1
|
Wojcieszak J, Kuczyńska K, Leszczyńska A, Naraziński E, Cichalewska-Studzińska M. Access to high-fat diet results in increased sensitivity to the psychostimulant effects of MDPV in mice. Pharmacol Rep 2025:10.1007/s43440-025-00701-0. [PMID: 39869285 DOI: 10.1007/s43440-025-00701-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes. METHODS Adolescent C57BL/6N mice were fed either control diet (CD), 10% of kcal from fat, or high-fat diet (HFD), 60% of kcal from fat. After eight weeks, one group of HFD-fed mice had their diet changed to CD for an additional two weeks. Fasting glucose levels and glucose tolerance were measured to detect impairment in glucose metabolism. Subsequently, the mice were treated with either MDPV (1 mg/kg) or saline, and their locomotor activity was measured. Using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), the expression of dopamine receptor D1 (Drd1), dopamine receptor D2 (Drd2), and FBJ osteosarcoma oncogene B (FosB) genes was measured in the striatum of mice. RESULTS Feeding with HFD caused obesity and glucose intolerance in mice. Restriction of fat reduced body mass and reversed impairment of glucose metabolism. HFD-fed mice responded to MDPV with higher potency than CD-fed counterparts, with an increased incidence of stereotypies. A change of diet partially reversed this effect. Downregulation of Drd2 was observed in the mice that switched from HFD to CD, whereas treatment with MDPV caused upregulation of FosB only in the CD-fed mice. CONCLUSIONS Current results suggest that obesity may increase sensitivity to psychostimulant effects of MDPV and elevate the risk of addiction as mice fed with HFD responded to acute treatment with MDPV with higher potency and showed tolerance of FosB induction in response to the drug.
Collapse
Affiliation(s)
- Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland.
| | - Katarzyna Kuczyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | - Adrianna Leszczyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | - Eryk Naraziński
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, Łódź, 90-151, Poland
| | | |
Collapse
|
2
|
Di Trana A, La Maida N, de la Rosa G, Di Giorgi A, Graziano S, Aldhaehri K, Papaseit E, Hladun O, Farré M, Pérez C, Pichini S. Early and Mid-Term Disposition of α-PVP and its unknown Metabolites in Urine and Oral Fluid Through a Multi-Analytical Hyphenated Approach Following a Single Non-Controlled Administration to Healthy Volunteers. AAPS J 2025; 27:25. [PMID: 39789240 DOI: 10.1208/s12248-024-01012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
Nowadays, synthetic cathinones (SCs) is the second more representative subclass of New Psychoactive Substances, accounting for 104 analogues in the illegal market. Since its first report in 2011, α-pyrrolidinovalerophenone (α-PVP) gained popularity among drug users, provoking an increased number of intoxications. Nonetheless, pharmacokinetics data is still limited in the literature. An observational non-controlled naturalistic study on 8 healthy volunteers was conducted to assess the α-PVP and β-OH-α-PVP concentrations in OF and urine, after snorting 10 mg or 20 mg of α-PVP. A multi-analytical approach based on GC-EI-MS/MS and LC-HESI-HRMS/MS was developed and fully validated for the analytes quantification, while four untargeted LC-HESI-HRMS/MS methods in full-MS and ddMS2 were set up for unknown metabolites characterization in urine samples assisted by a dedicated data mining software. In OF, α-PVP reached a mean Cmax of 762 ± 323 ng/mL at 1 h after 10 mg administration, while a Cmax of 2,900 ± 1,373 ng/mL at 47 min after 20 mg dose. In urine, a total α-PVP mean amount of 179.2 ± 94.9 µg was accumulated after 10 mg dose, (27.2 ± 9.8 µg between 0-2 h and 152.0 ± 98.2 µg between 2-5 h), while a total amount of 122.9 ± 44.0 µg, of (36.2 ± 16.5 and 86.7 ± 28.3 µg between 0-2 and 2-5 h, respectively) was detected after 20 mg dose. Among the 10 identified metabolites, β-OH-α-PVP was a minor metabolite (total amount: 56.4 ± 27.1 and 69.1 ± 38.1 µg after 10 mg and 20 mg). The N-butanoic acid metabolite was the most abundant, detected also as glucuronide. In conclusion, α-PVP showed a later time peak than non-pyrrolidine SCs, with comparable Cmax. The pyrrolidine ring oxidative opening produced the most abundant urinary metabolite, independently from the dose.
Collapse
Affiliation(s)
- Annagiulia Di Trana
- National Center On Addiction and Doping, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Nunzia La Maida
- National Center On Addiction and Doping, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Georgina de la Rosa
- Clinical Pharmacology Department Hospital, Universitari Germans Trias I Pujol (HUGTP-IGTP) and Universitat Autònoma de Barcelona, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Alessandro Di Giorgi
- Department of Biomedical Sciences and Public Health, Faculty of Medicine and Surgery, University "Politecnica Delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Silvia Graziano
- National Center On Addiction and Doping, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| | - Khaled Aldhaehri
- Toxicology Laboratory, Laboratory DepartmentAlttal ST / 34 ST, National Rehabilitation Center, New NRC Building, Shakhbout City, Abu Dhabi, United Arab Emirates
| | - Esther Papaseit
- Clinical Pharmacology Department Hospital, Universitari Germans Trias I Pujol (HUGTP-IGTP) and Universitat Autònoma de Barcelona, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Olga Hladun
- Clinical Pharmacology Department Hospital, Universitari Germans Trias I Pujol (HUGTP-IGTP) and Universitat Autònoma de Barcelona, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Magí Farré
- Clinical Pharmacology Department Hospital, Universitari Germans Trias I Pujol (HUGTP-IGTP) and Universitat Autònoma de Barcelona, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Clara Pérez
- Clinical Pharmacology Department Hospital, Universitari Germans Trias I Pujol (HUGTP-IGTP) and Universitat Autònoma de Barcelona, Carretera de Canyet S/N, 08916, Badalona, Spain
| | - Simona Pichini
- National Center On Addiction and Doping, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
3
|
Sakai Y, Hattori J, Morikawa Y, Matsumura T, Jimbo S, Suenami K, Takayama T, Nagai A, Michiue T, Ikari A, Matsunaga T. α-Pyrrolidinooctanophenone facilitates activation of human microglial cells via ROS/STAT3-dependent pathway. Forensic Toxicol 2025; 43:142-154. [PMID: 39652148 PMCID: PMC11782452 DOI: 10.1007/s11419-024-00708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/24/2024] [Indexed: 01/31/2025]
Abstract
PURPOSE Pyrrolidinophenone derivatives (PPs) are amphetamine-like designer drugs containing a pyrrolidine ring, and their adverse effects resemble those of methamphetamine (METH). Microglial activation has been recently suggested as a key event in eliciting the adverse effects against dysfunction of the central nervous system. The aim of this study is to clarify the mechanisms of microglial activation induced by PPs. METHODS We employed the human microglial cell line HMC3 to assess microglial activation induced by PPs and evaluated the capacities for proliferation and interleukin-6 (IL-6) production that are characteristic features of the activation events. RESULTS The WST-1 assay indicated that viability of HMC3 cells was increased by treatment with sublethal concentrations (5-20 µM) of α-pyrrolidinooctanophenone (α-POP), a highly lipophilic PP, whereas it was decreased by treatment with concentrations above 40 µM. Treatment with sublethal α-POP concentrations up-regulated the expression and secretion of IL-6. Additionally, α-POP-induced increase in cell viability was restored by pretreating with N-acetyl-L-cysteine, a reactive oxygen species (ROS) scavenger, and stattic, an inhibitor of signal transducer and activator of transcription 3 (STAT3), respectively, suggesting that activation of the ROS/STAT3 pathway is involved in the α-POP-induced activation of HMC3 cells. The increases in cell viability were also observed in HMC3 cells treated with other α-POP derivatives and METH. CONCLUSIONS These results suggest that enhanced productions of ROS and IL-6 are also involved in microglial activation by drug treatment and that HMC3 cell-based system is available to evaluate accurately the microglial activation induced by abused drugs.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan.
| | - Junta Hattori
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Toshihiro Matsumura
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Shunsuke Jimbo
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Atsushi Nagai
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Tomomi Michiue
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| |
Collapse
|
4
|
Makieieva N, Kupka T, Rahmonov O. The Search for the Optimal Methodology for Predicting Fluorinated Cathinone Drugs NMR Chemical Shifts. Molecules 2024; 30:54. [PMID: 39795111 PMCID: PMC11721958 DOI: 10.3390/molecules30010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances. However, its use could sometimes be very difficult and time-consuming due to the complexity of NMR spectra, as well as the technical limitations of measurements. In such cases, molecular modeling serves as a good supporting technique for interpreting ambiguous spectral data. Theoretical prediction of NMR spectra includes calculation of nuclear magnetic shieldings and sometimes also indirect spin-spin coupling constants (SSCC). The quality of theoretical prediction is strongly dependent on the choice of the theory level. In the current study, cathinone and its 12 fluorinated derivatives were selected for gauge-including atomic orbital (GIAO) NMR calculations using Hartree-Fock (HF) and 28 density functionals combined with 6-311++G** basis set to find the optimal level of theory for 1H, 13C, and 19F chemical shifts modeling. All calculations were performed in the gas phase, and solutions were modeled with a polarized-continuum model (PCM) and solvation model based on density (SMD). The results were critically compared with available experimental data.
