1
|
Li XQ, Peng HW, Xiang KL, Xiang XG, Jabbour F, Ortiz RDC, Soltis PS, Soltis DE, Wang W. Phylogenetic evidence clarifies the history of the extrusion of Indochina. Proc Natl Acad Sci U S A 2024; 121:e2322527121. [PMID: 39159371 PMCID: PMC11363272 DOI: 10.1073/pnas.2322527121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
The southeastward extrusion of Indochina along the Ailao Shan-Red River shear zone (ARSZ) is one of two of the most prominent consequences of the India-Asia collision. This plate-scale extrusion has greatly changed Southeast Asian topography and drainage patterns and effected regional climate and biotic evolution. However, little is known about how Indochina was extruded toward the southeast over time. Here, we sampled 42 plant and animal clades (together encompassing 1,721 species) that are distributed across the ARSZ and are not expected to disperse across long distances. We first assess the possible role of climate on driving the phylogenetic separations observed across the ARSZ. We then investigate the temporal dynamics of the extrusion of Indochina through a multitaxon analysis. We show that the lineage divergences across the ARSZ were most likely associated with the Indochinese extrusion rather than climatic events. The lineage divergences began at ~53 Ma and increased sharply ~35 Ma, with two peaks at ~19 Ma and ~7 Ma, and one valley at ~13 Ma. Our results suggest a two-phase model for the extrusion of Indochina, and in each phase, the extrusion was subject to periods of acceleration and decrease, in agreement with the changes of the India-Asia convergence rate and angle from the early Eocene to the late Miocene. This study highlights that a multitaxon analysis can illuminate the timing of subtle historical events that may be difficult for geological data to pinpoint and can be used to explore other tectonic events.
Collapse
Affiliation(s)
- Xiao-Qian Li
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Xiao-Guo Xiang
- Jiangxi Province Key Laboratory of Watershed Ecosystem Change and Biodiversity, Institute of Life Science and School of Life Sciences, Nanchang University, Nanchang, Jiangxi330031, China
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité, Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris75005, France
| | | | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
2
|
Juri G, Ripa RR, Premoli AC. Plastomes of Nothofagus reflect a shared biogeographic history in Patagonia. J Hered 2024; 115:588-599. [PMID: 38869982 DOI: 10.1093/jhered/esae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024] Open
Abstract
Plastomes are used in phylogenetic reconstructions because of their relatively conserved nature. Nonetheless, some limitations arise, particularly at lower taxonomic levels due to reduced interspecific polymorphisms and frequent hybridization events that result in unsolved phylogenies including polytomies and reticulate evolutionary patterns. Next-generation sequencing technologies allow access to genomic data and strongly supported phylogenies, yet biased topologies may be obtained due to insufficient taxon sampling. We analyze the hypothesis that intraspecific plastome diversity reflects biogeographic history and hybridization cycles among taxa. We generated 12 new plastome sequences covering distinct latitudinal locations of all species of subgenus Nothofagus from North Patagonia. Chloroplast genomes were assembled, annotated, and searched for simple sequence repeats (SSRs). Phylogenetic reconstructions included species and sampled locations. The six Nothofagus species analyzed were of similar size and structure; only Nothofagus obliqua of subgenus Lophozonia, used as an outgroup, presented slight differences in size. We detected a variable number of SSRs in distinct species and locations. Phylogenetic analyses of plastomes confirmed that subgenus Nothofagus organizes into two monophyletic clades each consisting of individuals of different species. We detected a geographic structure within subgenus Nothofagus and found evidence of local chloroplast sharing due to past hybridization, followed by adaptive introgression and ecological divergence. These contributions enrich the comprehension of transversal evolutionary mechanisms such as chloroplast capture and its implications for phylogenetic and phylogenomic analyses.
