rare ginsenosides, and the target proteins expression of AD were compared. In addition, the Morris water maze test, HE staining, thioflavins staining, and urine metabonomics were used to evaluate the effect of Rh4 on AD mice. Our results showed that their configuration influences the anti-inflammatory activity of ginsenosides. Ginsenosides Rk1, Rg5, Rk3, and Rh4 have significant anti-inflammatory activity compared to ginsenosides S-Rh1, R-Rh1, S-Rg3, and R-Rg3. Ginsenosides S-Rh1 and S-Rg3 have more pronounced anti-inflammatory activity than ginsenosides R-Rh1 and R-Rg3, respectively. Furthermore, the two pairs of stereoisomeric ginsenosides can significantly reduce the level of NLRP3, caspase-1, and ASC in BV-2 cells. Interestingly, Rh4 can improve the learning ability of AD mice, improve cognitive impairment, reduce hippocampal neuronal apoptosis and Aβ deposition, and regulate AD-related pathways such as the tricarboxylic acid cycle and the sphingolipid metabolism. Our findings conclude that rare ginsenosides with a double bond have more anti-inflammatory activity than those without, and 20(S)-ginsenosides have more excellent anti-inflammatory activity than 20(R)-ginsenosides.
Collapse
Affiliation(s)
- Xianwen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Haixia Zhang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qian Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongmin Ren
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinfang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiangri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
38
|
Xiong J, Lv Y, Ma X, Peng G, Wu C, Hou J, Zhang Y, Wu C, Chen-Yi Liu T, Yang L. Neuroprotective Effect of Sub-lethal Hyperthermia Preconditioning in a Rat Model of Repeated Closed Head Injury. Neuroscience 2023; 522:57-68. [PMID: 37164305 DOI: 10.1016/j.neuroscience.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Repeated mild traumatic brain injury (rTBI), one of the most common forms of traumatic brain injury, is a worldwide severe public health concern. rTBI induces cumulative neuronal injury, neurological dysfunction, and cognitive deficits. Although there are clinical treatment methods, there is still an urgent need to develop preventive approaches for susceptible populations. Using a repeated closed head injury (rCHI) rat model, we interrogate the effect of sub-lethal hyperthermia preconditioning (SHP) on rCHI-induced neuronal injury and behavioral changes. Our study applied the repeated weight-drop model to induce the rCHI. According to the changes of heat shock protein 70 (HSP 70) in the cortex and hippocampus following a single SHP treatment in normal rats, the SHP was delivered to the rats 18 hours before rCHI. We found that HSP significantly alleviated rCHI-induced anxiety-like behaviors and impairments in motor abilities and spatial memory. SHP exerts significant neuroprotection against rCHI-induced neuronal damage, apoptosis, and neuroinflammation. Our findings support the potential use of SHP as a preventative approach for alleviating rCHI-induced brain damage.
Collapse
Affiliation(s)
- Jing Xiong
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China; Guangzhou Cadre Health Management Center, Guangzhou, China 510006, China
| | - Ying Lv
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Xu Ma
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Guangcong Peng
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Chunyi Wu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Jun Hou
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Yulan Zhang
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China
| | - Chongyun Wu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China.
| | - Timon Chen-Yi Liu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China.
| | - Luodan Yang
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou, China 510006, China.
| |
Collapse
|
39
|
Kholghi G, Alipour V, Rezaie M, Zarrindast MR, Vaseghi S. The Interaction Effect of Sleep Deprivation and Treadmill Exercise in Various Durations on Spatial Memory with Respect to the Oxidative Status of Rats. Neurochem Res 2023; 48:2077-2092. [PMID: 36786943 DOI: 10.1007/s11064-023-03890-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/15/2023]
Abstract
Sleep deprivation (SD) has deleterious effects on cognitive functions including learning and memory. However, some studies have shown that SD can improve cognitive functions. Interestingly, treadmill exercise has both impairment and improvement effects on memory function. In this study, we aimed to investigate the effect of SD for 4 (short-term) and 24 (long-term) hours, and two protocols of treadmill exercise (mild short-term and moderate long-term) on spatial memory performance, and oxidative and antioxidant markers in the serum of rats. Morris Water Maze apparatus was used to assess spatial memory performance. Also, SD was done using gentle handling method. In addition, the serum level of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) was measured. The results showed that 24 h SD (but not 4 h) had negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Long-term moderate (but not short-term mild) treadmill exercise had also negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Interestingly, both protocols of treadmill exercise reversed spatial memory impairment and oxidative stress induced by 24 h SD. In conclusion, it seems that SD and treadmill exercise interact with each other, and moderate long-term exercise can reverse the negative effects of long-term SD on memory and oxidative status; although, it disrupted memory function and increased oxidative stress by itself.