Collapse
Affiliation(s)
- Natalina Makieieva
- Faculty of Chemistry and Pharmacy, University of Opole, 48, Oleska Str., 45-052 Opole, Poland
| | - Teobald Kupka
- Faculty of Chemistry and Pharmacy, University of Opole, 48, Oleska Str., 45-052 Opole, Poland
| | - Oimahmad Rahmonov
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland;
| |
Collapse
|
5
|
Kuczyńska K, Bartkowska K, Djavadian R, Zwierzyńska E, Wojcieszak J. MDPV (3,4-methylenedioxypyrovalerone) administered to mice during development of the central nervous system produces persistent learning and memory impairments. Pharmacol Rep 2024; 76:519-534. [PMID: 38722542 PMCID: PMC11126454 DOI: 10.1007/s43440-024-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Synthetic cathinones (SC) constitute the second most frequently abused class of new psychoactive substances. They serve as an alternative to classic psychostimulatory drugs of abuse, such as methamphetamine, cocaine, or 3,4-methylenedioxymethamphetamine (MDMA). Despite the worldwide prevalence of SC, little is known about their long-term impact on the central nervous system. Here, we examined the effects of repeated exposure of mice during infancy, to 3,4-methylenedioxypyrovalerone (MDPV), a SC potently enhancing dopaminergic neurotransmission, on learning and memory in young adult mice. METHODS All experiments were performed on C57BL/6J male and female mice. Animals were injected with MDPV (10 or 20 mg/kg) and BrdU (bromodeoxyuridine, 25 mg/kg) during postnatal days 11-20, which is a crucial period for the development of their hippocampus. At the age of 12 weeks, mice underwent an assessment of various types of memory using a battery of behavioral tests. Afterward, their brains were removed for detection of BrdU-positive cells in the dentate gyrus of the hippocampal formation with immunohistochemistry, and for measurement of the expression of synaptic proteins, such as synaptophysin and PSD95, in the hippocampus using Western blot. RESULTS Exposure to MDPV resulted in impairment of spatial working memory assessed with Y-maze spontaneous alternation test, and of object recognition memory. However, no deficits in hippocampus-dependent spatial learning and memory were found using the Morris water maze paradigm. Consistently, hippocampal neurogenesis and synaptogenesis were not interrupted. All observed MDPV effects were sex-independent. CONCLUSIONS MDPV administered repeatedly to mice during infancy causes learning and memory deficits that persist into adulthood but are not related to aberrant hippocampal development.
Collapse
Affiliation(s)
- Katarzyna Kuczyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland.
| | - Katarzyna Bartkowska
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Ruzanna Djavadian
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Ewa Zwierzyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland
| | - Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland
| |
Collapse
|
6
|
Dinis P, Franco J, Margalho C. α-Pyrrolidinohexanophenone (α-PHP) and α-Pyrrolidinoisohexanophenone (α-PiHP): A Review. Life (Basel) 2024; 14:429. [PMID: 38672701 PMCID: PMC11051472 DOI: 10.3390/life14040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
New Psychoactive Substances are currently a serious and growing problem affecting public health worldwide. By 2022, 1184 of these substances had been identified over a period of 16 years. Within these, α-pyrrolidinohexanophenone (α-PHP) and α-pyrrolidinoisohexanophenone (α-PiHP) have emerged, two synthetic cathinones from the pyrovalerone derivates subgroup that are positional isomers of each other. Alpha-PHP appeared on the Japanese illicit drug market in 2014 and, two years later, α-PiHP was identified for the first time in China. They were placed in schedule II on the list of Psychotropic Substances under International Control in 2020 and in March 2023, respectively. Both cathinones have no therapeutic potential for medical use and therefore are abused for recreational habits, which can lead to fatalities. The most frequent adverse effects reported are cardiac, psychiatric, and neurologic, and fatal intoxications have already been described. In Portugal, their consumption and consequent seizures are more prevalent on the archipelagos, which has been aggravating the health situation. In conclusion, these types of substances are a challenge for forensic toxicology since they are easily synthesized, modified, and placed on the market. Therefore, more studies to develop analytical methods to detect them and more comprehensive legislation should be applied. Thus, this review aimed to address the legislative, physicochemical, toxicological, and analytical aspects of both substances.
Collapse
Affiliation(s)
| | | | - Cláudia Margalho
- Laboratory of Forensic Chemistry and Toxicology, National Institute of Legal Medicine and Forensic Sciences, I.P.—Centre Branch, Pólo das Ciências da Saúde (Pólo III)—Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (P.D.); (J.F.)
| |
Collapse
|
7
|
Lima CD, Magalhães de Almeida Melo L, Arantes LC, Conceição NDS, de França Schaffel I, Machado LL, de Queiroz Ferreira R, Pio Dos Santos WT. Simple and selective screening method for the synthetic cathinone MDPT in forensic samples using carbon nanofiber screen-printed electrodes. Talanta 2024; 269:125375. [PMID: 37977086 DOI: 10.1016/j.talanta.2023.125375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
3',4'-Methylenedioxy-N-tert-butylcathinone (MDPT), also known as tBuONE or D-Tertylone, is a synthetic cathinone (SC) frequently abused for recreational purposes due to its potent stimulant effects and similarity to illegal substances like methamphetamine and ecstasy. The structural diversity and rapid introduction of new SC analogs to the market poses significant challenges for law enforcement and analytical methods for preliminary screening of illicit drugs. In this work, we present, for the first time, the electrochemical detection of MDPT using screen-printed electrodes modified with carbon nanofibers (SPE-CNF). MDPT exhibited three electrochemical processes (two oxidations and one reduction) on SPE-CNF. The proposed method for MDPT detection was optimized in 0.2 mol L-1 Britton-Robinson buffer solution at pH 10.0 using differential pulse voltammetry (DPV). The SPE-CNF showed a high stability for electrochemical responses of all redox processes of MDPT using the same or different electrodes, with relative standard deviations less than 4.7% and 1.5% (N = 3) for peak currents and peak potentials, respectively. Moreover, the proposed method provided a wide linear range for MDPT determination (0.90-112 μmol L-1) with low LOD (0.26 μmol L-1). Interference studies for two common adulterants, caffeine and paracetamol, and ten other illicit drugs, including amphetamine-like compounds and different SCs, showed that the proposed sensor is highly selective for the preliminarily identification of MDPT in seized forensic samples. Therefore, SPE-CNF with DPV can be successfully applied as a fast and simple screening method for MDPT identification in forensic analysis, addressing the significant challenges posed by the structural diversity of SCs.
Collapse
Affiliation(s)
- Camila Diana Lima
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Larissa Magalhães de Almeida Melo
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Luciano Chaves Arantes
- Laboratório de Química e Física Forense, Instituto de Criminalística, Polícia Civil do Distrito Federal, 70610-907, Brasília, Distrito Federal, Brazil
| | - Nathália Dos Santos Conceição
- Departamento de Química, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075910, Vitória, Espírito Santo, Brazil
| | - Izabela de França Schaffel
- Departamento de Química, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075910, Vitória, Espírito Santo, Brazil
| | - Lara Lima Machado
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil
| | - Rafael de Queiroz Ferreira
- Departamento de Química, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075910, Vitória, Espírito Santo, Brazil
| | - Wallans Torres Pio Dos Santos
- Departamento de Farmácia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Roda E, De Luca F, Priori EC, Ratto D, Pinelli S, Corradini E, Mozzoni P, Poli D, Mazzini G, Bottone MG, Gatti AM, Marti M, Locatelli CA, Rossi P, Bottai D. The Designer Drug αPHP Affected Cell Proliferation and Triggered Deathly Mechanisms in Murine Neural Stem/Progenitor Cells. BIOLOGY 2023; 12:1225. [PMID: 37759624 PMCID: PMC10525791 DOI: 10.3390/biology12091225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Increasing reports of neurological and psychiatric outcomes due to psychostimulant synthetic cathinones (SCs) have recently raised public concern. However, the understanding of neurotoxic mechanisms is still lacking, particularly for the under-investigated αPHP, one of the major MDPV derivatives. In particular, its effects on neural stem/progenitor cell cultures (NSPCs) are still unexplored. Therefore, in the current in vitro study, the effects of increasing αPHP concentrations (25-2000 μM), on cell viability/proliferation, morphology/ultrastructure, genotoxicity and cell death pathways, have been evaluated after exposure in murine NSPCs, using a battery of complementary techniques, i.e., MTT and clonogenic assay, flow cytometry, immunocytochemistry, TEM, and patch clamp. We revealed that αPHP was able to induce a dose-dependent significant decrease of the viability, proliferation and clonal capability of the NSPCs, paralleled by the resting membrane potential depolarization and apoptotic/autophagic/necroptotic pathway activation. Moreover, ultrastructural alterations were clearly observed. Overall, our current findings demonstrate that αPHP, damaging NSPCs and the morpho-functional fundamental units of adult neurogenic niches may affect neurogenesis, possibly triggering long-lasting, irreversible CNS damage. The present investigation could pave the way for a broadened understanding of SCs toxicology, needed to establish an appropriate treatment for NPS and the potential consequences for public health.
Collapse
Affiliation(s)
- Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Emilia Corradini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Giuliano Mazzini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
- Institute of Molecular Genetics—CNR (National Research Council), 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Anna Maria Gatti
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Collaborative Centre for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy (C.A.L.)
