1
|
Hoshi A, Funakoshi H, Otoyama Y, Yoshida H, Momo K. Kampo medicine inducing drug-induced liver injury: A case report and systematic review. Drug Discov Ther 2025; 18:325-335. [PMID: 39756858 DOI: 10.5582/ddt.2024.01087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Kampo medicine, comprising various conventional crude drug products, poses challenges in identifying adverse event causality. We present a case of severe liver injury following the administration of Saibokuto and attempted to identify the likely causative crude drug inducing liver injury through a systematic literature review. A 29-year-old woman developed severe liver injury approximately two months after Saibokuto administration, necessitating steroid pulse therapy for recovery. The literature search was conducted on February 15, 2023 in Japan. Using PubMed and the "Igaku Chuo Zasshi (ICHUSHI) database," two individuals independently selected studies published between January 1997 and February 15, 2023. The search focused on studies involving human subjects, published in either English or Japanese, and specifically investigated Kampo medicines categorized as over-the-counter or prescription drugs suspected as causative agents of drug-induced liver injury (DILI). Studies on health supplements, discontinued Kampo medicines, and autoimmune hepatitis, were excluded. As it is ethically impossible to rechallenge drugs that cause liver injury, this review primarily relied on case report literature. Through the review, 37 cases (men/women: 12/25, including present case) were analyzed, including 32 reports (36 cases) from 3,055 studies that met the inclusion criteria. Notably, 65.9% of cases were associated with Scutellariae radix, with onset occurring within 45 (1-730) days and recovery within 35 (7-184) days. Our case study and literature review underscore a prevalent association between liver injury and Kampo medicines containing Scutellariae radix. Vigilant liver function monitoring, particularly within the first 2 months of administration, is recommended, especially for formulations containing Scutellariae radix.
Collapse
Affiliation(s)
- Akane Hoshi
- Department of Pharmacy, Showa University Hospital, Tokyo, Japan
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan
| | - Haruki Funakoshi
- Department of Pharmacy, Showa University Hospital, Tokyo, Japan
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan
| | - Yumi Otoyama
- Department of Medicine, Division of Gastroenterology, School of Medicine, Showa University, Tokyo, Japan
| | - Hitoshi Yoshida
- Department of Medicine, Division of Gastroenterology, School of Medicine, Showa University, Tokyo, Japan
| | - Kenji Momo
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo, Japan
| |
Collapse
|
2
|
Guo F, Li C, Dou J, Liang J, Chen Z, Xu Z, Wang T. Research progress on pharmacological properties and application of probiotics in the fermentation of Scutellaria baicalensis Georgi. Front Nutr 2024; 11:1407182. [PMID: 38903628 PMCID: PMC11187263 DOI: 10.3389/fnut.2024.1407182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Scutellaria baicalensis Georgi is a medicinal herb with a rich history of use in traditional Chinese medicine. This review concentrates on the chemical constituents of Scutellaria baicalensis Georgi, with a particular emphasis on flavonoids such as baicalin, baicalein, and wogonin. Additionally, it examines the effects of probiotic fermentation on the plant's chemical profile and pharmacological actions. Evidence suggests that probiotic fermentation markedly modifies the bioactive components of Scutellaria baicalensis Georgi, thereby augmenting its medicinal potency. The paper delves into the mechanisms by which the primary active constituents of Scutellaria baicalensis Georgi are altered during fermentation and how these changes influence its pharmacological properties. This review aims to lay a theoretical groundwork for the clinical utilization of Scutellaria baicalensis Georgi and the formulation of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Chunhai Li
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
3
|
Guo D, Zhu Z, Wang Z, Feng F, Cao Q, Xia Z, Jia X, Lv D, Han T, Chen X. Multi-omics landscape to decrypt the distinct flavonoid biosynthesis of Scutellaria baicalensis across multiple tissues. HORTICULTURE RESEARCH 2024; 11:uhad258. [PMID: 38298899 PMCID: PMC10828779 DOI: 10.1093/hr/uhad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 02/02/2024]
Abstract
Scutellaria baicalensis Georgi, also known as huang-qin in traditional Chinese medicine, is a widely used herbal remedy due to its anticancer, antivirus, and hepatoprotective properties. The S. baicalensis genome was sequenced many years ago; by contrast, the proteome as the executer of most biological processes of S. baicalensis in the aerial parts, as well as the secondary structure of the roots (xylem, phloem, and periderm), is far less comprehensively characterized. Here we attempt to depict the molecular landscape of the non-model plant S. baicalensis through a multi-omics approach, with the goal of constructing a highly informative and valuable reference dataset. Furthermore, we provide an in-depth characterization dissection to explain the two distinct flavonoid biosynthesis pathways that exist in the aerial parts and root, at the protein and phosphorylated protein levels. Our study provides detailed spatial proteomic and phosphoproteomic information in the context of secondary structures, with implications for the molecular profiling of secondary metabolite biosynthesis in non-model medicinal plants.
Collapse
Affiliation(s)
- Dandan Guo
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhenyu Zhu
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhe Wang
- Department of Physiology, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Fei Feng
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Qi Cao
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhewei Xia
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Xinlei Jia
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Diya Lv
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Ting Han
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xiaofei Chen
- Pharmaceutical Analysis and Testing center, School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| |
Collapse
|
4
|
Wilczańska A, Sparzak-Stefanowska B, Kokotkiewicz A, Jesionek A, Królicka A, Łuczkiewicz M, Krauze-Baranowska M. Biotechnological strategies for controlled accumulation of flavones in hairy root culture of Scutellaria lateriflora L. Sci Rep 2023; 13:20422. [PMID: 37990031 PMCID: PMC10663461 DOI: 10.1038/s41598-023-47757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Accumulation of medicinally important flavones and acteoside was evaluated in Scutellaria lateriflora hairy root cultures subjected to different experimental strategies - feeding with precursors of phenolics biosynthesis (phenylalanine, cinnamic acid, and sodium cinnamate), addition of elicitors (chitosan, jasmonic acid) and Amberlite XAD-4 and XAD-7 resins and permeabilization with dimethyl sulfoxide (DMSO) and methanol. The production profile of S. lateriflora cultures changed under the influence of the applied strategies. Hairy roots of S. lateriflora were found to be a rich source of wogonoside or wogonin, depending on the treatment used. The addition of sodium cinnamate (1.0 mg/L) was the most effective approach to provide high production of flavonoids, especially wogonoside (4.41% dry weight /DW/; 566.78 mg/L). Permeabilization with DMSO (2 µg/ml for 12 h) or methanol (30% for 12 h) resulted in high biosynthesis of wogonin (299.77 mg/L and 274.03 mg/L, respectively). The obtained results provide new insight into the selection of the optimal growth conditions for the production of in vitro biomass with a significant level of flavone accumulation. The data may be valuable for designing large-scale cultivation systems of hairy roots of S. lateriflora with high productivity of bioactive compounds - wogonin or wogonoside.
Collapse
Affiliation(s)
- Agata Wilczańska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Barbara Sparzak-Stefanowska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Adam Kokotkiewicz
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Anna Jesionek
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Aleksandra Królicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307, Gdańsk, Poland
| | - Maria Łuczkiewicz
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland
| | - Mirosława Krauze-Baranowska
- Department of Pharmacognosy with Medicinal Plant Garden, Medical University of Gdańsk, Al. Gen J. Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
5
|
Tsai PW, Mailem RC, Tayo LL, Hsueh CC, Tseng CC, Chen BY. Interactive network pharmacology and electrochemical analysis reveals electron transport-mediating characteristics of Chinese medicine formula Jing Guan Fang. J Taiwan Inst Chem Eng 2023; 147:104898. [PMID: 37193294 PMCID: PMC10166072 DOI: 10.1016/j.jtice.2023.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
Background Jing Guan Fang (JGF) is an anti-COVID-19 Chinese Medicine decoction comprised of five medicinal herbs to possess anti-inflammatory and antiviral properties for treatment. This study aims to electrochemically decipher the anti-coronavirus activity of JGF and show that microbial fuel cells may serve as a platform for screening efficacious herbal medicines and providing scientific bases for the mechanism of action (MOA) of TCMs. Methods Electrochemical techniques (e.g., cyclic voltammetry) and MFCs were adopted as the bioenergy-based platforms to assess the bioenergy-stimulating characteristics of JGF. Phytochemical analysis correlated polyphenolic and flavonoid content with antioxidant activity and bioenergy-stimulating properties. Network pharmacology on the active compounds was employed to identify anti-inflammatory and anti-COVID-19 protein targets, and molecular docking validated in silico results. Significant findings This first-attempt results show that JGF possesses significant reversible bioenergy-stimulation (amplification 2.02 ± 0.04) properties suggesting that its antiviral efficacy is both bioenergy-steered and electron mediated. Major flavonoids and flavone glycosides identified by HPLC (e.g., baicalein and baicalin, respectively) possess electron-shuttling (ES) characteristics that allow herbal medicines to treat COVID-19 via (1) reversible scavenging of ROS to lessen inflammation; (2) inhibition of viral proteins; and (3) targeting of immunomodulatory pathways to stimulate the immune response according to network pharmacology.