Collapse
Affiliation(s)
- Gabriela Juri
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Universidad Nacional de Río Negro - CONICET, Río Negro, Argentina
| | - Ramiro R Ripa
- Grupo de Genética Ecolgica, Evolutiva y de la Conservación, Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue - CONICET, Río Negro, Argentina
| | - Andrea C Premoli
- Grupo de Genética Ecolgica, Evolutiva y de la Conservación, Instituto de Investigaciones en Biodiversidad y Medioambiente, Universidad Nacional del Comahue - CONICET, Río Negro, Argentina
| |
Collapse
|
3
|
Zhang J, Li XQ, Peng HW, Hai L, Erst AS, Jabbour F, Ortiz RDC, Xia FC, Soltis PS, Soltis DE, Wang W. Evolutionary history of the Arctic flora. Nat Commun 2023; 14:4021. [PMID: 37463899 DOI: 10.1038/s41467-023-39555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
The Arctic tundra is a relatively young and new type of biome and is especially sensitive to the impacts of global warming. However, little is known about how the Arctic flora was shaped over time. Here we investigate the origin and evolutionary dynamics of the Arctic flora by sampling 32 angiosperm clades that together encompass 3626 species. We show that dispersal into the Arctic and in situ diversification within the Arctic have similar trends through time, initiating at approximately 10-9 Ma, increasing sharply around 2.6 Ma, and peaking around 1.0-0.7 Ma. Additionally, we discover the existence of a long-term dispersal corridor between the Arctic and western North America. Our results suggest that the initiation and diversification of the Arctic flora might have been jointly driven by progressive landscape and climate changes and sea-level fluctuations since the early Late Miocene. These findings have important conservation implications given rapidly changing climate conditions in the Arctic.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- Forestry College, Beihua University, 132013, Jilin, China
- China National Botanical Garden, 100093, Beijing, China
| | - Xiao-Qian Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huan-Wen Peng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lisi Hai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- China National Botanical Garden, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk, 630090, Russia
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, 75005, France
| | - Rosa Del C Ortiz
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO, 63110, USA
| | - Fu-Cai Xia
- Forestry College, Beihua University, 132013, Jilin, China.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- China National Botanical Garden, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
4
|
Ling YY, Xiang KL, Peng HW, Erst AS, Lian L, Zhao L, Jabbour F, Wang W. Biogeographic diversification of Actaea (Ranunculaceae): Insights into the historical assembly of deciduous broad-leaved forests in the Northern Hemisphere. Mol Phylogenet Evol 2023:107870. [PMID: 37406952 DOI: 10.1016/j.ympev.2023.107870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The deciduous broad-leaved forests (DBLFs) cover large temperate and subtropical high-altitude regions in the Northern Hemisphere. They are home to rich biodiversity, especially to numerous endemic and relict species. However, we know little about how this vegetation in the Northern Hemisphere has developed through time. Here, we used Actaea (Ranunculaceae), an herbaceous genus almost exclusively growing in the understory of the Northern Hemisphere DBLFs, to shed light on the historical assembly of this biome in the Northern Hemisphere. We present a complete species-level phylogenetic analysis of Actaea based on five plastid and nuclear loci. Using the phylogenetic framework, we estimated divergence times, ancestral ranges, and diversification rates. Phylogenetic analyses strongly support Actaea as monophyletic. Sections Podocarpae and Oligocarpae compose a clade, sister to all other Actaea. The sister relationship between sections Chloranthae and Souliea is strongly supported. Section Dichanthera is not monophyletic unless section Cimicifuga is included. Actaea originated in East Asia, likely the Qinghai-Tibet Plateau, in the late Paleocene (c. 57 Ma), and subsequently dispersed into North America in the middle Eocene (c. 43 Ma) via the Thulean bridge. Actaea reached Europe twice, Japan twice, and Taiwan once, and all these five colonization events occurred in the late Miocene-early Pliocene, a period when sea level dropped. Actaea began to diversify at c. 43 Ma. The section-level diversification took place at c. 27-37 Ma and the species-level diversification experienced accelerations twice, which occurred at c. 15 Ma and c. 5 Ma, respectively. Our findings suggest that the Northern Hemisphere DBLFs might have risen in the middle Eocene and further diversified in the late Eocene-Oligocene, middle Miocene and early Pliocene, in association with climatic deterioration during these four periods.