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (F.D.L.); (P.R.)
| | - Daniele Bottai
- Department of Pharmaceutical Sciences, Section of Pharmacology and Biosciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy;
| |
Collapse
|
9
|
Daziani G, Lo Faro AF, Montana V, Goteri G, Pesaresi M, Bambagiotti G, Montanari E, Giorgetti R, Montana A. Synthetic Cathinones and Neurotoxicity Risks: A Systematic Review. Int J Mol Sci 2023; 24:ijms24076230. [PMID: 37047201 PMCID: PMC10093970 DOI: 10.3390/ijms24076230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
According to the EU Early Warning System (EWS), synthetic cathinones (SCs) are the second largest new psychoactive substances (NPS) class, with 162 synthetic cathinones monitored by the EU EWS. They have a similar structure to cathinone, principally found in Catha Edulis; they have a phenethylamine related structure but also exhibit amphetamine-like stimulant effects. Illegal laboratories regularly develop new substances and place them on the market. For this reason, during the last decade this class of substances has presented a great challenge for public health and forensic toxicologists. Acting on different systems and with various mechanisms of action, the spectrum of side effects caused by the intake of these drugs of abuse is very broad. To date, most studies have focused on the substances’ cardiac effects, and very few on their associated neurotoxicity. Specifically, synthetic cathinones appear to be involved in different neurological events, including increased alertness, mild agitation, severe psychosis, hyperthermia and death. A systematic literature search in PubMed and Scopus databases according to PRISMA guidelines was performed. A total of 515 studies published from 2005 to 2022 (350 articles from PubMed and 165 from Scopus) were initially screened for eligibility. The papers excluded, according to the criteria described in the Method Section (n = 401) and after full text analyses (n = 82), were 483 in total. The remaining 76 were included in the present review, as they met fully the inclusion criteria. The present work provides a comprehensive review on neurotoxic mechanisms of synthetic cathinones highlighting intoxication cases and fatalities in humans, as well as the toxic effects on animals (in particular rats, mice and zebrafish larvae). The reviewed studies showed brain-related adverse effects, including encephalopathy, coma and convulsions, and sympathomimetic and hallucinogenic toxidromes, together with the risk of developing excited/agitated delirium syndrome and serotonin syndrome.
Collapse
Affiliation(s)
- Gloria Daziani
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Vincenzo Montana
- Dipartimento di Anestesia, Rianimazione e Emergenza-Urgenza, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Gaia Goteri
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Mauro Pesaresi
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Giulia Bambagiotti
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Eva Montanari
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Raffaele Giorgetti
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Angelo Montana
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
- Correspondence:
| |
Collapse
|
10
|
Machado F, Franco J, Vieira DN, Margalho C. Development and Validation of a GC-MS-EI Method to Determine α-PHP in Blood: Application to Samples Collected during Medico-Legal Autopsies. J Anal Toxicol 2023; 47:271-279. [PMID: 36516237 DOI: 10.1093/jat/bkac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
New psychoactive substances (NPSs) still represent an issue of great concern worldwide despite efforts made by national and international control systems to limit the spread of these substances. Alpha-pyrrolidinohexanophenone (α-PHP) is a fairly recent synthetic cathinone (the second largest group of monitored substances in Europe) with only a few published studies on the substance. Though there is a low incidence of NPS consumption in Portugal, a recent increase in apprehensions and detections in biological matrices of the substance was verified. An analytical methodology was developed and validated for determining and quantitating α-PHP in blood. Solid-phase extraction was employed for sample preparation (500 μL), which was further analyzed by gas chromatography--mass spectrometry-electron ionization in single-ion monitoring mode with cocaine-d3 as the internal standard. Method validation followed the guidelines of the American National Standards Institute/AAFS Standards Board (ANSI/ASB Standard 036). The procedure was linear between 10 and 1,000 ng/mL, with determination coefficients (r2) higher than 0.999. Carryover was not observed. A limit of detection of 5 ng/mL and a limit of quantitation of 10 ng/mL were achieved. Intraday and intermediate precision and bias assessment showed satisfactory results (coefficient of variation <17.7%; bias <11.6%), and extraction efficiency ranged from 98.5% to 103.3%. The stability of the substance was considered acceptable for at least 6 h at room temperature, 48 h in the autosampler and 21 days after five freeze/thaw cycles. The developed methodology was applied to 15 real samples from the Laboratory of Chemistry and Forensic Toxicology, Centre Branch of the National Institute of Legal Medicine and Forensic Sciences, Portugal, with drug concentrations ranging from 15 to 227 ng/mL. Available information for each case is also detailed in the present article.
Collapse
Affiliation(s)
- Francisca Machado
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Centro, Pólo das Ciências da Saúde (Pólo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Pólo das Ciências da Saúde (Pólo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - João Franco
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Sul, Rua Manuel Bento de Sousa, 3, Lisboa 1169-201, Portugal
| | - Duarte Nuno Vieira
- Faculdade de Medicina, Universidade de Coimbra, Pólo das Ciências da Saúde (Pólo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Cláudia Margalho
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses-Delegação do Centro, Pólo das Ciências da Saúde (Pólo III), Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| |
Collapse
|
11
|
Cao Q, Jiang D, Zheng L, Xu F, Shiigi H, Shan X, Wang W, Chen Z. Dual-binding domain electrochemiluminescence biosensing platform with self-checking function for sensitive detection of synthetic cathinone in e-cigarettes. Biosens Bioelectron 2023; 224:114963. [PMID: 36603282 DOI: 10.1016/j.bios.2022.114963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Current single signal electrochemiluminescence (ECL) sensors are susceptible to false positive or false negative phenomena due to experimental conditions. Therefore, sensors with "self-checking" function are attracting democratic attention. In quick succession, a highly sensitive single-cathode dual ECL signal aptasensor with self-checking function to improve the shortcomings mentioned above was designed. This aptasensor used In-based metal-organic framework (MIL-68) as load and stabilizer to effectively attenuate the aggregation-induced quenching (ACQ) effect of porphyrin derivatives (Sn-TCPP) while improve ECL stability. The introduction of cooperative-binding split-aptamers" (CBSAs) aptamers increased the specificity of the aptasensor and its unique double-binding domains detection accelerated the detection efficiency. When analyzing 3,4-methylenedioxypyrovalerone (MDPV), we could calculate two concentrations based on the strength of ECL 1 and ECL 2. If the concentrations are the same, the result would be obtained; if not, it should be retested. Depending on the above operation, the results achieve self-check. It was found that the designed aptasensor could quantify the concentration of MDPV between 1.0 × 10-12 g/L and 1.0 × 10-6 g/L with the limit of detection (LOD) of 1.4 × 10-13 g/L and 2.0 × 10-13 g/L, respectively (3 σ/slope). This study not only improves the detection technology of MDPV, but also explores the dual-signal detection of porphyrin for the first time and enriches the definition of self-checking sensor.
Collapse
Affiliation(s)
- Qianying Cao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Lingli Zheng
- Changzhou Institute of Mechatronic Technology, Changzhou, 213164, China
| | - Fangmin Xu
- Institute of Forensic Science, Public Security Bureau of Jiangyin, Wuxi, 214431, China
| | - Hiroshi Shiigi
- Osaka Prefecture University, Department of Applied Chemistry, Naka Ku, 1-2 Gakuen, Sakai, Osaka, 5998570, Japan
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China; Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
12
|
Kuropka P, Zawadzki M, Szpot P. A review of synthetic cathinones emerging in recent years (2019-2022). Forensic Toxicol 2023; 41:25-46. [PMID: 36124107 PMCID: PMC9476408 DOI: 10.1007/s11419-022-00639-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Purpose The emergence of novel psychoactive substances (NPS) has been being a continuous and evolving problem for more than a decade. Every year, dozens of new, previously unknown drugs appear on the illegal market, posing a significant threat to the health and lives of their users. Synthetic cathinones are one of the most numerous and widespread groups among NPS. The purpose of this work was to identify and summarize available data on newly emerging cathinones in very recent years. Methods Various online databases such as PubMed, Google Scholar, but also databases of government agencies including those involved in early warning systems, were used in search of reports on the identification of newly emerging synthetic cathinones. In addition, threads on various forums created by users of these drugs were searched for reports on the effects of these new substances. Results We have identified 29 synthetic cathinones that have been detected for the first time from early 2019 to mid-2022. We described their structures, known intoxication symptoms, detected concentrations in biological material in poisoning cases, as well as the countries and dates of their first appearance. Due to the lack of studies on the properties of the novel compounds, we compared data on the pharmacological profiles of the better-known synthetic cathinones with available information on the newly emerged ones. Some of these new agents already posed a threat, as the first cases of poisonings, including fatal ones, have been reported. Conclusions Most of the newly developed synthetic cathinones can be seen as analogs and replacements for once-popular compounds that have been declining in popularity as a result of legislative efforts. Although it appears that some of the newly emerging cathinones are not widely used, they may become more popular in the future and could become a significant threat to health and life. Therefore, it is important to continue developing early warning systems and identifying new compounds so that their widespread can be prevented.
Collapse
Affiliation(s)
- Patryk Kuropka
- Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Marcin Zawadzki
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Paweł Szpot
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| |
Collapse
|
13
|
Behavioral patterns of people who use synthetic psychostimulants: Results of a qualitative study in St. Petersburg, Russia. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2022; 107:103790. [PMID: 35849936 DOI: 10.1016/j.drugpo.2022.103790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Russia, like many other places, is currently experiencing a proliferation of new psychoactive substances, many of which are psychostimulants. In St. Petersburg, these appear to be mostly congeners of cathinone. We sought to obtain qualitative data to better understand the impact on the health and behaviors of people who use drugs (PWUD) by recruiting individuals who reported recent use of psychostimulants. METHODS In-depth qualitative data on current drug use and its effects were collected through thirty interviews (n=30) and two focus groups (n=10: five male, five female). The interviews and focus groups also provided data on the social contexts of drug use including sexual behaviors and associated medical issues. Secondary data about online drug purchases were obtained from a source that accesses and analyzes darknet purchases. Qualitative data were initially coded using a priori codes developed on the basis of the interview guide, and then data were coded again inductively based on emergent findings from the data. Thematic analysis was carried out using OpenCode 4.0 qualitative data analysis software. RESULTS Thematic analysis of the interviews and focus groups identified distinct differences in behavior patterns between older, more experienced PWUD and a "new generation" of PWUD. Routes of initiation of drug use and sexual behaviors associated with drug use differed, but both groups reported high levels of unsafe injection and sexual behaviors. In interpreting the texts and purchasing data, we have attempted to anticipate how the drug use patterns can influence HIV transmission. CONCLUSIONS The emergence of a new class of psychostimulant drugs presents new threats to the health of drug users and new opportunities to intervene to reduce those risks. The information obtained may assist HIV/AIDS prevention specialists and drug user support groups in their efforts to decrease unsafe drug use and sexual behaviors.