Collapse
Affiliation(s)
- Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Ryan Christian Mailem
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines
- Department of Biology, School of Medicine and Health Sciences, Mapúa University, Makati 1200, Philippines
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Chi-Chun Tseng
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| |
Collapse
|
6
|
Nurbyek S, Buyankhishig B, Suganuma K, Ishikawa Y, Kutsuma M, Abe M, Sasaki K, Davaapurev BO, Batkhuu J, Murata T. Phytochemical investigation of Scutellaria scordiifolia and its trypanocidal activity. PHYTOCHEMISTRY 2023; 209:113615. [PMID: 36828100 DOI: 10.1016/j.phytochem.2023.113615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Scutellaria scordiifolia Fisch. ex Schrank is used to treat various inflammatory diseases and other ailments in traditional and contemporary medicine. In this study, 10 undescribed compounds, including a flavanone (1), four chrysin C-glycosides (2-5), a phenanthrene glucoside (6), four iridoid glucosides (7-10) and 31 known compounds were identified from an extract of the aerial parts of S. scordiifolia. The absolute configurations of sugars in C-glycosides were determined by comparing electric circular dichroism spectra with calculated data. The flavanones (1 and 17), flavonols (11-13), flavone (14), and some of the flavone glucuronides (15, 16) exhibited trypanocidal activities against Trypanosoma congolense. The activity data and quantitative HPLC analysis of flavonoids from the aerial parts of S. scordiifolia suggest that they may effectively treat diseases caused by the aforementioned trypanosomes. Other compounds such as novel iridoids and phenanthrene glycosides, which may be useful for chemophenetic and chemoecological discussions, were also identified.
Collapse
Affiliation(s)
- Stipan Nurbyek
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai, 981-8558, Japan; School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Buyanmandakh Buyankhishig
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai, 981-8558, Japan; School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Yoshinobu Ishikawa
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama, 244-0806, Japan
| | - Mika Kutsuma
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai, 981-8558, Japan
| | - Marie Abe
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai, 981-8558, Japan
| | - Kenroh Sasaki
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai, 981-8558, Japan
| | - Bekh-Ochir Davaapurev
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, 4-1 Komatsushima 4-chome Aoba-ku, Sendai, 981-8558, Japan.
| |
Collapse
|
7
|
Hu T, Zhu Y, Zhu J, Yang M, Wang Y, Zheng Q. Wine-processed radix scutellariae alleviates ARDS by regulating tryptophan metabolism through gut microbiota. Front Pharmacol 2023; 13:1104280. [PMID: 36686672 PMCID: PMC9849372 DOI: 10.3389/fphar.2022.1104280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute and diffuse pulmonary inflammation, characterized by severe hypoxic respiratory failure caused by inflammatory tissue damage, which is a common cause of respiratory failure. Currently, there is no treatment available that can prevent or reverse the devastating effects caused by these conditions. The purpose of this study was to determine the effects of WRS on gut microbiota and the potential effect of gut microbiota on the treatment of lung disease by using a staphylococcal enterotoxin B (SEB)-induced ARDS model. The results showed that WRS could significantly reduce the pathological damage to lung and colon tissues and improve the lung and intestinal functions of ARDS mice. WRS was able to improve the level of cytokines in serum and lung tissue. Additionally, WRS could reverse the gut microbiota dysbiosis caused by SEB in ARDS mice. WRS increases the production of short-chain fatty acids (SCFAs) in the gut. This increase in SCFAs may lead to increased migration of SCFAs to the lungs and activation of free fatty acid receptors (FFAR) three and FFAR2 in lung epithelial cells, alleviating the symptoms of ARDS. Interestingly, WRS improves the faecal metabolite profiles in SEB-induced ARDS mice via tryptophan metabolism. On the basis of the component-target-metabolism strategy, baicalin, oroxylin A-7-O-glucuronide and skullcapflavon II were identified as the potential bioactive markers in WRS for the treatment of ARDS. Our study showed that WRS could ameliorate SEB-induced ARDS by regulating the structure of gut microbiota, increasing the production of SCFAs and modifying the faecal metabolite profiles through the lung-gut axis, and providing alternative treatment strategies for lung disease.
Collapse
Affiliation(s)
- Tingting Hu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ying Zhu
- Blood Transfusion Department, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jing Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yaqi Wang
- Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Yaqi Wang,
| | - Qin Zheng
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
8
|
Yamada Y, Saito H, Araki M, Tsuchimoto Y, Muroi SI, Suzuki K, Toume K, Kim JD, Matsuzaka T, Sone H, Shimano H, Nakagawa Y. Wogonin, a Compound in Scutellaria baicalensis, Activates ATF4–FGF21 Signaling in Mouse Hepatocyte AML12 Cells. Nutrients 2022; 14:nu14193920. [PMID: 36235573 PMCID: PMC9572861 DOI: 10.3390/nu14193920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21), which is mainly synthesized and secreted by the liver, plays a crucial role in systemic glucose and lipid metabolism, ameliorating metabolic diseases. In this study, we screened the WAKANYAKU library derived from medicinal herbs to identify compounds that can activate Fgf21 expression in mouse hepatocyte AML12 cells. We identified Scutellaria baicalensis root extract and one of its components, wogonin, as an activator of Fgf21 expression. Wogonin also enhanced the expression of activating transcription factor 4 (ATF4) by a mechanism other than ER stress. Knockdown of ATF4 by siRNA suppressed wogonin-induced Fgf21 expression, highlighting its essential role in wogonin’s mode of action. Thus, our results indicate that wogonin would be a strong candidate for a therapeutic to improve metabolic diseases by enhancing hepatic FGF21 production.
Collapse
Affiliation(s)
- Yasunari Yamada
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hodaka Saito
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masaya Araki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yuhei Tsuchimoto
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Shin-ichi Muroi
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kyohei Suzuki
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Kazufumi Toume
- Section of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Jun-Dal Kim
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Transborder Medical Research Center (TMRC), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata 951-8510, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 100-0004, Japan
- Correspondence: ; Tel.: +81-76-434-7610
| |
Collapse
|
9
|
Nazar N, Howard C, Slater A, Sgamma T. Challenges in Medicinal and Aromatic Plants DNA Barcoding-Lessons from the Lamiaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:137. [PMID: 35009140 PMCID: PMC8747715 DOI: 10.3390/plants11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The potential value of DNA barcoding for the identification of medicinal plants and authentication of traded plant materials has been widely recognized; however, a number of challenges remain before DNA methods are fully accepted as an essential quality control method by industry and regulatory authorities. The successes and limitations of conventional DNA barcoding are considered in relation to important members of the Lamiaceae. The mint family (Lamiaceae) contains over one thousand species recorded as having a medicinal use, with many more exploited in food and cosmetics for their aromatic properties. The family is characterized by a diversity of secondary products, most notably the essential oils (EOs) produced in external glandular structures on the aerial parts of the plant that typify well-known plants of the basil (Ocimum), lavender (Lavandula), mint (Mentha), thyme (Thymus), sage (Salvia) and related genera. This complex, species-rich family includes widely cultivated commercial hybrids and endangered wild-harvested traditional medicines, and examples of potential toxic adulterants within the family are explored in detail. The opportunities provided by next generation sequencing technologies to whole plastome barcoding and nuclear genome sequencing are also discussed with relevant examples.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Caroline Howard
- Tree of Life Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
10
|
Zwolan A, Pietrzak D, Adamczak L, Chmiel M, Florowski T, Kalisz S, Hać‐Szymańczuk E, Bryś J, Oszmiański J. Characteristics of water and ethanolic extracts of
Scutellaria baicalensis
root and their effect on color, lipid oxidation, and microbiological quality of chicken meatballs during refrigerated storage. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Adam Zwolan
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Dorota Pietrzak
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Lech Adamczak
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Marta Chmiel
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Tomasz Florowski
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Stanisław Kalisz
- Department of Food Technology and Assessment Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Elżbieta Hać‐Szymańczuk
- Department of Food Biotechnology and Food Microbiology Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Joanna Bryś
- Department of Chemistry Institute of Food Sciences Warsaw University of Life Sciences—SGGW Warsaw Poland
| | - Jan Oszmiański
- Department of Fruit, Vegetables and Nutraceutical Technology Wroclaw University of Environmental and Life Sciences Wroclaw Poland
| |
Collapse
|
11
|
Jiang W, Wu S, Fan RG, Wang Z, Chen SX, Wen Y, Wang P. Nitrogen, phosphorus co-doped hollow porous carbon microspheres as an oxidase-like electrochemical sensor for baicalin. NEW J CHEM 2022. [DOI: 10.1039/d2nj02721f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extraordinary properties and unique structure of porous carbon has rapidly turned into a new favorite in the development and application of high-performance electrocatalytic sensor. Nitrogen, phosphorus co-doped hollow porous...