Collapse
Affiliation(s)
- Yuan-Yuan Ling
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun-Li Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Huan-Wen Peng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk 630090, Russia
| | - Lian Lian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Liang Zhao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris 75005, France
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Peng HW, Xiang KL, Erst AS, Erst TV, Jabbour F, Ortiz RDC, Wang W. The synergy of abiotic and biotic factors correlated with diversification of Fumarioideae (Papaveraceae) in the Cenozoic. Mol Phylogenet Evol 2023:107868. [PMID: 37394080 DOI: 10.1016/j.ympev.2023.107868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Rapid diversification of a group is often associated with exploiting an ecological opportunity and/or the evolution of a key innovation. However, how the interplay of such abiotic and biotic factors correlates with organismal diversification has been rarely documented in empirical studies, especially for organisms inhabiting drylands. Fumarioideae is the largest subfamily in Papaveraceae and is mainly distributed in temperate regions of the Northern Hemisphere. Here, we used one nuclear (ITS) and six plastid (rbcL, atpB, matK, rps16, trnL-F, and trnG) DNA sequences to investigate the spatio-temporal patterns of diversification and potential related factors of this subfamily. We first present the most comprehensive phylogenetic analysis of Fumarioideae to date. The results of our integrated molecular dating and biogeographic analyses indicate that the most recent common ancestor of Fumarioideae started to diversify in Asia during the Upper Cretaceous, and then dispersed multiple times out of Asia in the Cenozoic. In particular, we discover two independent dispersal events from Eurasia to East Africa in the late Miocene, suggesting that the Arabian Peninsula might be an important exchange corridor between Eurasia and East Africa in the late Miocene. Within the Fumarioideae, increased speciation rates were detected in two groups, Corydalis and Fumariinae. Corydalis first experienced a burst of diversification in its crown group at ∼42 Ma, and further accelerated diversification from the mid-Miocene onwards. During these two periods, Corydalis had evolved diverse life history types, which could have facilitated the colonization of diverse habitats originating from extensive orogenesis in the Northern Hemisphere as well as Asian interior desertification. Fumariinae underwent a burst of diversification at ∼15 Ma, which temporally coincides with the increasing aridification in central Eurasia, but is markedly posterior to the shifts in habitat (from moist to arid) and in life history (from perennial to annual) and to range expansion from Asia to Europe, suggesting that Fumariinae species may have been pre-adapted to invade European arid habitats by the acquisition of annual life history. Our study provides an empirical case that documents the importance of pre-adaptation on organismal diversification in drylands and highlights the significant roles of the synergy of abiotic and biotic factors in promoting plant diversification.
Collapse
Affiliation(s)
- Huan-Wen Peng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun-Li Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Andrey S Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Tatyana V Erst
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Rosa Del C Ortiz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO 63110, USA
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Lian L, Peng HW, Ortiz RDC, Jabbour F, Gao TG, Erst AS, Chen ZD, Wang W. Phylogeny and biogeography of Tiliacoreae (Menispermaceae), a tribe restricted to tropical rainforests. ANNALS OF BOTANY 2023; 131:685-695. [PMID: 36721969 PMCID: PMC10147334 DOI: 10.1093/aob/mcad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/28/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Modern tropical rainforests house the highest biodiversity of Earth's terrestrial biomes and are distributed in three low-latitude areas. However, the biogeographical patterns and processes underlying the distribution of biodiversity among these three areas are still poorly known. Here, we used Tiliacoreae, a tribe of pantropical lianas with a high level of regional endemism, to provide new insights into the biogeographical relationships of tropical rainforests among different continents. METHODS Based on seven plastid and two nuclear DNA regions, we reconstructed a phylogeny for Tiliacoreae with the most comprehensive sampling ever. Within the phylogenetic framework, we then estimated divergence times and investigated the spatiotemporal evolution of the tribe. KEY RESULTS The monophyletic Tiliacoreae contain three major clades, which correspond to Neotropical, Afrotropical and Indo-Malesian/Australasian areas, respectively. Both Albertisia and Anisocycla are not monophyletic. The most recent common ancestor of Tiliacoreae occurred in Indo-Malesia, the Afrotropics and Neotropics in the early Eocene, then rapidly diverged into three major clades between 48 and 46 Ma. Three dispersals from Indo-Malesia to Australasia were inferred, one in the middle Eocene and two in the late Oligocene-late Miocene, and two dispersals from the Afrotropics to Indo-Malesia occurred in the late Eocene-Oligocene. CONCLUSIONS The three main clades of Anisocycla correspond to three distinct genera [i.e. Anisocycla sensu stricto and two new genera (Georgesia and Macrophragma)]. Epinetrum is a member of Albertisia. Our findings highlight that sea-level fluctuations and climate changes in the Cenozoic have played important roles in shaping the current distribution and endemism of Tiliacoreae, hence contributing to the knowledge on the historical biogeography of tropical rainforests on a global scale.