Collapse
|
14
|
Carlier J, Berardinelli D, Montanari E, Sirignano A, Di Trana A, Busardò FP. 3F-α-pyrrolydinovalerophenone (3F-α-PVP) in vitro human metabolism: Multiple in silico predictions to assist in LC-HRMS/MS analysis and targeted/untargeted data mining. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123162. [PMID: 35180546 DOI: 10.1016/j.jchromb.2022.123162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Synthetic cathinones (SCs) constitute a heterogenous class of new psychoactive substances (NPS), structurally related to cathinone. SCs represent the widest NPS class, second to synthetic cannabinoids, accounting for approximately 160 different analogues with substitution at the phenyl group, the amine group, or the alkyl chain. In 2020, α-pyrrolidonophenone analogues were the most trafficked SCs, and were involved in many fatalities and intoxication cases. In particular, 3F-α-pyrrolidinovalerophenone (3F-α-PVP) was the cause of the highest number of SC-related fatal intoxications in Sweden in 2018. Minor structural modifications are used to avoid legal controls and analytical detection, but may also induce different toxicological profile. Therefore, the identification of specific markers of consumption is essential to discriminate SCs in clinical and forensic toxicology. In this study, we assessed 3F-α-PVP metabolic profile. 3F-α-PVP was incubated with 10-donor-pooled human hepatocytes, LC-HRMS/MS analysis, and software-assisted data mining. This well-established workflow was completed by in silico metabolite predictions using three different freeware. Ten metabolites were identified after 3 h incubation, including hydrogenated, hydroxylated, oxidated, and N-dealkylated metabolites. A total of 51 phase I and II metabolites were predicted, among which 7 were detected in the incubations. We suggest 3F-α-PVP N-butanoic acid, 3F-α-PVP pentanol, and 3F-α-PVP 2-ketopyrrolidinyl-pentanol as specific biomarkers of 3F-α-PVP consumption. This is the first time that an N-ethanoic acid is detected in the metabolic pathway of a pyrrolidine SC, demonstrating the importance of a dual targeted/untargeted data mining strategy.
Collapse
Affiliation(s)
- Jeremy Carlier
- Marche Polytechnic University, Department of Excellence of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, via Tronto 10, 60126, Ancona AN, Italy; Sapienza University of Rome, Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Section of Legal Medicine, Unit of Forensic Toxicology, Viale Regina Elena 336, 00161, Rome RM, Italy
| | - Diletta Berardinelli
- Marche Polytechnic University, Department of Excellence of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, via Tronto 10, 60126, Ancona AN, Italy
| | - Eva Montanari
- Department of Legal medicine, Azienda Ospedaliero Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Ascanio Sirignano
- University of Camerino, Department of Legal Medicine, School of Law, Via Andrea D'Accorso, 16, 62032, Camerino (MC), Italy
| | - Annagiulia Di Trana
- Marche Polytechnic University, Department of Excellence of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, via Tronto 10, 60126, Ancona AN, Italy.
| | - Francesco P Busardò
- Marche Polytechnic University, Department of Excellence of Biomedical Sciences and Public Health, Section of Legal Medicine, Unit of Forensic Toxicology, via Tronto 10, 60126, Ancona AN, Italy
| |
Collapse
|
15
|
Rojkiewicz M, Kuś P, Książek M, Kusz J. Crystallographic characterization of three cathinone hydrochlorides new on the NPS market: 1-(4-methylphenyl)-2-(pyrrolidin-1-yl)hexan-1-one (4-MPHP), 4-methyl-1-phenyl-2-(pyrrolidin-1-yl)pentan-1-one (α-PiHP) and 2-(methylamino)-1-(4-methylphenyl)pentan-1-one (4-MPD). Acta Crystallogr C Struct Chem 2022; 78:56-62. [PMID: 34982049 DOI: 10.1107/s2053229621013401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/17/2021] [Indexed: 11/11/2022] Open
Abstract
Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride (1, C17H26NO+·Cl-, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride (2; C16H24NO+·Cl-, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride (3; C13H20NO+·Cl-, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1-3.
Collapse
Affiliation(s)
- Marcin Rojkiewicz
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9 Szkolna Street, Katowice 40-006, Poland
| | - Piotr Kuś
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9 Szkolna Street, Katowice 40-006, Poland
| | - Maria Książek
- Institute of Physics, Faculty of Science and Technology, University of Silesia, 1 75 Pułku Piechoty Street, Chorzów 41-500, Poland
| | - Joachim Kusz
- Institute of Physics, Faculty of Science and Technology, University of Silesia, 1 75 Pułku Piechoty Street, Chorzów 41-500, Poland
| |
Collapse
|
16
|
Zawadzki M, Wachełko O, Tusiewicz K, Szpot P. Severe poisoning after smoking a mixture of 4-fluoroisobutyryl fentanyl (4-FiBF) and alpha-pyrolidinoisohexaphenone (α-PiHP). J Forensic Leg Med 2021; 85:102287. [PMID: 34798437 DOI: 10.1016/j.jflm.2021.102287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/20/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
CONTEXT Intoxications after ingestion of new psychoactive substances are currently one of the most challenging issues in clinical toxicology. Synthetic cathinones represented the largest group of drugs seized in 2020, but the increasing distribution of fentanyl analogues is resulting in a growing global opioid crisis. In addition, synthetic opioids may be intentionally combined with psychostimulants by drug manufacturers to reduce depressive effects. We report a case of severe poisoning after smoking a mixture of 4-fluoroisobutyryl fentanyl (4-FiBF) and alpha-pyrrolidinoisohexaphenone (α-PiHP). CASE DETAILS A 29-year-old male was found out of conscious in his apartment and taken to the Intensive Care Unit. Examinations revealed pinpoint pupils, slight respiratory acidosis, leukocytosis as well as body temperature of 39.4 °C and increased creatinine with decreased eGFR level. Toxicological analysis of biological samples revealed presence of 4-FiBF and α-PiHP in concentrations: 87.7 ng/mL and 5.0 ng/mL (blood) and 2291.0 ng/mL and 722.2 ng/mL (urine), respectively. After 4 days, the patient was discharged home. DISCUSSION Unique combination of clinical symptoms was a result of a simultaneous 4-FiBF and α-PiHP intoxication. To our knowledge, this is the first case of ingestion such unusual mixture of new psychoactive substances with a full description of medical treatment.
Collapse
Affiliation(s)
- Marcin Zawadzki
- Wroclaw Medical University Department of Forensic Medicine, 4 J. Mikulicza-Radeckiego Street, Lower Silesia Province, Wroclaw, 50345, Poland; Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, Borowa, 55093, Poland.
| | - Olga Wachełko
- Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, Borowa, 55093, Poland.
| | - Kaja Tusiewicz
- Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, Borowa, 55093, Poland.
| | - Paweł Szpot
- Wroclaw Medical University Department of Forensic Medicine, 4 J. Mikulicza-Radeckiego Street, Lower Silesia Province, Wroclaw, 50345, Poland; Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, Borowa, 55093, Poland.
| |
Collapse
|
17
|
Nelson KH, Manke HN, Bailey JM, Vlachos A, Maradiaga KJ, Huang S, Weiss TD, Rice KC, Riley AL. Ethanol pre-exposure differentially impacts the rewarding and aversive effects of α-pyrrolidinopentiophenone (α-PVP): Implications for drug use and abuse. Pharmacol Biochem Behav 2021; 211:173286. [PMID: 34634300 DOI: 10.1016/j.pbb.2021.173286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 11/15/2022]
Abstract
RATIONALE Exposure to a drug can subsequently impact its own reactivity as well as that of other drugs. Given that users of synthetic cathinones, i.e., "bath salts", typically have extensive and varied drug histories, an understanding of the effects of drug history on the behavioral and physiological consequences of synthetic cathiones may be important to their abuse liability. OBJECTIVES The goal of the current work was to assess the effects of an ethanol pre-exposure on the rewarding and aversive effects of α-PVP. METHODS Adult male Sprague Dawley rats were exposed to ethanol prior to combined conditioned taste avoidance/conditioned place preference training in which rats were injected with 1.5, 3 or 5 mg/kg of racemic α-PVP or vehicle. Following a 7-day washout period, rats were then tested for thermoregulatory effects of α-PVP using subcutaneous probes to measure body temperature changes over the course of 8 h. This was followed 10 days later by assessments for α-PVP-induced locomotor activity and stereotypies over a 1-h session. RESULTS α-PVP induced significant dose- and trial-dependent taste avoidance that was significantly attenuated by ethanol history and dose- and time-dependent increases in locomotor activity that were significantly increased by ethanol. α-PVP also induced place preferences and dose- and time-dependent increases in body temperature, but these measures were unaffected by ethanol history. CONCLUSIONS α-PVP's aversive effects (as measured by taste avoidance) were attenuated, while its rewarding effects (as indexed by place preference conditioning) were unaffected, by ethanol pre-exposure. Such a pattern may indicate increased α-PVP abuse liability, as changes in the balance of aversion and reward may impact overall drug effects and likelihood of drug intake. Future self-administration studies will be necessary to explore this possibility.