Collapse
Affiliation(s)
- Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
40
|
Huang Z, Zhang Y, Ma X, Feng Y, Zong X, Jordan JD, Zhang Q. Photobiomodulation attenuates oligodendrocyte dysfunction and prevents adverse neurological consequences in a rat model of early life adversity. Theranostics 2023; 13:913-930. [PMID: 36793860 PMCID: PMC9925323 DOI: 10.7150/thno.78777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Adverse experiences in early life including abuse, trauma and neglect, have been linked to poor physical and mental health outcomes. Emerging evidence implies that those who experienced early life adversity (ELA) are more likely to develop cognitive dysfunction and depressive-like symptoms in adulthood. The molecular mechanisms responsible for the negative consequences of ELA, however, remain unclear. In the absence of effective management options, anticipatory guidance is the mainstay of ELA prevention. Furthermore, there is no available treatment that prevents or alleviates the neurologic sequelae of ELA, especially traumatic stress. Hence, the present study aims to investigate the mechanisms for these associations and evaluate whether photobiomodulation (PBM), a non-invasive therapeutic procedure, can prevent the negative cognitive and behavioral manifestations of ELA in later life. Methods: ELA was induced by repeated inescapable electric foot shock of rats from postnatal day 21 to 26. On the day immediately following the last foot shock, 2-min daily PBM treatment was applied transcranially for 7 consecutive days. Cognitive dysfunction and depression-like behaviors were measured by a battery of behavioral tests in adulthood. Subsequently, oligodendrocyte progenitor cells (OPCs) differentiation, the proliferation and apoptosis of oligodendrocyte lineage cells (OLs), mature oligodendrocyte, myelinating oligodendrocyte, the level of oxidative damage, reactive oxygen species (ROS) and total antioxidant capacity were measured and analyzed using immunofluorescence staining, capillary-based immunoassay (ProteinSimple®) and antioxidant assay kit. Results: The rats exposed to ELA exhibited obvious oligodendrocyte dysfunction, including a reduction in OPCs differentiation, diminished generation and survival of OLs, decreased OLs, and decreased matured oligodendrocyte. Furthermore, a deficit in myelinating oligodendrocytes was observed, in conjunction with an imbalance in redox homeostasis and accumulated oxidative damage. These alternations were concomitant with cognitive dysfunction and depression-like behaviors. Importantly, we found that early PBM treatment largely prevented these pathologies and reversed the neurologic sequelae resulting from ELA. Conclusions: Collectively, these findings provide new insights into the mechanism by which ELA affects neurological outcomes. Moreover, our findings support that PBM may be a promising strategy to prevent ELA-induced neurologic sequelae that develops later in life.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| |
Collapse
|
41
|
Guo L, Yang X, Zhang Y, Xu X, Li Y. Effect of exercise on cognitive function and synaptic plasticity in Alzheimer's disease models: A systematic review and meta-analysis. Front Aging Neurosci 2023; 14:1077732. [PMID: 36704501 PMCID: PMC9872519 DOI: 10.3389/fnagi.2022.1077732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Cognitive decline is a central manifestation of Alzheimer's disease (AD), and its process is inseparable from changes in synaptic plasticity. The aim of this review was to summarize and evaluate the effectiveness of exercise on cognitive function and synaptic plasticity in AD animal models. Materials and methods Eligible studies were searched from PubMed, MEDLINE, EMBASE, Web of Science, and Cochrane Library from April to May 2022. The risk of bias was evaluated by Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). The Morris water maze (MWM) test and synaptic plasticity were considered outcome measures. Data were analyzed using random-effects meta-analyses using the software Stata. Heterogeneity was examined by using I2 test. Sensitivity analysis and publication bias were also assessed. Results A total of 20 randomized controlled studies were eligible for study inclusion. Compared with controls, exercise decreased escape latency (SMD = -0.86, 95% CI: -1.21 to -0.50, P < 0.001), increased platform crossover numbers (SMD = 1.34, 95% CI: 0.57-2.11, P = 0.001) and time in the target quadrant (SMD = 1.65, 95% CI: 0.95-2.36, P < 0.001) and the expression of PSD95 (SMD = 0.73, 95% CI: 0.25-1.21, P = 0.003) in AD animals. The results of the subgroup analysis showed that exercise before AD had a greater effect on escape latency (SMD = -0.88, 95% CI: -1.25 to -0.52, P < 0.001), platform crossover numbers (SMD = 1.71, 95% CI: 1.23-2.18, P < 0.001), time in the target quadrant (SMD = 2.03, 95% CI: 1.19-2.87, P < 0.001) and the expression of PSD95 (SMD = 0.94, 95% CI: 0.19-1.69, P = 0.014) than exercise after AD. The results of the subgroup analysis also showed that treadmill running might be an appropriate exercise type. Conclusion Our findings suggested that exercise had a potential effect on improving cognitive function and synaptic plasticity. It can play a better neuroprotective role before AD. Systematic review registration PROSPERO, identifier: CRD42022328438.