Collapse
|
12
|
Mixtures of Scutellaria baicalensis and Glycyrrhiza L. Extracts as Antibacterial and Antiviral Agents in Active Coatings. COATINGS 2021. [DOI: 10.3390/coatings11121438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aim of this study was to develop active packaging materials covered in active coatings (offering antibacterial and antiviral properties) that contain selected plant extracts. In addition, the synergistic effect of the active substances in these extracts was also analysed. The results of the study demonstrated that Scutellaria baicalensis and Glycyrrhiza L. extracts (two of six analysed plant extracts) were the most active agents against selected Gram-positive and Gram-negative bacterial strains. Additionally, the synergistic effect of S. baicalensis and Glycyrrhiza L. extracts was noted, meaning that the effect of these two plant extract mixtures on Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas syringae growth was higher than the activity of individual pure extracts. Mixtures of the extracts were introduced into the coating carrier. A polyethylene (PE) foil was then coated with active layers containing mixtures of S. baicalensis and Glycyrrhiza L. extracts as antimicrobial agents. The results of this research showed that all of the active coatings had a bacteriolytic effect on B. subtilis and a bacteriostatic effect on S. aureus cells. The coatings were found to be inactive against E. coli and P. syringae cells. This means that the coatings could be used as internal coatings to preserve food products against Gram-positive bacteria that may be responsible for food spoilage. The results of this study also demonstrated that the coatings were highly active against phage phi 6 phage particles, used as SARS-CoV-2 surrogate. This means that the coatings could be used as external coatings to limit the spread of SARS-CoV-2 and pathogenic Gram-positive bacteria via human hands.
Collapse
|
13
|
Xing Y, Ren X, Li X, Sui L, Shi X, Sun Y, Quan C, Xiu Z, Dong Y. Baicalein Enhances the Effect of Acarbose on the Improvement of Nonalcoholic Fatty Liver Disease Associated with Prediabetes via the Inhibition of De Novo Lipogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9822-9836. [PMID: 34406004 DOI: 10.1021/acs.jafc.1c04194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prediabetes is a prevalent metabolic disorder with multiple complications, including nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the combinatorial effect of baicalein, a dietary flavonoid abundant in multiple edible plants, and acarbose on prediabetes-associated NAFLD. Baicalein and its metabolites inhibited de novo lipogenesis (DNL), thereby decreasing lipid accumulation and hepatokine secretion in oleic acid-induced hepatocytes. Carbohydrate restriction, which mimicked the effect of acarbose, led to comparable results. The combinatorial effect of baicalein and acarbose was further verified in prediabetic mice with NAFLD. Through the 16-week intervention, baicalein and acarbose inhibited DNL and improved glucose tolerance, oxidative stress, liver histology, and hepatokine secretion, thereby ameliorating insulin resistance and NAFLD. Our study demonstrated that baicalein enhanced the effect of acarbose on improving NAFLD and explored the underlying multitarget mechanism, laying a theoretical foundation for the development of flavonoid dietary supplements for the simultaneous improvement of NAFLD and prediabetes.
Collapse
Affiliation(s)
- Yan Xing
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xinxiu Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xia Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Liping Sui
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Xuan Shi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yu Sun
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
14
|
Tronina T, Mrozowska M, Bartmańska A, Popłoński J, Sordon S, Huszcza E. Simple and Rapid Method for Wogonin Preparation and Its Biotransformation. Int J Mol Sci 2021; 22:ijms22168973. [PMID: 34445678 PMCID: PMC8396506 DOI: 10.3390/ijms22168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Wogonin is one of the most active flavonoids from Scutellaria baicalensis Georgi (baikal skullcap), widely used in traditional Chinese medicine. It exhibits a broad spectrum of health-promoting and therapeutic activities. Together with baicalein, it is considered to be the one of main active ingredients of Chinese medicines for the management of COVID-19. However, therapeutic use of wogonin may be limited due to low market availability connected with its low content in baikal skullcap and lack of efficient preparative methods for obtaining this compound. Although the amount of wogonin in skullcap root often does not exceed 0.5%, this material is rich in wogonin glucuronide, which may be used as a substrate for wogonin production. In the present study, a rapid, simple, cheap and effective method of wogonin and baicalein preparation, which provides gram quantities of both flavonoids, is proposed. The obtained wogonin was used as a substrate for biotransformation. Thirty-six microorganisms were tested in screening studies. The most efficient were used in enlarged scale transformations to determine metabolism of this xenobiotic. The major phase I metabolism product was 4′-hydroxywogonin—a rare flavonoid which exhibits anticancer activity—whereas phase II metabolism products were glucosides of wogonin. The present studies complement and extend the knowledge on the effect of substitution of A- and B-ring on the regioselective glycosylation of flavonoids catalyzed by microorganisms.
Collapse
Affiliation(s)
- Tomasz Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
- Correspondence: ; Tel.: +48-71320-5019
| | - Monika Mrozowska
- Department of Histology and Embryology, Wroclaw Medical University, T. Chałubinskiego 6a, 50-368 Wroclaw, Poland;
| | - Agnieszka Bartmańska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Sandra Sordon
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| | - Ewa Huszcza
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland; (A.B.); (J.P.); (S.S.); (E.H.)
| |
Collapse
|
15
|
Behl T, Kaur G, Sehgal A, Zengin G, Singh S, Ahmadi A, Bungau S. Flavonoids, the Family of Plant-derived Antioxidants making inroads into Novel Therapeutic Design against IR-induced Oxidative Stress in Parkinson's Disease. Curr Neuropharmacol 2021; 20:324-343. [PMID: 34030619 PMCID: PMC9413797 DOI: 10.2174/1570159x19666210524152817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for in-depth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| |
Collapse
|
16
|
Yoshioka Y, Kamata Y, Tominaga M, Umehara Y, Yoshida I, Matsuoka N, Takamori K. Extract of Scutellaria baicalensis induces semaphorin 3A production in human epidermal keratinocytes. PLoS One 2021; 16:e0250663. [PMID: 33905439 PMCID: PMC8078742 DOI: 10.1371/journal.pone.0250663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
In a disease-state-dependent manner, the histamine-resistant itch in dry skin-based skin diseases such as atopic dermatitis (AD) and xerosis is mainly due to hyperinnervation in the epidermis. Semaphorin 3A (Sema3A) is a nerve repulsion factor expressed in keratinocytes and it suppresses nerve fiber elongation in the epidermis. Our previous studies have shown that Sema3A ointment inhibits epidermal hyperinnervation and scratching behavior and improves dermatitis scores in AD model mice. Therefore, we consider Sema3A as a key therapeutic target for improving histamine-resistant itch in AD and xerosis. This study was designed to screen a library of herbal plant extracts to discover compounds with potential to induce Sema3A in normal human epidermal keratinocytes (NHEKs) using a reporter gene assay, so that positive samples were found. Among the positive samples, only the extract of S. baicalensis was found to consistently increase Sema3A levels in cultured NHEKs in assays using quantitative real-time PCR and ELISA. In evaluation of reconstituted human epidermis models, the level of Sema3A protein in culture supernatants significantly increased by application of the extract of S. baicalensis. In addition, we investigated which components in the extract of S. baicalensis contributed to Sema3A induction and found that baicalin and baicalein markedly increased the relative luciferase activity, and that baicalein had higher induction activity than baicalin. Thus, these findings suggest that S. baicalensis extract and its compounds, baicalin and baicalein, may be promising candidates for improving histamine-resistant itch via the induction of Sema3A expression in epidermal keratinocytes.
Collapse
Affiliation(s)
- Yasuko Yoshioka
- Central R&D Laboratory, Kobayashi Pharmaceutical Co. Ltd., Ibaraki, Osaka, Japan
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Yayoi Kamata
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Yoshie Umehara
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Ikuyo Yoshida
- Central R&D Laboratory, Kobayashi Pharmaceutical Co. Ltd., Ibaraki, Osaka, Japan
| | - Nobuya Matsuoka
- Central R&D Laboratory, Kobayashi Pharmaceutical Co. Ltd., Ibaraki, Osaka, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, Urayasu, Chiba, Japan
- * E-mail:
| |
Collapse
|
17
|
Rizzo V, Ferlazzo N, Currò M, Isola G, Matarese M, Bertuccio MP, Caccamo D, Matarese G, Ientile R. Baicalin-Induced Autophagy Preserved LPS-Stimulated Intestinal Cells from Inflammation and Alterations of Paracellular Permeability. Int J Mol Sci 2021; 22:ijms22052315. [PMID: 33652555 PMCID: PMC7956379 DOI: 10.3390/ijms22052315] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have demonstrated a relevant role of intestinal epithelial cells in the immune response and in chronic inflammatory conditions, including ulcers, colitis, and Crohn's disease. Baicalin (BA), extracted from the root of Scutellaria baicalensis, has various beneficial healthy effects, including anti-inflammatory activity. However, few studies have evaluated BA effects on autophagic signaling in epithelial cell response to inflammatory stimuli. To explore possible beneficial effects of BA, HT-29 cells were exposed to lipopolysaccharide (LPS), in presence or absence of BA, for 4 h. We evaluated mRNA levels of autophagy-related genes and cytokines, triggering inflammatory response. Furthermore, the expression of claudin 1, involved in the regulation of paracellular permeability was analyzed. BA treatment repressed LPS-induced expression of TNF-α and IL-1β. The down-regulation of autophagy-related genes induced by LPS was counteracted by cell pretreatment with BA. Under these conditions, BA reduced the NF-κB activation caused by LPS. Also, BA restored mRNA and protein levels of claudin 1, which were reduced by LPS. In conclusion, in intestinal epithelial cells BA regulates the NF-κB activation and modulates both autophagic and inflammatory processes, leading to an improvement of paracellular permeability. These results suggest that the anti-inflammatory effects of BA can be associated to the regulation of autophagic flux.