Collapse
Affiliation(s)
- Katharine H Nelson
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA.
| | - Hayley N Manke
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Jacob M Bailey
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Anna Vlachos
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Karina J Maradiaga
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Tania D Weiss
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse (NIDA), National Institute on Alcohol Abuse and Alcoholism (NIAAA), Bethesda, MD 20892, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, D. C. 20016, USA.
| |
Collapse
|
18
|
Caffino L, Mottarlini F, Bilel S, Targa G, Tirri M, Maggi C, Marti M, Fumagalli F. Single Exposure to the Cathinones MDPV and α-PVP Alters Molecular Markers of Neuroplasticity in the Adult Mouse Brain. Int J Mol Sci 2021; 22:7397. [PMID: 34299015 PMCID: PMC8307734 DOI: 10.3390/ijms22147397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Synthetic cathinones have gained popularity among young drug users and are widely used in the clandestine market. While the cathinone-induced behavioral profile has been extensively investigated, information on their neuroplastic effects is still rather fragmentary. Accordingly, we have exposed male mice to a single injection of MDPV and α-PVP and sacrificed the animals at different time points (i.e., 30 min, 2 h, and 24 h) to have a rapid readout of the effect of these psychostimulants on neuroplasticity in the frontal lobe and hippocampus, two reward-related brain regions. We found that a single, low dose of MDPV or α-PVP is sufficient to alter the expression of neuroplastic markers in the adult mouse brain. In particular, we found increased expression of the transcription factor Npas4, increased ratio between the vesicular GABA transporter and the vesicular glutamate transporter together with changes in the expression of the neurotrophin Bdnf, confirming the widespread impact of these cathinones on brain plasticity. To sum up, exposure to low dose of cathinones can impair cortical and hippocampal homeostasis, suggesting that abuse of these cathinones at much higher doses, as it occurs in humans, could have an even more profound impact on neuroplasticity.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (L.C.); (F.M.); (G.T.); (C.M.)
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (L.C.); (F.M.); (G.T.); (C.M.)
| | - Sabrine Bilel
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.T.); (M.M.)
| | - Giorgia Targa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (L.C.); (F.M.); (G.T.); (C.M.)
| | - Micaela Tirri
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.T.); (M.M.)
| | - Coralie Maggi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (L.C.); (F.M.); (G.T.); (C.M.)
| | - Matteo Marti
- Section of Legal Medicine and LTTA Center, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (M.T.); (M.M.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy; (L.C.); (F.M.); (G.T.); (C.M.)
| |
Collapse
|
19
|
Lenzi M, Cocchi V, Gasperini S, Arfè R, Marti M, Hrelia P. Evaluation of Cytotoxic and Mutagenic Effects of the Synthetic Cathinones Mexedrone, α-PVP and α-PHP. Int J Mol Sci 2021; 22:ijms22126320. [PMID: 34204826 PMCID: PMC8231654 DOI: 10.3390/ijms22126320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Mexedrone, α-PVP and α-PHP are synthetic cathinones. They can be considered amphetamine-like substances with a stimulating effect. Actually, studies showing their impact on DNA are totally absent. Therefore, in order to fill this gap, aim of the present work was to evaluate their mutagenicity on TK6 cells. On the basis of cytotoxicity and cytostasis results, we selected the concentrations (35–100 µM) to be used in the further analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by flow cytometry. Mexedrone demonstrated its mutagenic potential contrary to the other two compounds; we then proceeded by repeating the analyzes in the presence of extrinsic metabolic activation in order to check if it was possible to totally exclude the mutagenic capacity for α-PVP and α-PHP. The results demonstrated instead the mutagenicity of their metabolites. We then evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the highlighted effects but the results did not show a statistically significant increase in ROS levels for any of the tested substances. Anyway, our outcomes emphasize the importance of mutagenicity evaluation for a complete assessment of the risk associated with synthetic cathinones exposure.
Collapse
Affiliation(s)
- Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| | - Raffaella Arfè
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Matteo Marti
- Section of Legal Medicine and LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
- Correspondence:
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (M.L.); (V.C.); (S.G.); (P.H.)
| |
Collapse
|
20
|
Soares J, Costa VM, Bastos MDL, Carvalho F, Capela JP. An updated review on synthetic cathinones. Arch Toxicol 2021; 95:2895-2940. [PMID: 34100120 DOI: 10.1007/s00204-021-03083-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Cathinone, the main psychoactive compound found in the plant Catha edulis Forsk. (khat), is a β-keto analogue of amphetamine, sharing not only the phenethylamine structure, but also the amphetamine-like stimulant effects. Synthetic cathinones are derivatives of the naturally occurring cathinone that largely entered the recreational drug market at the end of 2000s. The former "legal status", impressive marketing strategies and their commercial availability, either in the so-called "smartshops" or via the Internet, prompted their large spread, contributing to their increasing popularity in the following years. As their popularity increased, the risks posed for public health became clear, with several reports of intoxications and deaths involving these substances appearing both in the social media and scientific literature. The regulatory measures introduced thereafter to halt these trending drugs of abuse have proved to be of low impact, as a continuous emergence of new non-controlled derivatives keep appearing to replace those prohibited. Users resort to synthetic cathinones due to their psychostimulant properties but are often unaware of the dangers they may incur when using these substances. Therefore, studies aimed at unveiling the pharmacological and toxicological properties of these substances are imperative, as they will provide increased expertise to the clinicians that face this problem on a daily basis. The present work provides a comprehensive review on history and legal status, chemistry, pharmacokinetics, pharmacodynamics, adverse effects and lethality in humans, as well as on the current knowledge of the neurotoxic mechanisms of synthetic cathinones.
Collapse
Affiliation(s)
- Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
- FP-ENAS (Fernando Pessoa Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University of Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
21
|
Affiliation(s)
- Piotr Adamowicz
- Department of Forensic Toxicology, Institute of Forensic Research, Kraków, Poland
| |
Collapse
|
22
|
Wojcieszak J, Kuczyńska K, Zawilska JB. Four Synthetic Cathinones: 3-Chloromethcathinone, 4-Chloromethcathinone, 4-Fluoro-α-Pyrrolidinopentiophenone, and 4-Methoxy-α-Pyrrolidinopentiophenone Produce Changes in the Spontaneous Locomotor Activity and Motor Performance in Mice with Varied Profiles. Neurotox Res 2020; 38:536-551. [PMID: 32506339 PMCID: PMC7334283 DOI: 10.1007/s12640-020-00227-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022]
Abstract
Two chloromethcathinones, 3-chloromethcathinone (3-CMC) and 4-chloromethcathinone (4-CMC), and two para-substituted α-pyrrolidinophenones, 4-methoxy-α-pyrrolidinopentiophenone (4-MeO-PVP) and 4-fluoro-α-pyrrolidinopentiophenone (4-F-PVP), represent synthetic cathinones, the second most frequently abused group of new psychoactive substances (NPSs), which has aroused a worldwide health concern in the last decade. Synthetic cathinones act as psychostimulants by elevating extracellular levels of monoaminergic neurotransmitters. This study investigates effects of 3-CMC, 4-CMC, 4-MeO-PVP, and 4-F-PVP on the spontaneous locomotor activity and motor performance of mice. Additionally, neurotoxicity of substituted methcathinones against SH-SY5Y neuroblastoma cells was evaluated. All test cathinones stimulate in a dose-dependent manner horizontal locomotor activity of mice. Consistently to our prior findings, pyrrovalerones, but not methcathinone derivatives, produce dose-dependent elevation of vertical locomotor activity (rearing behavior). None of the tested compounds decreases the time spent on the accelerating rotarod, pointing to the lack of considerable motor disability in mice after acute exposition. Only 4-MeO-PVP at the high tested dose (20 mg/kg) increases motor performance of mice. Considering that α-pyrrolidinophenones are highly potent and selective DA uptake inhibitors, while chloromethcathinones enhance non-selective DA/5-HT release, we suggest that the increase of vertical locomotor activity and performance on rotarod in mice may serve as a behavioral indicator of the monoaminergic profile of synthetic cathinones. Finally, this study gives first insights into cytotoxicity of both 3-CMC and 4-CMC displayed against SH-SY5Y cells, which emerges and intensifies after prolonged incubation, suggesting the indirect mechanism of action, unrelated to interactions with monoamine transporters.
Collapse
Affiliation(s)
- Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland.
| | - Katarzyna Kuczyńska
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland
| | - Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland
| |
Collapse
|
23
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
24
|
Chan WS, Wong GF, Hung CW, Wong YN, Fung KM, Lee WK, Dao KL, Leung CW, Lo KM, Lee WM, Cheung BKK. Interpol review of toxicology 2016-2019. Forensic Sci Int Synerg 2020; 2:563-607. [PMID: 33385147 PMCID: PMC7770452 DOI: 10.1016/j.fsisyn.2020.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
This review paper covers the forensic-relevant literature in toxicology from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20.Papers%202019.pdf.
Collapse
|
25
|
Synthetic cathinones – From natural plant stimulant to new drug of abuse. Eur J Pharmacol 2020; 875:173012. [DOI: 10.1016/j.ejphar.2020.173012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/29/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
|
26
|
Riley AL, Nelson KH, To P, López-Arnau R, Xu P, Wang D, Wang Y, Shen HW, Kuhn DM, Angoa-Perez M, Anneken JH, Muskiewicz D, Hall FS. Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”). Neurosci Biobehav Rev 2020; 110:150-173. [DOI: 10.1016/j.neubiorev.2018.07.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/14/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
27
|
Spectroscopic and crystallographic characterization of a new cathinone derivative: 1-phenyl-2-(butylamino)hexan-1-one hydrochloride (N-butylhexedrone). Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00525-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose
In this study, a new cathinone derivative, N-butylhexedrone, emerged on new psychoactive substances (NPS) market in Poland was described and characterized.
Methods
The compound was analyzed by gas chromatography—mass spectrometry, X-ray crystallography and infrared, Raman, ultraviolet-visible and nuclear magnetic resonance spectroscopic approaches.