Collapse
Affiliation(s)
- Linlin Guo
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Xinxin Yang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Xinyi Xu
- College of Nursing, Hebei Medical University, Shijiazhuang, China,Postdoctoral Research Station in Basic Medicine, Hebei Medical University, Shijiazhuang, China,*Correspondence: Xinyi Xu ✉
| | - Yan Li
- College of Nursing, Hebei Medical University, Shijiazhuang, China,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China,*Correspondence: Yan Li ✉
| |
Collapse
|
42
|
Solis-Urra P, Rodriguez-Ayllon M, Álvarez-Ortega M, Molina-Hidalgo C, Molina-Garcia P, Arroyo-Ávila C, García-Hermoso A, Collins AM, Jain S, Gispert JD, Liu-Ambrose T, Ortega FB, Erickson KI, Esteban-Cornejo I. Physical Performance and Amyloid-β in Humans: A Systematic Review and Meta-Analysis of Observational Studies. J Alzheimers Dis 2023; 96:1427-1439. [PMID: 38007656 DOI: 10.3233/jad-230586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Accumulation of amyloid-β (Aβ) plaques is one of the main features of Alzheimer's disease (AD). Physical performance has been related to dementia risk and Aβ, and it has been hypothesized as one of the mechanisms leading to greater accumulation of Aβ. Yet, no evidence synthesis has been performed in humans. OBJECTIVE To investigate the association of physical performance with Aβ in humans, including Aβ accumulation on brain, and Aβ abnormalities measured in cerebrospinal fluid (CSF) and blood. METHODS A systematic review with multilevel meta-analysis was performed from inception to June 16th, 2022. Studies were eligible if they examined the association of physical performance with Aβ levels, including the measure of physical performance as a predictor and the measure of Aβ as an outcome in humans. RESULTS 7 articles including 2,619 participants were included in the meta-analysis. The results showed that physical performance was not associated with accumulation of Aβ in the brain (ES = 0.01; 95% CI -0.21 to 0.24; I2 = 69.9%), in the CSF (ES = -0.28; 95% CI -0.98 to 0.41; I2 = 91.0%) or in the blood (ES = -0.19; 95% CI -0.61 to 0.24; I2 = 99.75%). Significant heterogeneity was found across the results , which posed challenges in arriving at consistent conclusions; and the limited number of studies hindered the opportunity to conduct a moderation analysis. CONCLUSIONS The association between physical performance and Aβ is inconclusive. This uncertainly arises from the limited number of studies, study design limitations, and heterogeneity of measurement approaches. More studies are needed to determine whether physical performance is related to Aβ levels in humans.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Nuclear Medicine Services, "Virgen de Las Nieves", University Hospital, Granada, Spain
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile
| | - María Rodriguez-Ayllon
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Miriam Álvarez-Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Cristina Molina-Hidalgo
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Pablo Molina-Garcia
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Physical Medicine and Rehabilitation Service, Virgen de las Nieves University Hospital, Instituto de Investigacion Biosanitaria ibs.GRANADA, Granada, Spain
| | - Cristina Arroyo-Ávila
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Antonio García-Hermoso
- Navarrabiomed, Hospital Universitario de Navarra, IdiSNA, Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | | | - Shivangi Jain
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Juan Domingo Gispert
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Teresa Liu-Ambrose
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Aging, Mobility, and Cognitive Health Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- ibs.GRANADA Instituto de Investigación Biosanitaria, Granada, Spain
| |
Collapse
|
43
|
Huang Z, Lin HW(K, Zhang Q, Zong X. Targeting Alzheimer's Disease: The Critical Crosstalk between the Liver and Brain. Nutrients 2022; 14:nu14204298. [PMID: 36296980 PMCID: PMC9609624 DOI: 10.3390/nu14204298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disorder, is currently incurable. Imbalanced amyloid-beta (Aβ) generation and clearance are thought to play a pivotal role in the pathogenesis of AD. Historically, strategies targeting Aβ clearance have typically focused on central clearance, but with limited clinical success. Recently, the contribution of peripheral systems, particularly the liver, to Aβ clearance has sparked an increased interest. In addition, AD presents pathological features similar to those of metabolic syndrome, and the critical involvement of brain energy metabolic disturbances in this disease has been recognized. More importantly, the liver may be a key regulator in these abnormalities, far beyond our past understanding. Here, we review recent animal and clinical findings indicating that liver dysfunction represents an early event in AD pathophysiology. We further propose that compromised peripheral Aβ clearance by the liver and aberrant hepatic physiological processes may contribute to AD neurodegeneration. The role of a hepatic synthesis product, fibroblast growth factor 21 (FGF21), in the management of AD is also discussed. A deeper understanding of the communication between the liver and brain may lead to new opportunities for the early diagnosis and treatment of AD.