Collapse
|
18
|
Wang W, Hu S, Cao Y, Chen R, Wang Z, Cao X. Selection and evaluation of reference genes for qRT-PCR of Scutellaria baicalensis Georgi under different experimental conditions. Mol Biol Rep 2021; 48:1115-1126. [PMID: 33511512 PMCID: PMC7842394 DOI: 10.1007/s11033-021-06153-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/12/2021] [Indexed: 10/28/2022]
Abstract
Scutellaria baicalensis Georgi is a famous medicinal plant with its dried roots having been used as a traditional Chinese medicinal for more than 2000 years. Although its genome sequence has previously been published and molecular biology methods have been used to study this species, no suitable internal reference genes have been investigated for standardization of gene expression via quantitative real-time polymerase chain reaction (qRT-PCR). Here, the stabilities of 10 candidate reference genes, ACT11, ACT7, α-TUB, β-TUB, GAPDH, UBC, RPL, SAM, HSP70, and PP2A, were analyzed by four different procedures of GeNorm, NormFinder, BestKeeper, and RefFinder. Their expression stabilities were evaluated under various conditions, including different tissue types (root, stem, leaf, and flower), hormone stimuli treatments (methyl jasmonate, salicylic acid, and abscisic acid), and abiotic stresses (heavy metal, salt, drought, cold, and wounding). The results indicated that β-TUB was the most stable gene for all tested samples, while ACT11 was the most unstable. The most stable reference gene was not consistent under different conditions. β-TUB exhibited the highest stability for different tissue types and abiotic stresses, while for hormone stimuli treatments, ACT7 showed the highest stability. To confirm the applicability of suitable reference genes, we selected to SbF6H and SbF8H as target genes to analyze their expression levels in different tissues. This study helps to the accurate quantification of the relative expression levels of interest genes in S. baicalensis via qRT-PCR analysis.
Collapse
Affiliation(s)
- Wentao Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Suying Hu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Yao Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Rui Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China.
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
19
|
Chang CF, Chang YC, Lin JT, Yu CW, Kao YT. Evaluation of inhibitors of intestinal UDP-glucuronosyltransferases 1A8 and 1A10 using raloxifene as a substrate in Caco-2 cells: Studies with four flavonoids of Scutellaria baicalensis. Toxicol In Vitro 2021; 72:105087. [PMID: 33440186 DOI: 10.1016/j.tiv.2021.105087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/06/2021] [Indexed: 11/26/2022]
Abstract
UDP glucuronosyltransferases (UGTs) of the gastrointestinal tract play a crucial role in protection against the toxic effects of xenobiotics in the environment. UGTs such as UGT1A8 and UGT1A10 are predominantly expressed in gastrointestinal tissues. In this study, we examined the phase II metabolism of raloxifene in differentiated Caco-2 monolayers by inducing UGT1A8 and UGT1A10 expression in these cells. The present study evaluated the following four flavonoids of Scutellaria baicalensis as model herbal compounds: scutellarein, salvigenin, baicalein, and wogonin. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The transepithelial electrical resistance values for the individual compounds were comparable regardless of whether they were measured individually. Salvigenin significantly inhibited UGT1A8 and UGT1A10 activities in a concentration-dependent manner. All individual compounds except scutellarein inhibited UGT1A8 and UGT1A10 activity at a concentration of 100 μM. In addition, all individual flavonoids at 100 μM, except wogonin, significantly increased the amount of raloxifene in the basolateral chambers. The positive control, canagliflozin, significantly inhibited both UGT1A8 and UGT1A10 activities. These findings suggest that the Caco-2 assay can be utilized for identifying UGT1A8 and UGT1A10 inhibitors and indicate the potential of salvigenin for enhancing the pharmacological effects of UGT substrate drugs.
Collapse
Affiliation(s)
- Che-Fu Chang
- Department of Family Medicine, Taoyuan Armed Forces General Hospital, No.168, Zhongxing Rd., Longtan Dist, Taoyuan City 32551, Taiwan
| | - Yu-Ching Chang
- School of Pharmacy, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
| | - Jing-Tang Lin
- Department of Family Medicine, Taoyuan Armed Forces General Hospital, No.168, Zhongxing Rd., Longtan Dist, Taoyuan City 32551, Taiwan
| | - Chen-Wei Yu
- Department of Family Medicine, Taoyuan Armed Forces General Hospital, No.168, Zhongxing Rd., Longtan Dist, Taoyuan City 32551, Taiwan
| | - Yu-Ting Kao
- School of Pharmacy, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan.
| |
Collapse
|
20
|
Li S, Liu C, Guo F, Taleb SJ, Tong M, Shang D. Traditional Chinese Medicine as Potential Therapy for COVID-19. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1263-1277. [PMID: 32907358 DOI: 10.1142/s0192415x20500627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In December 2019, a novel coronavirus SARS-CoV-2, causing the disease COVID-19, spread from Wuhan throughout China and has infected people over 200 countries. Thus far, more than 3,400,000 cases and 240,000 deaths have occurred worldwide, and the coronavirus pandemic continues to grip the globe. While numbers of cases in China have been steadying, the number of infections outside China is increasing at a worrying pace. We face an urgent need to control the spread of the COVID-19 epidemic, which is currently expanding to a global pandemic. Efforts have focused on testing antiviral drugs and vaccines, but there is currently no treatment specifically approved. Traditional Chinese medicine (TCM) is grounded in empirical observations and the Chinese people use TCM to overcome these sorts of plagues many times in thousands of years of history. Currently, the Chinese National Health Commission recommended a TCM prescription of Qing-Fei-Pai-Du-Tang (QFPDT) in the latest version of the "Diagnosis and Treatment guidelines of COVID-19" which has been reported to provide reliable effects for COVID-19. While doubts about TCM still exist today, this review paper will describe the rationalities that QFPDT is likely to bring a safe and effective treatment of COVID-19.
Collapse
Affiliation(s)
- Shuang Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Fangyue Guo
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Mengying Tong
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, P. R. China.,Leishenshan Hospital, Wuhan, Hubei, P. R. China
| |
Collapse
|
21
|
Hisada M, Hiranuma M, Nakashima M, Goda N, Tenno T, Hiroaki H. High dose of baicalin or baicalein can reduce tight junction integrity by partly targeting the first PDZ domain of zonula occludens-1 (ZO-1). Eur J Pharmacol 2020; 887:173436. [PMID: 32745606 DOI: 10.1016/j.ejphar.2020.173436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
The tight junction (TJ) is the apical-most intercellular junction complex, serving as a biological barrier of intercellular spaces between epithelial cells. The TJ's integrity is maintained by a key protein-protein interaction between C-terminal motifs of claudins (CLDs) and the postsynaptic density 95 (PSD-95)/discs large/zonula occludens 1 (ZO-1; PDZ) domains of ZO-1. Weak but direct interaction of baicalin and its aglycon, baicalein-which are pharmacologically active components of Chinese skullcap (Radix scutellariae)-with ZO-1(PDZ1) have been observed in NMR experiments. Next, we observed TJ-mitigating activity of these flavonoids against Madin-Darby canine kidney (MDCK) II cells with the downregulation of subcellular localization of CLD-2 at TJs. Meanwhile, baicalein-but not baicalin-induced a slender morphological change of MDCK cells' shape from their normal cobblestone-like shapes. Since baicalin and baicalein did not induce a localization change of occludin (OCLN), a "partial" epithelial-mesenchymal transition (EMT) induced by these flavonoids was considered. SB431542, an ALK-5 inhibitor, reversed the CLD-2 downregulation of both baicalin and baicalein, while SB431542 did not reverse the slender morphology. In contrast, the MEK/ERK inhibitor U0126 reversed the slender shape change. Thus, in addition to inhibition of the ZO-1-CLD interaction, activation of both transforming growth factor-β (TGF-β) and MEK/ERK signaling pathways have been suggested to be involved in TJ reduction by these flavonoids. Finally, we demonstrated that baicalin enhanced the permeability of fluorescence-labeled insulin via the paracellular pathway of the Caco-2 cell layer. We propose that baicalin, baicalein, and Radix scutellariae extract are useful as drug absorption enhancers.
Collapse
Affiliation(s)
- Misaki Hisada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Minami Hiranuma
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Mio Nakashima
- Department of Biological Sciences, Faculty of Science, Nagoya University, Japan
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi, 464-8601, Japan; Department of Biological Sciences, Faculty of Science, Nagoya University, Japan; BeCerllBar, LLC., Nagoya, Aichi, Japan.
| |
Collapse
|
22
|
Shii T, Kuroda M, Shamoto N, Mimaki Y. [An analysis of the ingredients in decoctions and extracts of Kampo medicines: Amounts of baicalin and baicalein in Kampo medicines containing Scutellariae Radix]. Nihon Ronen Igakkai Zasshi 2020; 57:72-80. [PMID: 32074563 DOI: 10.3143/geriatrics.57.72] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIM Kampo medicines containing Scutellariae Radix (the root of Scutellaria baicalensis Georgi; SR) sometimes cause serious adverse effects, including interstitial pneumonia and liver dysfunction. Baicalin (BL) is the major active component of SR and is presumed to be responsible for the adverse effects. We analyzed the amounts of BL in Kampo medicines to better understand how they can be used safely. METHODS We determined the amounts of BL in 28 Kampo decoctions containing SR (recommended daily dose: 1.5-4 g/day) and corresponding Kampo extract products by high-performance liquid chromatography. RESULTS The amounts of BL in the Kampo decoctions were 1.7-4.0-fold higher than those of the corresponding Kampo extract products. Inter-product variations in the amounts of BL in Shosaikoto, Otsujito, Daisaikoto, Saibokuto, Orengedokuto, and Saireito Kampo extracts from various companies were also examined. Significant differences in the amounts of BL were observed for Shosaikoto, Otsujito, Daisaikoto, and Saibokuto extract products (up to 2.6, 1.6, 1.5, and 1.3-fold differences, respectively), whereas no significant differences were observed for Orengedokuto and Saireito extract products. CONCLUSIONS Because the Kampo decoctions containing SR that we examined contained 1.7-4.0 times as much BL as the corresponding Kampo extract products, medical doctors and pharmacists should be aware that Kampo decoctions containing SR might cause more severe side effects than corresponding Kampo extract products. Furthermore, we recommend that the amounts of BL and its aglycone, baicalein (BA), in Kampo extract products be made known to practitioners and patients.