Results
We confirmed the presence of the compound in the seized material and obtained detailed and comprehensive physicochemical characterization of N-butylhexedrone—new cathinone derivative available on the NPS market.
Conclusions
In this study, we presented chromatographic, spectroscopic and crystallographic characterization of a new cathinone derivative that emerged on the NPS market in 2019. The obtained analytical data should be useful for forensic and toxicological purposes in quick and reliable compound identification.
Collapse
|
28
|
Nagy EK, Overby PF, Olive MF. Reinforcing Effects of the Synthetic Cathinone α-Pyrrolidinopropiophenone (α-PPP) in a Repeated Extended Access Binge Paradigm. Front Psychiatry 2020; 11:862. [PMID: 33192631 PMCID: PMC7477084 DOI: 10.3389/fpsyt.2020.00862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/07/2020] [Indexed: 11/13/2022] Open
Abstract
Synthetic cathinones are designer psychostimulants that are derivatives of the natural alkaloid cathinone, and produce effects similar to more traditional illicit stimulants such as cocaine and methamphetamine. The pyrovalerone cathinones methylenedioxypyrovalerone (MDPV) and α-pyrrolidinopropiophenone (α-PPP) exert their effects via inhibition of presynaptic dopamine and norepinephrine reuptake transporters. While the reinforcing effects of MDPV in rodents are well-established, very few studies have examined self-administration patterns of α-PPP. Users of synthetic cathinones often engage in repeated binge episodes of drug intake that last several days. We therefore sought to determine the reinforcing effects of three doses of α-PPP (0.05, 0.1 and 0.32 mg/kg/infusion) under conditions of prolonged binge-like access conditions, with three 96-h periods of drug access interspersed with 72 h of abstinence. MDPV (0.05 mg/kg/infusion) was used as a comparison drug. Our results show that both MDPV and the high (0.32 mg/kg/infusion) dose of α-PPP are readily self-administered at high levels across all three extended access periods, whereas lower doses of α-PPP produce variable and less robust levels of self-administration. These results indicate that higher doses of α-PPP have reinforcing effects under conditions of extended access, suggesting the potential for abuse and a need for consideration in drug control policies.
Collapse
Affiliation(s)
- Erin K Nagy
- Addiction Neuroscience Laboratory, Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Paula F Overby
- Addiction Neuroscience Laboratory, Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M Foster Olive
- Addiction Neuroscience Laboratory, Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
29
|
Gonçalves JL, Alves VL, Aguiar J, Teixeira HM, Câmara JS. Synthetic cathinones: an evolving class of new psychoactive substances. Crit Rev Toxicol 2019; 49:549-566. [PMID: 31747318 DOI: 10.1080/10408444.2019.1679087] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synthetic cathinones (SCat) are amphetamine-like psychostimulants that emerged onto drug markets as "legal" alternatives to illicit drugs such as ecstasy, cocaine, and amphetamines. Usually they are sold as "bath salts," "plant food," or "research chemicals," and rapidly gained popularity amongst drugs users due to their potency, low cost, and availability. In addition, internet drug sales have been replacing the old way of supplying drugs of abuse, contributing to their rapid spread. Despite the legislative efforts to control SCat, new derivatives continue to emerge on the recreational drugs market and their abuse still represents a serious public health issue. To date, about 150 SCat have been identified on the clandestine drugs market, which are one of the largest groups of new psychoactive substances (NPS) monitored by the United Nations Office on Drugs and Crime and the European Monitoring Center for Drugs and Drug Addiction. Similar to the classical stimulants, SCat affect the levels of catecholamines in the central nervous system, which results in their psychological, behavioral and toxic effects. Generally, the effects of SCat greatly differ from drug to drug and relatively little information is available about their pharmacology. The present work provides a review on the development of SCat as substances of abuse, current patterns of abuse and their legal status, chemical classification, known mechanisms of action, and their toxicological effects.
Collapse
Affiliation(s)
- João L Gonçalves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Vera L Alves
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Joselin Aguiar
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Helena M Teixeira
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal.,Instituto Nacional de Medicina Legal e Ciências Forenses, IP, Delegação Centro, Coimbra, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal.,Faculdade de Ciências Exactas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
30
|
Design, synthesis and biological evaluation of a bi-specific vaccine against α-pyrrolidinovalerophenone (α-PVP) and 3,4-methylenedioxypyrovalerone (MDPV) in rats. Vaccine 2019; 38:336-344. [PMID: 31629568 DOI: 10.1016/j.vaccine.2019.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
Abstract
α-PVP (α-pyrrolidinovalerophenone) and MDPV (3,4-methylenedioxypyrovalerone) are potent abused stimulants that are members of the synthetic cathinone class of drugs. Although these drugs are taken with recreational intent, high doses can lead to unintended adverse effects including agitation, cardiovascular effects, sympathomimetic syndromes, hallucinations, and psychoses. One possible treatment is the use of a vaccine to block or attenuate adverse medical effects. These studies report the preparation of a vaccine that generates high affinity antibodies specific for both drugs and the pharmacological testing of this vaccine in male rats. Alkylation of a hydroxy-α-PVP analog with an appropriate thiol-bearing linker afforded the hapten. When hapten-conjugated carrier protein was mixed with adjuvant, the resulting vaccine stimulated production of antibodies in male Sprague Dawley rats that were found to significantly reduce α-PVP- and MDPV-induced hyperlocomotion as well as to significantly reduce the concentrations of MDPV drugs in critical organs. The novel vaccine produced high affinity antibodies against MDPV, (R)-MDPV, (S)-MDPV, and α-PVP. Cross-reactivity testing against nine structurally similar cathinones showed very limited binding, and no binding to off-target endogenous and exogenous compounds. Antibodies generated by this bi-specific vaccine also significantly shortened the duration of locomotor activity induced by both drugs up to a dose of 5.6 mg/kg in male rats.
Collapse
|
31
|
Peck Y, Clough AR, Culshaw PN, Liddell MJ. Multi-drug cocktails: Impurities in commonly used illicit drugs seized by police in Queensland, Australia. Drug Alcohol Depend 2019; 201:49-57. [PMID: 31181437 DOI: 10.1016/j.drugalcdep.2019.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Impurities in commonly used illicit drugs raise concerns for unwitting consumers when pharmacologically active adulterants, especially new psychoactive substances (NPS), are used. This study examines impurities detected in illicit drugs seized in one Australian jurisdiction. METHODS Queensland Health Forensic and Scientific Services provided analytical data. Data described the chemical composition of 9346 samples of 11 illicit drugs seized by police during 2015-2016. Impurities present in primary drugs were summarized and tabulated. A systematic search for published evidence reporting similar analyses was conducted. RESULTS Methamphetamine was the primary drug in 6608 samples, followed by MDMA (1232 samples) and cocaine (516 samples). Purity of primary drugs ranged from ∼30% for cocaine, 2-CB and GHB to >90% for THC, methamphetamine, heroin and MDMA. Methamphetamine and MDMA contained the largest variety of impurities: 22 and 18 variants, respectively. Drug adulteration patterns were broadly similar to those found elsewhere, including NPS, but in some primary drugs impurities were found which had not been reported elsewhere. Psychostimulants were adulterated with each other. Levamisole was a common impurity in cocaine. Psychedelics were adulterated with methamphetamine and NPS. Opioids were quite pure, but some samples contained methamphetamine and synthetic opioids. CONCLUSIONS Impurities detected were mostly pharmacologically active adulterants probably added to enhance desired effects or for active bulking. Given the designer nature of these drug cocktails, the effects of the adulterated drugs on users from possible complex multi-drug interactions is unpredictable. Awareness-raising among users, research into complex multi-drug effects and ongoing monitoring is required.
Collapse
Affiliation(s)
- Yoshimi Peck
- College of Science and Engineering, James Cook University, 14-88 McGregor Road, Smithfield, Queensland, Australia.