Collapse
|
44
|
Spatio-temporal metabolic rewiring in the brain of TgF344-AD rat model of Alzheimer's disease. Sci Rep 2022; 12:16958. [PMID: 36216838 PMCID: PMC9550832 DOI: 10.1038/s41598-022-20962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Brain damage associated with Alzheimer's disease (AD) occurs even decades before the symptomatic onset, raising the need to investigate its progression from prodromal stages. In this context, animal models that progressively display AD pathological hallmarks (e.g. TgF344-AD) become crucial. Translational technologies, such as magnetic resonance spectroscopy (MRS), enable the longitudinal metabolic characterization of this disease. However, an integrative approach is required to unravel the complex metabolic changes underlying AD progression, from early to advanced stages. TgF344-AD and wild-type (WT) rats were studied in vivo on a 7 Tesla MRI scanner, for longitudinal quantitative assessment of brain metabolic profile changes using MRS. Disease progression was investigated at 4 time points, from 9 to 18 months of age, and in 4 regions: cortex, hippocampus, striatum, and thalamus. Compared to WT, TgF344-AD rats replicated common findings in AD patients, including decreased N-acetylaspartate in the cortex, hippocampus and thalamus, and decreased glutamate in the thalamus and striatum. Different longitudinal evolution of metabolic concentration was observed between TgF344-AD and WT groups. Namely, age-dependent trajectories differed between groups for creatine in the cortex and thalamus and for taurine in cortex, with significant decreases in Tg344-AD animals; whereas myo-inositol in the thalamus and striatum showed greater increase along time in the WT group. Additional analysis revealed divergent intra- and inter-regional metabolic coupling in each group. Thus, in cortex, strong couplings of N-acetylaspartate and creatine with myo-inositol in WT, but with taurine in TgF344-AD rats were observed; whereas in the hippocampus, myo-inositol, taurine and choline compounds levels were highly correlated in WT but not in TgF344-AD animals. Furthermore, specific cortex-hippocampus-striatum metabolic crosstalks were found for taurine levels in the WT group but for myo-inositol levels in the TgF344-AD rats. With a systems biology perspective of metabolic changes in AD pathology, our results shed light into the complex spatio-temporal metabolic rewiring in this disease, reported here for the first time. Age- and tissue-dependent imbalances between myo-inositol, taurine and other metabolites, such as creatine, unveil their role in disease progression, while pointing to the inadequacy of the latter as an internal reference for quantification.
Collapse
|
45
|
Chen B, Fu Y, Song G, Zhong W, Guo J. Research trends and hotspots of exercise for Alzheimer’s disease: A bibliometric analysis. Front Aging Neurosci 2022; 14:984705. [PMID: 36158544 PMCID: PMC9490271 DOI: 10.3389/fnagi.2022.984705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Alzheimer’s disease (AD) is a socially significant neurodegenerative disorder among the elderly worldwide. An increasing number of studies have revealed that as a non-pharmacological intervention, exercise can prevent and treat AD. However, information regarding the research status of this field remains minimal. Therefore, this study aimed to analyze trends and topics in exercise and AD research by using a bibliometric method. Methods We systematically searched the Web of Science Core Collection for published papers on exercise and AD. The retrieved data regarding institutions, journals, countries, authors, journal distribution, and keywords were analyzed using CiteSpace software. Meanwhile, the co-occurrence of keywords was constructed. Results A total of 1,104 papers were ultimately included in accordance with our specified inclusion criteria. The data showed that the number of published papers on exercise and AD is increasing each year, with papers published in 64 countries/regions and 396 academic journals. The Journal of Alzheimer’s Disease published the most papers (73 publications). Journals are concentrated in the fields of neuroscience and geriatrics gerontology. The University of Kansas and the United States are the major institution and country, respectively. The cited keywords show that oxidative stress, amyloid beta, and physical exercise are the research hotspots in recent years. After analysis, the neuroprotective effect of exercise was identified as the development trend in this field. Conclusions Based on a bibliometric analysis, the number of publications on exercise and AD has been increasing rapidly, especially in the past 10 years. “Amyloid beta,” “oxidative stress,” and “exercise program” trigger the most interest among researchers in this field. The study of exercise program and mechanism of exercise in AD is still the focus of future research.
Collapse
Affiliation(s)
- Binglin Chen
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Yujie Fu
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Ge Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiquan Zhong
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, China
| | - Jiabao Guo
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jiabao Guo,
| |
Collapse
|