Collapse
Affiliation(s)
- Takashi Shii
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kitasato University Hospital
| | - Minpei Kuroda
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Noriko Shamoto
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
23
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
24
|
A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi. J Pharm Biomed Anal 2019; 179:113014. [PMID: 31812804 DOI: 10.1016/j.jpba.2019.113014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
Imaging the spatial distributions and dynamics of flavones in heterogeneous plant tissues is significant for our understanding of plant metabolism. Here, we proposed a spatially-resolved approach to map the locations and biosynthesis of flavones in S. baicalensis. A total of 11 flavones, 5 flavone glycosides, 6 carbohydrates, and a variety of flavone synthesis-related metabolites were imaged. Most of these flavone-related metabolites presented stronger ion intensities in root phloem. The biosynthetic network of flavones and their glycosides in S. baicalensis were visualized for the first time. Moreover, we characterized the region-specific activities of four crucial enzymes in flavone synthesis pathway, including l-phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, 4-coumarate coenzyme A ligase, and flavone synthase. In line with the spatial characteristic of flavones, all these four enzymes exhibit higher activity in the root phloem of S. baicalensis. The combination of spatially-resolved metabolites and enzymes information greatly broadens our understanding of flavone biosynthetic network.
Collapse
|
25
|
Zhao Q, Yang J, Cui MY, Liu J, Fang Y, Yan M, Qiu W, Shang H, Xu Z, Yidiresi R, Weng JK, Pluskal T, Vigouroux M, Steuernagel B, Wei Y, Yang L, Hu Y, Chen XY, Martin C. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. MOLECULAR PLANT 2019; 12:935-950. [PMID: 30999079 DOI: 10.1016/j.molp.2019.04.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/20/2019] [Accepted: 04/07/2019] [Indexed: 05/19/2023]
Abstract
Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, "Huang Qin," are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4'-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific cinnamate coenzyme A ligase likely obtained its new function following recent mutations, and that four genes encoding enzymes in the 4'-deoxyflavone pathway are present as tandem repeats in the genome of S. baicalensis. Further analyses revealed that gene duplications, segmental duplication, gene amplification, and point mutations coupled to gene neo- and subfunctionalizations were involved in the evolution of 4'-deoxyflavone synthesis in the genus Scutellaria. Our study not only provides significant insight into the evolution of specific flavone biosynthetic pathways in the mint family, Lamiaceae, but also will facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants. The reference genome of S. baicalensis is also useful for improving the genome assemblies for other members of the mint family and offers an important foundation for decoding the synthetic pathways of bioactive compounds in medicinal plants.
Collapse
Affiliation(s)
- Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Meng-Ying Cui
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yumin Fang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Qiu
- Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huiwen Shang
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhicheng Xu
- Novogene Bioinformatics Institute, Beijing, China
| | | | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomáš Pluskal
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | | | | | - Yukun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Cathie Martin
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
26
|
Intestinal metabolism of baicalein after oral administration in mice: Pharmacokinetics and mechanisms. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
|
28
|
Zhang B, Sun W, Yu N, Sun J, Yu X, Li X, Xing Y, Yan D, Ding Q, Xiu Z, Ma B, Yu L, Dong Y. Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.070] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Wang X, Li X, Chen W, Wang R, Bian W, Choi MMF. Phosphorus doped graphitic carbon nitride nanosheets as fluorescence probe for the detection of baicalein. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 198:1-6. [PMID: 29501001 DOI: 10.1016/j.saa.2018.02.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 05/25/2023]
Abstract
Phosphorus doped graphitic carbon nitride (P-g-C3N4) nanosheets were synthesized by calcination. P-g-C3N4 nanosheets were characterized by XRD, XPS, TEM, fluorescence, ultraviolet-visible absorption and Fourier transform infrared spectroscopy. The fluorescence of the P-g-C3N4 nanosheets was gradually quenched with the increase in the concentration of baicalein at room temperature. The proposed probe was used for the determination of baicalein in the concentration 2.0-30μM with a detection limit of 53nM. The quenching mechanism was discussed. The P-g-C3N4 nanosheets have been successfully applied for effective and selective detection of baicalein in human urine samples and blood samples.
Collapse
Affiliation(s)
- Xuan Wang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, PR China
| | - Xuebing Li
- School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wenfang Chen
- School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Rulin Wang
- School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, PR China
| | - Wei Bian
- School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, PR China.
| | - Martin M F Choi
- Bristol Chinese Christian Church, Tyndale Baptist Church, 137-139 Whiteladies Road, Bristol BS8 2QG, United Kingdom
| |
Collapse
|
30
|
Flavonoids as Therapeutic Agents in Alzheimer's and Parkinson's Diseases: A Systematic Review of Preclinical Evidences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7043213. [PMID: 29861833 PMCID: PMC5971291 DOI: 10.1155/2018/7043213] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
Abstract
Alzheimer's and Parkinson's diseases are considered the most common neurodegenerative disorders, representing a major focus of neuroscience research to understanding the cellular alterations and pathophysiological mechanisms involved. Several natural products, including flavonoids, are considered able to cross the blood-brain barrier and are known for their central nervous system-related activity. Therefore, studies are being conducted with these chemical constituents to analyze their activities in slowing down the progression of neurodegenerative diseases. The present systematic review summarizes the pharmacological effects of flavonoids in animal models for Alzheimer's and Parkinson's diseases. A PRISMA model for systematic review was utilized for this search. The research was conducted in the following databases: PubMed, Web of Science, BIREME, and Science Direct. Based on the inclusion criteria, 31 articles were selected and discussed in this review. The studies listed revealed that the main targets of action for Alzheimer's disease therapy were reduction of reactive oxygen species and amyloid beta-protein production, while for Parkinson's disease reduction of the cellular oxidative potential and the activation of mechanisms of neuronal death. Results showed that a variety of flavonoids is being studied and can be promising for the development of new drugs to treat neurodegenerative diseases. Moreover, it was possible to verify that there is a lack of translational research and clinical evidence of these promising compounds.
Collapse
|
31
|
Karimov AM, Botirov EK. Structural Diversity and State of Knowledge of Flavonoids of the Scutellaria L. Genus. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017070068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Park CH, Han SE, Nam-Goong IS, Kim YI, Kim ES. Combined Effects of Baicalein and Docetaxel on Apoptosis in 8505c Anaplastic Thyroid Cancer Cells via Downregulation of the ERK and Akt/mTOR Pathways. Endocrinol Metab (Seoul) 2018; 33:121-132. [PMID: 29589394 PMCID: PMC5874188 DOI: 10.3803/enm.2018.33.1.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Anaplastic thyroid cancer (ATC) is one of the most lethal human malignancies. Docetaxel, a microtubule stabilizer, is a common chemotherapeutic agent used to treat various metastatic cancers. However, prolonged use results in various side effects and drug resistance. Flavonoids, such as baicalein, are accepted chemotherapeutic and dietary chemopreventive agents with many advantages, such as greater accessibility, affordability, and lower toxicity, compared with traditional chemotherapy agents. In this study, we evaluated whether baicalein enhances the effects of docetaxel on apoptosis and metastasis in 8505c ATC cells. METHODS The 8505c cells were treated with baicalein or docetaxel individually and in combination. Cell viability was measured by MTT (thiazolyl blue tetrazolium bromide) assay, and apoptosis was detected by fluorescence microscopy of Hoechst-stained cells. The expression of apoptotic (Bax and caspase-3), anti-apoptotic (Bcl-2), angiogenic (vascular endothelial growth factor [VEGF], transforming growth factor β [TGF-β], E-cadherin, and N-cadherin), and signaling (extracellular signal-regulated kinase [ERK] mitogen activated protein kinase [MAPK], Akt, and mammalian target of rapamycin [mTOR]) proteins was determined by Western blot analysis. RESULTS The combination of baicalein (50 or 100 μM) and docetaxel (10 nM) significantly inhibited proliferation and induced apoptosis compared with monotherapies. The combination treatment significantly inhibited the expression of Bax, caspase-3, VEGF, TGF-β1, E-cadherin, N-cadherin, and mTOR, but decreased the expression of Bcl-2 and significantly decreased the phosphorylation of ERK and Akt. CONCLUSION The combination of baicalein and docetaxel effectively induced apoptosis and inhibited metastasis in 8505c cells through downregulation of apoptotic and angiogenic protein expression and blocking of the ERK and Akt/mTOR pathways in 8505c cells. These results suggest that baicalein enhances the anticancer effects of docetaxel in ATC.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Se Eun Han
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Il Seong Nam-Goong
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Young Il Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eun Sook Kim
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea.