| | - Alan R Clough
- College of Public Health, Medical and Vet Sciences, James Cook University, 14-88 McGregor Road, Smithfield, Queensland, Australia
| | - Peter N Culshaw
- Forensic Chemistry, Forensic and Scientific Services, Queensland Health, 39 Kessels Road, Coopers Plains, 4108, Queensland, Australia
| | - Michael J Liddell
- College of Science and Engineering, James Cook University, 14-88 McGregor Road, Smithfield, Queensland, Australia
| |
Collapse
|
32
|
Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00485-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Zaikina OL, Shilov VV, Lodyagin AN, Glushkov SI, Grigoryev AM. Determination of the Structures of Free and Glucuronidated Metabolites of α-Pyrrolidinovalerophenone in Human Urine by Liquid Chromatography–Mass Spectrometry with Accurate Mass Measurement. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819020138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Banister SD, Kevin RC, Martin L, Adams A, Macdonald C, Manning JJ, Boyd R, Cunningham M, Stevens MY, McGregor IS, Glass M, Connor M, Gerona RR. The chemistry and pharmacology of putative synthetic cannabinoid receptor agonist (SCRA) new psychoactive substances (NPS) 5F‐PY‐PICA, 5F‐PY‐PINACA, and their analogs. Drug Test Anal 2019; 11:976-989. [DOI: 10.1002/dta.2583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Samuel D. Banister
- School of ChemistryThe University of Sydney NSW Australia
- Department of PathologyStanford University CA USA
| | - Richard C. Kevin
- School of PsychologyThe University of Sydney Camperdown NSW Australia
| | - Lewis Martin
- School of PsychologyThe University of Sydney Camperdown NSW Australia
| | - Axel Adams
- Clinical Toxicology and Environmental Biomonitoring LaboratoryUniversity of California San Francisco CA USA
| | - Christa Macdonald
- School of Medical SciencesThe University of Auckland Auckland New Zealand
| | - Jamie J. Manning
- School of Medical SciencesThe University of Auckland Auckland New Zealand
| | - Rochelle Boyd
- Faculty of Medicine and Health SciencesMacquarie University NSW Australia
| | - Michael Cunningham
- Division of Medicinal Chemistry, Department of Biomolecular Sciences, School of PharmacyThe University of Mississippi MS USA
| | | | - Iain S. McGregor
- School of PsychologyThe University of Sydney Camperdown NSW Australia
| | - Michelle Glass
- School of Medical SciencesThe University of Auckland Auckland New Zealand
| | - Mark Connor
- Faculty of Medicine and Health SciencesMacquarie University NSW Australia
| | - Roy R. Gerona
- Clinical Toxicology and Environmental Biomonitoring LaboratoryUniversity of California San Francisco CA USA
| |
Collapse
|
35
|
Identification and structural characterization of synthetic cathinones: N-propylcathinone, 2,4-dimethylmethcathinone, 2,4-dimethylethcathinone, 2,4-dimethyl-α-pyrrolidinopropiophenone, 4-bromo-α-pyrrolidinopropiophenone, 1-(2,3-dihydro-1H-inden-5-yl)-2-(pyrrolidin-1-yl)hexan-1-one and 2,4-dimethylisocathinone. Forensic Toxicol 2019. [DOI: 10.1007/s11419-018-00463-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Methcathinone and 3-Fluoromethcathinone Stimulate Spontaneous Horizontal Locomotor Activity in Mice and Elevate Extracellular Dopamine and Serotonin Levels in the Mouse Striatum. Neurotox Res 2018; 35:594-605. [PMID: 30377956 PMCID: PMC6420425 DOI: 10.1007/s12640-018-9973-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022]
Abstract
Methcathinone (MC) and 3-fluoromethcathinone (3-FMC) are well-known members of the synthetic cathinone derivatives, the second most abused group of novel psychoactive substances (NPS). They are considered as methamphetamine-like cathinones, as they elicit their psychostimulatory effects via inhibition of monoamine uptake and enhanced release. The present study examines the effects of MC and 3-FMC on the spontaneous locomotor activity of mice and extracellular levels of dopamine and serotonin in the mouse striatum. Both MC and 3-FMC produced a dose-dependent increase of horizontal locomotor activity, but no significant changes in rearing behavior were observed. The locomotor stimulation induced by MC and 3-FMC is mediated by activation of dopaminergic neurotransmission, as selective D1-dopamine receptor antagonist, SCH 23390, abolished the effects of both drugs. In line with pharmacological data obtained by previous in vitro studies, MC and 3-FMC produced potent increases of extracellular dopamine and serotonin levels in the mouse striatum. Taken together, results presented within this study confirm previous findings and expand our knowledge on the pharmacology of MC and 3-FMC along with their behavioral effects.
Collapse
|
37
|
Wojcieszak J, Andrzejczak D, Kedzierska M, Milowska K, Zawilska JB. Cytotoxicity of α-Pyrrolidinophenones: an Impact of α-Aliphatic Side-chain Length and Changes in the Plasma Membrane Fluidity. Neurotox Res 2018; 34:613-626. [PMID: 29951896 PMCID: PMC6154177 DOI: 10.1007/s12640-018-9923-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/21/2018] [Accepted: 06/07/2018] [Indexed: 11/29/2022]
Abstract
Pyrovalerone derivatives (α-pyrrolidinophenones) form a branch of synthetic cathinones, a second most prominent group of novel psychoactive substances. Although the toxicity of 3,4-MDPV, a progenitor of the α-pyrrolidinophenones, is well described, little is known of the potential cytotoxicity of the new members of this group entering the recreational drug market each year. The present study assesses the cytotoxicity of members of the α-pyrrolidinophenone group, i.e., α-PVP, its longer side-chain derivatives PV8 and PV9, and their 4-fluoro- and 4-methoxy-analogs, against model cell lines for the nervous system (SH-SY5Y), liver (Hep G2) and upper airway epithelium (RPMI 2650), and cardiomyocytes (H9C2(2-1)). Additionally, an impact of pyrovalerones on the fluidity of the plasma membrane, as the potential mechanism of their cytotoxicity, was examined. The longer side-chain α-pyrrolidinophenones and their fluoro- and methoxy-analogs produce more pronounced maximal cytotoxicity, with regard to mitochondrial activity and cell membrane integrity, than the five-carbon α-PVP and its substituted derivatives. The report demonstrates, for the first time, that changes of fluidity of the interior part of plasma membrane contribute to the cytotoxicity of pyrovalerone derivatives, in addition to the previously reported mechanisms. Taking into consideration our previous findings that PV8 and PV9 produce weaker psychostimulatory effects than α-PVP, the higher cytotoxicity of the new generation of pyrovalerones can pose a serious threat to abusers, as it is possible that longer-chain compounds may be taken in higher doses to obtain similar levels of stimulation.
Collapse
Affiliation(s)
- Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Łódź, Muszynskiego 1, 90-151, Łódź, Poland
| | - Dariusz Andrzejczak
- Department of Pharmacodynamics, Medical University of Łódź, Muszynskiego 1, 90-151, Łódź, Poland
| | - Marta Kedzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Katarzyna Milowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Łódź, Muszynskiego 1, 90-151, Łódź, Poland.
| |
Collapse
|
38
|
Self-administration of the synthetic cathinone MDPV enhances reward function via a nicotinic receptor dependent mechanism. Neuropharmacology 2018; 137:286-296. [PMID: 29778945 DOI: 10.1016/j.neuropharm.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 01/28/2023]
Abstract
Methylenedioxypyrovalerone (MDPV) is an addictive synthetic drug with severe side effects. Previous studies have shown that MDPV has positive reinforcing properties. However, little is known about the effect of MDPV self-administration on the state of the brain reward system and the neuronal mechanisms by which MDPV mediates its effects. The goal of the present studies was to determine the effect of MDPV self-administration on reward function and the role of cholinergic neurotransmission in the reinforcing effects of MDPV. To study the effect of MDPV self-administration on the brain reward system, rats were prepared with intravenous catheters and intracranial self-stimulation electrodes (ICSS). For 10 days, the reward thresholds were assessed immediately before (23 h post prior session) and after 1 h of MDPV self-administration. The reward thresholds were decreased immediately after MDPV self-administration, which is indicative of a potentiation of brain reward function. The reward thresholds 23 h after MDPV intake gradually increased over time, which is indicative of anhedonia. Pretreatment with the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine decreased the self-administration of MDPV and completely prevented the decrease in reward thresholds. A control study with palatable chocolate pellets showed that responding for a natural reinforcer does not affect the state of the brain reward system. Furthermore, mecamylamine did not affect responding for food pellets. In conclusion, the self-administration of MDPV potentiates reward function and nAChR blockade prevents the reward enhancing effects of MDPV self-administration. Preventing the MDPV-induced increase in cholinergic neurotransmission might be a safe approach to diminish MDPV abuse.
Collapse
|
39
|
Couto RAS, Gonçalves LM, Carvalho F, Rodrigues JA, Rodrigues CMP, Quinaz MB. The Analytical Challenge in the Determination of Cathinones, Key-Players in the Worldwide Phenomenon of Novel Psychoactive Substances. Crit Rev Anal Chem 2018; 48:372-390. [DOI: 10.1080/10408347.2018.1439724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rosa A. S. Couto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luís Moreira Gonçalves
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Félix Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José A. Rodrigues
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - M. Beatriz Quinaz
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
40
|
Nóbrega L, Dinis-Oliveira RJ. The synthetic cathinone α-pyrrolidinovalerophenone (α-PVP): pharmacokinetic and pharmacodynamic clinical and forensic aspects. Drug Metab Rev 2018. [PMID: 29540067 DOI: 10.1080/03602532.2018.1448867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
New psychoactive substances (NPS), often referred as 'legal highs' or 'designer drugs', are derivatives and analogs of existing psychoactive drugs that are introduced in the recreational market to circumvent existing legislation on drugs of abuse. This work aims to review the state-of-the-art regarding chemical, molecular pharmacology, and in vitro and in vivo data on toxicokinetics of the potent synthetic cathinone α-pyrrolidinovalerophenone (α-PVP or flakka or zombie drug). Chemical, pharmacological, toxicological, and clinical effects of α-PVP were searched in PubMed (U.S. National Library of Medicine) and governmental websites without limitation of the period. α-PVP is a wide spread and easy to get special type of synthetic cathinone with seemingly powerful cocaine-like stimulant effects, high brain penetration, high liability for abuse and with increased risk of adverse effects such as tachycardia, agitation, hypertension, hallucinations, delirium, mydriasis, self-injury, aggressive behavior, and suicidal ideations. α-PVP undergoes extensive metabolism via different pathways and the α-PVP itself or its metabolites β-hydroxy-α-PVP and α-PVP lactam represent the main targets for toxicological analysis in urine. There is a limited knowledge regarding the short- and long-term effects of α-PVP and metabolites, and pharmacogenetic influence, hence further clinical and forensic toxicological studies are required. Moreover, since α-PVP cannot be detected with classic routine analysis procedures, statements on the frequency of their consumption cannot be made.