Collapse
Affiliation(s)
- Lian Lian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Huan-Wen Peng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rosa Del C Ortiz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO 63110, USA
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, Université des Antilles, EPHE, 57 rue Cuvier, CP39, Paris 75005, France
| | - Tian-Gang Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrey S Erst
- Central Siberian Botanical Garden of the Siberian Branch of Russian Academy of Sciences, Zolotodolinskaya str. 101, Novosibirsk 630090, Russia
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Abstract
Caves are home to unique and fragile biotas with high levels of endemism. However, little is known about how the biotic colonization of caves has developed over time, especially in caves from middle and low latitudes. Subtropical East Asia holds the world's largest karst landform with numerous ancient caves, which harbor a high diversity of cave-dwelling organisms and are regarded as a biodiversity hotspot. Here, we assess the temporal dynamics of biotic colonization of subtropical East Asian caves through a multi-taxon analysis with representatives of green plants, animals, and fungi. We then investigate the consequences of paleonviromental changes on the colonization dynamics of these caves in combination with reconstructions of vegetation, temperature, and precipitation. We discover that 88% of cave colonization events occurred after the Oligocene-Miocene boundary, and organisms from the surrounding forest were a major source for subtropical East Asian cave biodiversity. Biotic colonization of subtropical East Asian caves during the Neogene was subject to periods of acceleration and decrease, in conjunction with large-scale, seasonal climatic changes and evolution of local forests. This study highlights the long-term evolutionary interaction between surface and cave biotas; our climate-vegetation-relict model proposed for the subtropical East Asian cave biota may help explain the evolutionary origins of other mid-latitude subterranean biotas.
Collapse
|
8
|
Wu Q, Tong W, Zhao H, Ge R, Li R, Huang J, Li F, Wang Y, Mallano AI, Deng W, Wang W, Wan X, Zhang Z, Xia E. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:406-421. [PMID: 35510493 DOI: 10.1111/tpj.15799] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Camellia plants include more than 200 species of great diversity and immense economic, ornamental, and cultural values. We sequenced the transcriptomes of 116 Camellia plants from almost all sections of the genus Camellia. We constructed a pan-transcriptome of Camellia plants with 89 394 gene families and then resolved the phylogeny of genus Camellia based on 405 high-quality low-copy core genes. Most of the inferred relationships are well supported by multiple nuclear gene trees and morphological traits. We provide strong evidence that Camellia plants shared a recent whole genome duplication event, followed by large expansions of transcription factor families associated with stress resistance and secondary metabolism. Secondary metabolites, particularly those associated with tea quality such as catechins and caffeine, were preferentially heavily accumulated in the Camellia plants from section Thea. We thoroughly examined the expression patterns of hundreds of genes associated with tea quality, and found that some of them exhibited significantly high expression and correlations with secondary metabolite accumulations in Thea species. We also released a web-accessible database for efficient retrieval of Camellia transcriptomes. The reported transcriptome sequences and obtained novel findings will facilitate the efficient conservation and utilization of Camellia germplasm towards a breeding program for cultivated tea, camellia, and oil-tea plants.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Huijuan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruoheng Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruopei Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ali Inayat Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wenjie Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
9
|