| |
Collapse
|
33
|
Zhao Q, Cui MY, Levsh O, Yang D, Liu J, Li J, Hill L, Yang L, Hu Y, Weng JK, Chen XY, Martin C. Two CYP82D Enzymes Function as Flavone Hydroxylases in the Biosynthesis of Root-Specific 4'-Deoxyflavones in Scutellaria baicalensis. MOLECULAR PLANT 2018; 11:135-148. [PMID: 28842248 PMCID: PMC5770198 DOI: 10.1016/j.molp.2017.08.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 05/22/2023]
Abstract
Baicalein, wogonin, and their glycosides are major bioactive compounds found in the medicinal plant Scutellaria baicalensis Georgi. These flavones can induce apoptosis in a variety of cancer cell lines but have no effect on normal cells. Furthermore, they have many additional benefits for human health, such as anti-oxidant, antiviral, and liver-protective properties. Here, we report the isolation and characterization of two CYP450 enzymes, SbCYP82D1.1 and SbCYP82D2, which function as the flavone 6-hydroxylase (F6H) and flavone 8-hydroxylase (F8H), respectively, in S. baicalensis. SbCYP82D1.1 has broad substrate specificity for flavones such as chrysin and apigenin and is responsible for biosynthesis of baicalein and scutellarein in roots and aerial parts of S. baicalensis, respectively. When the expression of SbCYP82D1.1 is knocked down, baicalin and baicalein levels are reduced significantly while chrysin glycosides accumulate in hairy roots. SbCYP82D2 is an F8H with high substrate specificity, accepting only chrysin as its substrate to produce norwogonin, although minor 6-hydroxylation activity can also be detected. Phylogenetic analysis suggested that SbCYP82D2 might have evolved from SbCYP82D1.1 via gene duplication followed by neofunctionalization, whereby the ancestral F6H activity is partially retained in the derived SbCYP82D2.
Collapse
Affiliation(s)
- Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Meng-Ying Cui
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Olesya Levsh
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongfeng Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; College of Life Sciences, Zhejiang Sci-Tech University, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Hangzhou 310018, China
| | - Jie Liu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jie Li
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiao-Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Cathie Martin
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China; Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
34
|
Sun W, Sun J, Zhang B, Xing Y, Yu X, Li X, Xiu Z, Dong Y. Baicalein improves insulin resistance via regulating SOCS3 and enhances the effect of acarbose on diabetes prevention. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
35
|
Influence of Culture Medium Composition and Light Conditions on the Accumulation of Bioactive Compounds in Shoot Cultures of Scutellaria lateriflora L. (American Skullcap) Grown In Vitro. Appl Biochem Biotechnol 2017; 183:1414-1425. [PMID: 28573603 PMCID: PMC5698381 DOI: 10.1007/s12010-017-2508-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022]
Abstract
Methanolic extracts from in vitro grown Scutellaria lateriflora shoots cultured on five Murashige and Skoog (MS) medium variants supplemented with different combinations of 6-benzylaminopurine (BAP) and α-naphthaleneacetic acid (NAA) under different light conditions (monochromatic light, white light and no light) were analysed by HPLC for three groups of metabolites: flavonoids (26 compounds), phenolic acids and their precursors (19+2) and phenylethanoid glycosides (2). The analyses revealed the presence of baicalein, baicalin, wogonin, wogonoside, 3,4-dihydroxyphenylacetic acid and verbascoside. There was clear evidence of the influence of plant growth regulators and light conditions on the accumulation of the analysed groups of secondary metabolites. The amounts of the compounds changed within a wide range—for the total flavonoid content, 30.2-fold (max. 1204.3 mg·100 g−1 dry weight (DW)); for 3,4-dihydroxyphenylacetic acid, 5.5-fold (max. 33.56 mg·100 g−1 DW); and for verbascoside, 1.5-fold (169.15 max. mg·100 g−1 DW). The best medium for the production of most of the compounds was the Murashige and Skoog variant with 1 mg l−1 BAP and 1 mg l−1 NAA. For verbascoside, the best ‘productive’ medium was the MS variant supplemented with 0.5 mg l−1 BAP and 2 mg l−1 NAA. The accumulation of the metabolites was stimulated to the greatest extent by blue light, under which the extracts were found to contain the highest total amount of flavonoids and the highest amounts of flavonoid glucuronides, baicalin and wogonoside, as well as of verbascoside. Their amounts were, respectively, 1.54-, 1.49-, 2.05- and 1.86-fold higher than under the control white light.
Collapse
|
36
|
Kosakowska O. Experimental Paper. Intrapopulation variability of flavonoid content in roots of Baikal skullcap (Scutellaria baicalensis Georgi). HERBA POLONICA 2017. [DOI: 10.1515/hepo-2017-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Summary
Introduction: Baikal skullcap (Scutellaria baicalensis Georgi) is an important medicinal plant, indigenous to Asia. Due to a wide range of pharmacological activities, its roots has been used for ages in Traditional Chinese Medicine. Recently, the species has become an object of interest of Western medicine, as well. Objective: The aim of the study was to determine the variability of Baikal skullcap population originated from Mongolia and cultivated in Poland, in terms of content and composition of flavonoids in the roots. Methods: The objects of the study were 15 individual plants, selected within examined population and cloned in order to obtain a sufficient amount of raw material. The total content of flavonoids in roots was determined according to Polish Pharmacopeia 6th. The qualitative analysis of flavonoids was carried out using HPLC, Shimadzu chromatograph. Results: The dry mass of roots ranged from 25.88 to 56.14 g × plant-1. The total content of flavonoids (expressed as a quercetin equivalent) varied between 0.17 and 0.52% dry matter (DM). Nine compounds were detected within the group, with oroxylin A 7-Oglucuronide (346.90-1063.00 mg × 100 g-1 DM) as a dominant, which differentiated investigated clones at the highest degree (CV=0.27). Baicalin (391.40-942.00 mg × 100 g-1 DM), wogonoside (324.00-641.10 mg × 100 g-1 DM) and hesperetine 7-O-glucoside (163.00-346.32 mg × 100 g-1 DM) were also present in a considerable amounts. Clone 7 was distinguished by the highest content of all investigated compounds, except wogonin and oroxylin A 7-O-glucuronide. Conclusions: Results obtained in present study show a high variability within Baical skullcap investigated population in respect of flavonoid compounds detected in roots. Thus, the results may be used in future investigations concerning the selection and breeding of this species.
Collapse
Affiliation(s)
- Olga Kosakowska
- Laboratory of New Herbal Products Department of Vegetable and Medicinal Plants Warsaw University of Life Sciences – SGGW Nowoursynowska 166 02-787 Warsaw, Poland
| |
Collapse
|
37
|
Kosakowska O, Bączek K, Przybył JL, Pióro-Jabrucka E, Węglarz Z. Chemical variability of common skullcap (Scutellaria galericulata L.) wild growing in the area of eastern Poland. HERBA POLONICA 2016. [DOI: 10.1515/hepo-2016-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Summary
Introduction. In the group of plants revealing adaptogenic activity, species belonging to Scutellaria genus are considered to be the most important ones. Common skullcap (Scutellaria galericulata L.) is less known species from this genus, growing wild in Poland in wet habitats. Its herb has been used in the past as a sedative and diuretic agent.
Objective. The aim of the study was to determine the variability of common skullcap in terms of the accumulation of flavonoids in the herb.
Methods. The objects of the study were 17 common skullcap populations growing wild in eastern Poland. At each natural site, the list of main flowering plant species was carried out, according to Braun-Blanquet scale of plant abundance. The total content of flavonoids was determined according to EP 8th. The analysis of flavonoids was carried out using HPLC, Shimadzu chromatograph.
Results. The total content of flavonoids ranged from 0.21 to 0.50% dry matter (DM). Using HPLC, eight compounds were identified within the group, with chrysin-7-O-glucuronide (30.91–589.27 mg × 100 g−1
DM), baicalin (61.90–482.93 mg × 100 g−1
DM) and scutellarin (43.77–213.54 mg × 100 g−1
DM) as dominants. Chrysin was the compound which in the highest degree differentiated investigated populations (CV=0.77).
Conclusion. Obtained results indicate that investigated common skullcap populations differed in terms of the total content of flavonoids as well as the content of indentified flavonoids in the herb. However, there was no clear relationship between geographical localization of populations and the content of identified flavonoids in raw material.
Collapse
Affiliation(s)
- Olga Kosakowska
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Katarzyna Bączek
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Jarosław L. Przybył
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Ewelina Pióro-Jabrucka
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Zenon Węglarz
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Warsaw University of Life Sciences – SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland
| |
Collapse
|
38
|
Sun C, Wang H, Wang Y, Xiao S. Rapid Isolation and Determination of Flavones in Biological Samples Using Zinc Complexation Coupled with High-Performance Liquid Chromatography. Molecules 2016; 21:molecules21081067. [PMID: 27537870 PMCID: PMC6274430 DOI: 10.3390/molecules21081067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023] Open
Abstract
Chlorophyll-type contaminants are commonly encountered in the isolation and determination of flavones of plant aerial plant parts. Heme is also a difficult background substance in whole blood analysis. Both chlorophyll and heme are porphyrin type compounds. In this study, a rapid method for isolating flavones with 5-hydroxyl or ortho-hydroxyl groups from biological samples was developed based on the different solubilities of porphyrin-metal and flavone-metal complexes. It is important that other background substances, e.g., proteins and lipids, are also removed from flavones without an additional processing. The recoveries of scutellarin, baicalin, baicalein, wogonoside and wogonin, which are the primary constituents of Scutellaria baicalensis (skullcaps) were 99.65% ± 1.02%, 98.98% ± 0.73%, 99.65% ± 0.03%, 97.59% ± 0.09% and 95.19% ± 0.47%, respectively. As a sample pretreatment procedure, this method was coupled to high-performance liquid chromatography (HPLC) with good separation, sensitivity and linearity and was applied to determine the flavone content in different aerial parts of S. baicalensis and in dried blood spot samples.