Collapse
Affiliation(s)
- Leandro Nóbrega
- a Department of Public Health, Forensic Sciences, and Medical Education, Faculty of Medicine , University of Porto , Porto , Portugal
| | - Ricardo Jorge Dinis-Oliveira
- a Department of Public Health, Forensic Sciences, and Medical Education, Faculty of Medicine , University of Porto , Porto , Portugal.,b UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal.,c Department of Sciences, IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies , University Institute of Health Sciences (IUCS), CESPU, CRL , Gandra , Portugal
| |
Collapse
|
41
|
Effects of the new generation α-pyrrolidinophenones on spontaneous locomotor activities in mice, and on extracellular dopamine and serotonin levels in the mouse striatum. Forensic Toxicol 2018; 36:334-350. [PMID: 29963204 PMCID: PMC6002449 DOI: 10.1007/s11419-018-0409-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Purpose Pyrovalerone derivatives (α-pyrrolidinophenones) form a distinct branch of synthetic cathinones, a popular group of novel psychoactive substances, and exert strong psychostimulatory effects resulting from their high potency to inhibit dopamine (DA) and norepinephrine transporters, with negligible activity at the serotonin (5-HT) transporter. In contrast to the old generation α-pyrrolidinophenones, 3,4-MDPV and α-PVP, there is limited data on the pharmacology and toxicology of the novel analogs. Therefore, the present study assesses the in vivo effects of two new pyrovalerones, PV8 and PV9, along with those of α-PVP, on spontaneous locomotor activities of mice and extracellular DA and 5-HT levels in the mouse striatum. Methods Spontaneous locomotor activity was measured using Opto-Varimex Auto-Track. Effects of tested compounds on extracellular levels of DA and 5-HT in the striatum were studied by an in vivo microdialysis technique; their concentrations in dialysate fractions were analyzed by high-performance liquid chromatography with electrochemical detection. Results α-PVP, PV8 and PV9 stimulated mice locomotor activity (an effect being blocked by D1-dopamine receptor antagonist, SCH 23390), and increased extracellular levels of DA and 5-HT in the striatum. Observed effects depend on dose, time and compound under investigation, with α-PVP being more potent than PV8 and PV9. When used at the same dose, the pyrovalerones produced effects significantly weaker than a model, old generation psychostimulant, methamphetamine. Conclusions Enhancement of dopaminergic neurotransmission plays a dominant role in the psychomotor stimulation caused by α-PVP, PV8 and PV9. Extending an aliphatic side chain beyond a certain point leads to the decrease in their potency in vivo. Electronic supplementary material The online version of this article (10.1007/s11419-018-0409-x) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Karila L, Benyamina A. The Effects and Risks Associated with Synthetic Cathinones Use in Humans. CURRENT TOPICS IN NEUROTOXICITY 2018. [DOI: 10.1007/978-3-319-78707-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
43
|
Simmler LD. Monoamine Transporter and Receptor Interaction Profiles of Synthetic Cathinones. CURRENT TOPICS IN NEUROTOXICITY 2018. [DOI: 10.1007/978-3-319-78707-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Rojkiewicz M, Kuś P, Kusz J, Książek M. Spectroscopic and crystallographic characterization of two cathinone derivatives: 1-(4-fluorophenyl)-2-(methylamino)pentan-1-one (4-FPD) hydrochloride and 1-(4-methylphenyl)-2-(ethylamino)pentan-1-one (4-MEAP) hydrochloride. Forensic Toxicol 2017; 36:141-150. [PMID: 29367865 PMCID: PMC5754380 DOI: 10.1007/s11419-017-0393-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/03/2017] [Indexed: 11/05/2022]
Abstract
PURPOSE In this study, we performed identification and physicochemical characterization of two cathinone derivatives, 4-FPD and 4-MEAP, found in market-available materials. METHODS The compounds were characterized by electrospray ionization ion trap mass spectrometry (MS) in MS2 and MS3 modes, gas chromatography-MS, infrared, Raman and ultraviolet-visible spectroscopies, X-ray crystallography, differential scanning calorimetry and nuclear magnetic resonance spectroscopy. RESULTS We could obtain detailed and comprehensive physicochemical characterization of 4-FPD and 4-MEAP-new cathinone derivatives available on the designer drugs market. CONCLUSIONS Dynamic growth in the number of psychoactive substances available on the designer drug markets makes it compulsory to obtain analytical data allowing unequivocal identification of these drugs in the fastest possible way. In this study we presented analytical data useful in quick identification of the investigated compounds.
Collapse
Affiliation(s)
- Marcin Rojkiewicz
- Department of Organic Synthesis, Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
| | - Piotr Kuś
- Department of Organic Synthesis, Institute of Chemistry, University of Silesia, 9 Szkolna Street, 40-006 Katowice, Poland
| | - Joachim Kusz
- Department of Crystal Physics, Institute of Physics, University of Silesia, 4 Uniwersytecka Street, 40-007 Katowice, Poland
| | - Maria Książek
- Department of Crystal Physics, Institute of Physics, University of Silesia, 4 Uniwersytecka Street, 40-007 Katowice, Poland
| |
Collapse
|
45
|
MDPV and α-PVP use in humans: The twisted sisters. Neuropharmacology 2017; 134:65-72. [PMID: 29030166 DOI: 10.1016/j.neuropharm.2017.10.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022]
Abstract
The new psychoactive substances phenomenon continues to represent a considerable public health challenge. Synthetic cathinones are β-keto amphetamine analogues, also known as legal highs, research chemicals, bath salts. These drugs have surfaced as a popular alternative to other illicit drugs of abuse, such as cocaine, MDMA, and methamphetamine, due to their potent psychostimulant and empathogenic effects. Pyrovalerone cathinones (a-pyrrolidinophenones) form a distinct group of designer cathinones, such as MDPV. After being listed as an illegal product, "second generation" compounds such as α-PVP, sharing a very similar chemical structure with MDPV, were developed. Clinical effects of these compounds are individual, dose- and route of administration-dependent. Both of them have been involved in an increased number of, not only acute intoxications but also fatalities over the past few years, raising concerns in the medical field. In this paper, we will review the available data regarding the use and effects of MDPV and α-PVP in humans in order to highlight their impact on public health. Health actors and general population need to be clearly informed of potential risks and consequences of these 2 novel psychoactive substances spread and use. The literature search conducted led to the identification of potentially 83 relevant articles. All articles were screened from their abstracts to determine their relevance in the framework of the current review. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'
Collapse
|
46
|
Spectroscopic characterization and crystal structures of two cathinone derivatives: 1-(4-chlorophenyl)-2-(1-pyrrolidinyl)-pentan-1-one (4-chloro-α-PVP) sulfate and 1-(4-methylphenyl)-2-(dimethylamino)-propan-1-one (4-MDMC) hydrochloride salts, seized on illicit drug market. Forensic Toxicol 2017; 36:178-184. [PMID: 29367866 PMCID: PMC5754379 DOI: 10.1007/s11419-017-0381-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/13/2017] [Indexed: 11/11/2022]
Abstract
Purpose Two compounds newly found in the seizures by drug enforcement agencies were identified and characterized by various instrumental analytical methods. Methods The obtained powder samples were analyzed by gas chromatography–mass spectrometry (GC–MS), liquid chromatography–mass spectrometryn (LC–MSn), nuclear magnetic resonance (NMR) spectroscopy, infrared and Raman spectroscopy and X-ray crystallography. Results The two compounds were tentatively identified as 4-chloro-α-PVP and 4-MDMC by GC–MS, and LC–MS/MS. The confirmation of the results was made by NMR spectroscopy. The X-ray crystallography gave information that 4-chloro-α-PVP and 4-MDMC were in salted forms with sulfate and hydrochloride, respectively; in addition, both compounds existed as racemic mixtures. Conclusions We could identify 4-chloro-α-PVP and 4-MDMC in the seizure powder samples by various analytical methods. X-ray crystallography was especially useful for identifying the salted forms and enantiomeric forms. Electronic supplementary material The online version of this article (doi:10.1007/s11419-017-0381-x) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Kubo SI, Waters B, Hara K, Fukunaga T, Ikematsu K. A report of novel psychoactive substances in forensic autopsy cases and a review of fatal cases in the literature. Leg Med (Tokyo) 2017; 26:79-85. [PMID: 28549554 DOI: 10.1016/j.legalmed.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Shin-Ichi Kubo
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Brian Waters
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Hara
- Department of Forensic Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tatsushige Fukunaga
- Tokyo Medical Examiner's Office Tokyo Metropolitan Government, Otsuka 4-21-18, Bunkyo-ku, Tokyo 112-0012, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Science, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki City, Nagasaki 852-8523, Japan
| |
Collapse
|
48
|
Glennon RA, Dukat M. Synthetic Cathinones: A Brief Overview of Overviews with Applications to the Forensic Sciences. ANNALS OF FORENSIC RESEARCH AND ANALYSIS 2017; 4:1040. [PMID: 30288398 PMCID: PMC6168209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Catha edulis, the fresh leaves of which (i.e., khat) are used for their central stimulant actions, has been known for many hundreds of years. S(-)Cathinone was identified as a centrally-active khat constituents >30 years ago. Although khat use was a problem long localized to certain Middle Eastern and certain Eastern African nations, 'synthetic cathinones' (synthetic analogs of cathinone) represent a "new" class of abused substances with growing worldwide appeal. To date, about 150 synthetic cathinones have been identified on the clandestine market, and only a dozen or so have been controlled (U.S. Schedule I). Because these agents do not represent a pharmacologically (i.e., behavioral) or mechanistically homogeneous class of agents, synthetic cathinones are being investigated one agent at a time to understand their actions, mechanisms of action, metabolism, toxicity, and abuse potential - the latter to identify possible modes of overdose treatment and for Scheduling purposes. The available agents might represent only the 'tip of the iceberg'; the potential for many more new synthetic cathinones is very real. Investigation of these agents on an agent-by-agent basis is a daunting task. Attempts are being made to understand these agents as a class, by examination of their structure-activity relationships. Here, we provide an overview of review articles that attempts to shed light on these agents as a class, rather than on an agent-by-agent basis. This article is meant to be a reference resource that might expedite the work of those in this field by directing them to where they can find useful information.
Collapse
Affiliation(s)
- Richard A Glennon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298 USA
| | - Małgorzata Dukat
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298 USA
| |
Collapse
|