Collapse
Affiliation(s)
- Chenghe Sun
- Institute of Special Wild Animals and Plants, Chinese Academy of Agricultural Science, Changchun 130122, China.
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hecheng Wang
- Institute of Special Wild Animals and Plants, Chinese Academy of Agricultural Science, Changchun 130122, China.
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yingping Wang
- Institute of Special Wild Animals and Plants, Chinese Academy of Agricultural Science, Changchun 130122, China.
| | - Shengyuan Xiao
- Institute of Special Wild Animals and Plants, Chinese Academy of Agricultural Science, Changchun 130122, China.
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
39
|
Qiu F, Meng L, Chen J, Jin H, Jiang L. In vitro activity of five flavones from Scutellaria baicalensisin combination with Cefazolin against methicillin resistant Staphylococcus aureus (MRSA). Med Chem Res 2016. [DOI: 10.1007/s00044-016-1685-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Zhao Q, Chen XY, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull (Beijing) 2016; 61:1391-1398. [PMID: 27730005 PMCID: PMC5031759 DOI: 10.1007/s11434-016-1136-5] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
Abstract
Scutellaria baicalensis Georgi, or Chinese skullcap, has been widely used as a medicinal plant in China for thousands of years, where the preparation from its roots is called Huang-Qin. It has been applied in the treatment of diarrhea, dysentery, hypertension, hemorrhaging, insomnia, inflammation and respiratory infections. Flavones such as baicalin, wogonoside and their aglycones baicalein wogonin are the major bioactive compounds extracted from the root of S. baicalensis. These flavones have been reported to have various pharmacological functions, including anti-cancer, hepatoprotection, antibacterial and antiviral, antioxidant, anticonvulsant and neuroprotective effects. In this review, we focus on clinical applications and the pharmacological properties of the medicinal plant and the flavones extracted from it. We also describe biotechnological and metabolic methods that have been used to elucidate the biosynthetic pathways of the bioactive compounds in Scutellaria.
Collapse
Affiliation(s)
- Qing Zhao
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602 China
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH UK
| | - Xiao-Ya Chen
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602 China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH UK
| |
Collapse
|
41
|
Ji S, Li R, Wang Q, Miao WJ, Li ZW, Si LL, Qiao X, Yu SW, Zhou DM, Ye M. Anti-H1N1 virus, cytotoxic and Nrf2 activation activities of chemical constituents from Scutellaria baicalensis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:475-484. [PMID: 26578185 DOI: 10.1016/j.jep.2015.11.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/24/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Qin, derived from the roots of Scutellaria baicalensis Georgi, is a popular Chinese herbal medicine mainly used to treat influenza and cancer. This study aims to elucidate the anti-influenza, anti-cancer and anti-oxidation effective components of S. baicalensis. MATERIALS AND METHODS Various column chromatography techniques and semi-preparative HPLC were used to isolate Scutellaria compounds, and their structures were identified by HRESIMS and NMR spectroscopic analysis. The pure compounds were evaluated for anti-influenza activities against A/WSN/33 (H1N1) virus in MDCK cells, cytotoxic activities against HepG2, SW480 and MCF7 human cancer cells by MTS assay, and antioxidant activities by Nrf2 luciferase reporter assay. In addition, the contents of 12 major compounds in 27 batches of S. baicalensis were simultaneously determined by a fully validated UPLC/UV method. RESULTS A total of thirty compounds (1-30), including four new ones (3, 7, 11 and 23), were isolated from S. baicalensis. Baicalin (15), baicalein (26), wogonin (27), chrysin (28) and oroxylin A (30) showed potent anti-H1N1 activities, with IC50 values of 7.4, 7.5, 2.1, 7.7 and 12.8 μM, respectively, which were remarkably more potent than the positive drug Osv-P (oseltamivir phosphate, IC50 45.6 μM). Most free flavones (26-28 and 30) showed significant cytotoxic activities at 10 μM (up to 61.2% inhibition rate). Furthermore, 30 could activate Nrf2 transcription by 3.8-fold of the control at 10 μM. UPLC analysis indicated the 12 major compounds (including the bioactive ones) accounted for 195.93 ± 43.9 mg g(-)(1) of the herbal materials. CONCLUSION This study demonstrated that free flavones showed potent anti-influenza, anti-cancer and anti-oxidative activities. They are important effective components of S. baicalensis, and can be used as chemical markers for quality control of this herbal medicine.
Collapse
Affiliation(s)
- Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Ru Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Wen-juan Miao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zi-wei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Long-long Si
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Si-wang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - De-min Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
42
|
Subramaniam S, Raju R, Palanisamy A, Sivasubramanian A. Development and extraction optimization of baicalein and pinostrobin from Scutellaria violacea through response surface methodology. Pharmacogn Mag 2015; 11:S127-38. [PMID: 26109758 PMCID: PMC4461952 DOI: 10.4103/0973-1296.157714] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/10/2014] [Accepted: 05/27/2015] [Indexed: 11/08/2022] Open
Abstract
Objective: To develop a process that involves optimization of the amount of baicalein and pinostrobin from the hydro-methanolic extract of the leaves of Scutellaria violacea by response surface methodology (RSM). Materials and Methods: The combinatorial influence of various extraction parameters on the extraction yield was investigated by adopting Box–Behnken experimental design. Preliminary experiments carried out based on the traditional one variable at a time optimization revealed four such operational parameters to play a crucial role by influencing the yield. These four process parameters at three levels were considered to obtain the Box–Behnken experimental design. Results: RSM based model fitted to the resulting experimental data suggested that 52.3% methanol/water, 12.46:1 solvent-solid ratio, 285 rpm agitation and 6.07 h of extraction time are the optimal conditions which yielded a maximized amount of baicalein and pinostrobin of 2.9 and 4.05 mg/g DM. Analysis of variance revealed a high correlation coefficient (R2 = 0.999 for baicalein and 0.994 for pinostrobin), signifying a good fit between the regression model (second order) and the experimental observations. Conclusion: The present study signifies that both the metabolites have been extracted from S. violacea for the first time. Further, this study developed an optimized extraction procedure to obtain maximum yield of the metabolites, which is unique and better than conventional extraction methodology. The operational parameters under optimized conditions accounts for the lowest cost in extraction process thus, providing an efficient, rapid and cost-effective method for isolation and scale up of these commercially vital flavonoids.
Collapse
Affiliation(s)
- Shankar Subramaniam
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Ravikumar Raju
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Aravind Sivasubramanian
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
43
|
Gaire BP, Moon SK, Kim H. Scutellaria baicalensis in stroke management: nature's blessing in traditional Eastern medicine. Chin J Integr Med 2014; 20:712-20. [PMID: 24752475 DOI: 10.1007/s11655-014-1347-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Indexed: 01/17/2023]
Abstract
Scutellaria baicalensis Georgi is the most widely used medicinal plant in traditional Eastern medicine, especially in Chinese medicine. The major phytochemicals isolated from S. baicalensis are flavonoids, glycosides and their glucoronides such as baicalin, baicalein, wogonin etc. More than 30 different kinds of flavonoids are isolated from this plant. S. baicalensis and its flavonoids are reported to have several pharmacological activities, which includes anti-allergic, antioxidant, anti apoptic, anti-inflammatory effects and many more. Recently, S. baicalensis and its isolated flavonoids have been studied for their neuroprotective effects, through a variety of in vitro and in vivo models of neurodegenerative diseases, plausibly suggesting that S. baicalensis has salutary effect as a nature's blessing for neuroprotection. In this review, we are focousing on the neuroprotective effects of S. baicalensis and its flavonoids in ischemia or stroke-induced neuronal cell death. We aimed at compiling all the information regarding the neuroprotective effect of S. baicalensis in various experimental models of cerebral ischemia or stroke.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea,
| | | | | |
Collapse
|
44
|
Yu C, Qu F, Mao Y, Li D, Zhen Z, Nass R, Calway T, Wang Y, Yuan CS, Wang CZ. Different extraction pretreatments significantly change the flavonoid contents of Scutellaria baicalensis. PHARMACEUTICAL BIOLOGY 2013; 51:1228-1235. [PMID: 23738852 PMCID: PMC3971064 DOI: 10.3109/13880209.2013.784922] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
CONTEXT Scutellaria baicalensis Georgi (Labiatae) is one of the most commonly used medicinal herbs, especially in traditional Chinese medicine. However, compared to many pharmacological studies of this botanical, much less attention has been paid to the quality control of the herb's pretreatment prior to extract preparation, an issue that may affect therapeutic outcomes. OBJECTIVE The current study was designed to evaluate whether different pretreatment conditions change the contents of the four major flavonoids in the herb, i.e., two glycosides (baicalin and wogonoside) and two aglycones (baicalein and wogonin). MATERIALS AND METHODS A high-performance liquid chromatography assay was used to quantify the contents of these four flavonoids. The composition changes of four flavonoids by different pretreatment conditions, including solvent, treatment time, temperature, pH value and herb/solvent ratio were evaluated. RESULTS After selection of the first order time-curve kinetics, our data showed that at 50 °C, 1:5 herb/water (in w/v) ratio and pH 6.67 yielded an optimal conversion rate from flavonoid glycosides to their aglycones. In this optimized condition, the contents of baicalin and wogonoside were decreased to 1/70 and 1/13, while baicalein and wogonin were increased 3.5- and 3.1-fold, respectively, compared to untreated herb. DISCUSSION AND CONCLUSION The markedly variable conversion rates by different pretreatment conditions complicated the quality control of this herb, mainly due to the high amount of endogenous enzymes of S. baicalensis. Optimal pretreatment conditions observed in this study could be used obtain the highest level of desired constituents to achieve better pharmacological effects.
Collapse
Affiliation(s)
- Chunhao Yu
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Jiangsu 223003, China
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, U.S.A
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| | - Fengyun Qu
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Jiangsu 223003, China
| | - Yanyong Mao
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Jiangsu 223003, China
| | - Dong Li
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Jiangsu 223003, China
| | - Zhong Zhen
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Rachael Nass
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Tyler Calway
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, U.S.A
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| | - Yunwei Wang
- Department of Medicine, University of Chicago, Chicago, IL 60637, U.S.A
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, U.S.A
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, U.S.A
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, U.S.A
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, U.S.A
| |
Collapse
|
45
|
Yu C, Zhang Z, Zhang H, Zhen Z, Calway T, Wang Y, Yuan CS, Wang CZ. Pretreatment of baicalin and wogonoside with glycoside hydrolase: a promising approach to enhance anticancer potential. Oncol Rep 2013; 30:2411-8. [PMID: 24026776 PMCID: PMC3820585 DOI: 10.3892/or.2013.2726] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022] Open
Abstract
Previous phytochemical studies showed that the major flavonoids in Scutellaria baicalensis are baicalin, baicalein, wogonoside and wogonin. The two glycosides (baicalin and wogonoside) can be transformed into their aglycons (baicalein and wogonin), which possess positive anticancer potential. In this study, we used glycosidase to catalyze flavonoids in S. baicalensis to enhance the herb’s anticancer activities. Our HPLC data showed that, using the optimized conditions obtained in our experiments (20 U/g of cellulase, 50ºC, pH 4.8 and treatment for 8 h), there was a marked transformation from the two glycosides to their aglycons. The anticancer activity was subsequently evaluated using a series of S. baicalensis extracts in which variable lengths of glycosidase treatment time were used. Combining analytical and bioassay results, we observed that the higher the aglycon content, the stronger the antiproliferation effects. Compared to the untransformed control, 8 h of glycosidase catalyzing significantly increased antiproliferative activity on human colorectal and breast cancer cells, and its cancer cell growth inhibition is, in part, mediated by cell cycle arrest at the S-phase and induction of apoptosis. Data from this study suggest that using glycosidase to catalyze S. baicalensis offers a promising approach to increase its anticancer activity.
Collapse
Affiliation(s)
- Chunhao Yu
- School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Jiangsu 223003, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Havermann S, Rohrig R, Chovolou Y, Humpf HU, Wätjen W. Molecular effects of baicalein in Hct116 cells and Caenorhabditis elegans : activation of the Nrf2 signaling pathway and prolongation of lifespan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2158-2164. [PMID: 23339711 DOI: 10.1021/jf304553g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Baicalein is a major compound of extracts derived from Scutellaria baicalensis Lamiaceae, which are used as food supplements. Baicalein possesses a high radical scavenging activity and decreases intracellular reactive oxygen species in Hct116 human colon carcinoma cells and in Caenorhabditis elegans . It activates Nrf2, a key transcription factor that binds to the antioxidant responsive element (ARE): Baicalein causes a nuclear accumulation of Nrf2, increases ARE-dependent luciferase activity, and enhances the expression of heme oxygenase-1 in Hct116 cells. Additionally, accumulation of the Nrf2 homologue SKN-1 in nuclei of intestinal cells of C. elegans was observed. Lifespan analysis revealed that baicalein extends the mean, median, and maximum lifespans of the nematode by 45, 57 and 24%, respectively. Because SKN-1 activation is associated with prolongation of lifespan, the results suggest that baicalein increases the lifespan of C. elegans by activation of the Nrf2/SKN-1 signaling pathway.
Collapse
Affiliation(s)
- Susannah Havermann
- Institute of Toxicology, Heinrich-Heine-Universität , P.O. Box 101007, 40001 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
47
|
Ikemoto T, Shimada M, Iwahashi S, Saito Y, Kanamoto M, Mori H, Morine Y, Imura S, Utsunomiya T. Changes of immunological parameters with administration of Japanese Kampo medicine (Juzen-Taihoto/TJ-48) in patients with advanced pancreatic cancer. Int J Clin Oncol 2013; 19:81-6. [PMID: 23443635 DOI: 10.1007/s10147-013-0529-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/25/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The prognosis of pancreatic cancer is extremely poor regardless of various combination therapies. Immunoaugumentation against tumor cells was recently A focus. We reported that the population of Foxp3(+)CD25(+)CD4(+) regulatory T cells (Foxp3(+)Treg) was the new parameter for the estimation of host immunity and had correlation with tumor aggressiveness. Here we show the immunoaugumentation effects of Japanese Kampo medicine, Juzen-Taihoto/TJ-48, empirically considered as an immunoaugumentation drug, with investigation of Treg and other immunological parameters. PATIENTS AND METHOD Peripheral Foxp3(+) Treg populations, CD4/CD8 ratio, and CD57(+) cells (NK cells) populations in advanced pancreatic cancer patients (n = 30, stage VI A and B according to TNM classification) were estimated after TJ-48 administration for 14 days before the anti-cancer therapy. RESULTS Treg populations were significantly increased compared to healthy donors (Mann-Whitney U test, P < 0.001). Administration of Juzen-Taihoto/TJ-48 significantly decreased Treg populations (Mann-Whitney U test, P < 0.001) and increased the CD4/CD8 ratio (Mann-Whitney U test, P < 0.01), even though CD57(+) cell populations did not change significantly. CONCLUSIONS Juzen-Taihoto/TJ-48 increased regulatory activities in T cells through decreasing Foxp3(+) Treg populations in advanced pancreatic cancer patients. This effect can lead to immunoaugumentation for various combination therapies.
Collapse
Affiliation(s)
- Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Institute of Health Bioscience, Graduate School of Medicine, The University of Tokushima, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brock C, Whitehouse J, Tewfik I, Towell T. The use of Scutellaria lateriflora: A pilot survey amongst herbal medicine practitioners. J Herb Med 2012. [DOI: 10.1016/j.hermed.2012.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Chiang YC, Huang BH, Shih HC, Hsu TW, Chang CW, Liao PC. Characterization of 24 transferable microsatellite loci in four skullcaps (Scutellaria, Labiatae). AMERICAN JOURNAL OF BOTANY 2012; 99:e24-e27. [PMID: 22203648 DOI: 10.3732/ajb.1100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PREMISE OF THE STUDY Transferable polymorphic microsatellite loci for four skullcaps, Scutellaria indica, S. taiwanensis, S. austrotaiwanensis, and S. playfairii, were developed for future studies of the mating system and population structure of these species. Interspecific amplification was also tested in various Scutellaria species. METHODS AND RESULTS Twelve novel polymorphic microsatellite loci were isolated from four S. taiwanensis specimens, and seven are interspecifically transferable. Microsatellite loci developed from S. austrotaiwanensis in a previous study were also analyzed in the other three species, and 12 loci were found to be transferable. Allele numbers of the total 24 loci for S. indica, S. taiwanensis, S. playfairii, and S. austrotaiwanensis are two to four, two, two to five, and two to three, respectively, with an expected heterozygosity ranging from 0.114-0.661, 0.062-0.499, 0.280-0.730, and 0.268-0.662, respectively. The interspecies transferability of these 24 loci was further tested in another 10 Scutellaria species, including three species native to Taiwan. Seventeen loci were found to be interspecifically amplifiable, especially among the Taiwan native species. CONCLUSIONS These highly polymorphic and transferable loci will be useful for future studies of the mating system of closely related Scutellaria species.
Collapse
Affiliation(s)
- Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Identification of flavonoids in the stems and leaves of Scutellaria baicalensis Georgi. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1023-8. [PMID: 21435957 DOI: 10.1016/j.jchromb.2011.02.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 02/28/2011] [Accepted: 02/28/2011] [Indexed: 11/23/2022]
Abstract
Scutellaria baicalensis Georgi (S. baicalensis), a perennial herb of the Labiatae family, is a well-known traditional Chinese medicine. In the present study, a comprehensive qualitative analysis of flavonoids in the stems and leaves of S. baicalensis was performed. Under the optimized experimental conditions, 21 flavonoids were clearly detected. 17 of them were successfully identified based on the on-line UV and MS(n) data and were sequentially confirmed by the literature search. The rest 4 flavonones, which were not on-line identified, were successfully isolated and were identified by 1D and 2D NMR. One of them, 5,6,7,3',4'-pentahydroxy flavanone-7-O-glucuronide (2) is a new compound.
Collapse
|