Ancona JJ, Pinzón-Esquivel JP, Ruiz-Sánchez E, Palma-Silva C, Ortiz-Díaz JJ, Tun-Garrido J, Carnevali G, Raigoza NE. Multilocus Data Analysis Reveal the Diversity of Cryptic Species in the Tillandsia ionantha (Bromeliaceae: Tillansiodeae) Complex. PLANTS (BASEL, SWITZERLAND) 2022; 11:1706. [PMID: 35807663 PMCID: PMC9269404 DOI: 10.3390/plants11131706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Independent evolutionary lineages or species that lack phenotypic variation as an operative criterion for their delimitation are known as cryptic species. However, these have been delimited using other data sources and analysis. The aims of this study are: (1) to evaluate the divergence of the populations of the T. ionantha complex; and (2) to delimit the species using multilocus data, phylogenetic analysis and the coalescent model. Phylogenetic analyses, genetic diversity and population structure, and isolation by distance analysis were performed. A multispecies coalescent analysis to delimit the species was conducted. Phylogenetic analysis showed that T. ionantha is polyphyletic composed of eight evolutionary lineages. Haplotype distribution and genetic differentiation analysis detected strong population structure and high values of genetic differentiation among populations. The positive correlation between genetic differences with geographic distance indicate that the populations are evolving under the model of isolation by distance. The coalescent multispecies analysis performed with starBEAST supports the recognition of eight lineages as different species. Only three out of the eight species have morphological characters good enough to recognize them as different species, while five of them are cryptic species. Tillandsia scaposa and T. vanhyningii are corroborated as independent lineages, and T. ionantha var. stricta changed status to the species level.
Collapse
Affiliation(s)
- Juan J. Ancona
- Departamento de Botánica-Herbario UADY, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, Mérida 97315, Mexico; (J.P.P.-E.); (J.J.O.-D.); (J.T.-G.)
| | - Juan P. Pinzón-Esquivel
- Departamento de Botánica-Herbario UADY, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, Mérida 97315, Mexico; (J.P.P.-E.); (J.J.O.-D.); (J.T.-G.)
| | - Eduardo Ruiz-Sánchez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Las Agujas, Zapopan 45200, Mexico;
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, CEP, Campinas 13083-862, Brazil;
| | - Juan J. Ortiz-Díaz
- Departamento de Botánica-Herbario UADY, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, Mérida 97315, Mexico; (J.P.P.-E.); (J.J.O.-D.); (J.T.-G.)
| | - Juan Tun-Garrido
- Departamento de Botánica-Herbario UADY, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, Mérida 97315, Mexico; (J.P.P.-E.); (J.J.O.-D.); (J.T.-G.)
| | - Germán Carnevali
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán A. C. Calle 43 #130, Colonia Chuburná de Hidalgo, Mérida 97215, Mexico; (G.C.); (N.E.R.)
| | - Néstor E. Raigoza
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán A. C. Calle 43 #130, Colonia Chuburná de Hidalgo, Mérida 97215, Mexico; (G.C.); (N.E.R.)
| |
Collapse
|
10
|
Implications of plastome evolution in the true lilies (monocot order Liliales). Mol Phylogenet Evol 2020; 148:106818. [PMID: 32294543 DOI: 10.1016/j.ympev.2020.106818] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 01/30/2023]
Abstract
The families of the monocot order Liliales exhibit highly contrasting characteristic of photosynthetic and mycoheterotrophic life histories. Although previous phylogenetic and morphological studies of Liliales have been conducted, they have not examined molecular evolution associated with this contrasting phenomenon. Here, we conduct the first comparative plastome study of all ten families of Liliales using 29 newly sequenced plastid genomes analyzed together with previously published data. We also present a phylogenetic analysis for Liliales of 78 plastid genes combined with 22 genes from all three genomes (nuclear 18S rDNA and phyC; 17 plastid genes; and mitochondrial matR, atpA, and cob). Within the newly generated phylogenetic tree of Liliales, we evaluate the ancestral state changes of selected morphological traits in the order. There are no significant differences in plastid genome features among species that show divergent characteristics correlated with family circumscriptions. However, the results clearly differentiate between photosynthetic and mycoheterotrophic taxa of Liliales in terms of genome structure, and gene content and order. The newly sequenced plastid genomes and combined three-genome data revealed Smilacaceae as sister to Liliaceae instead of Philesiaceae and Ripogonaceae. Additionally, we propose a revised familial classification system of Liliales that consists of nine families, considering Ripogonaceae a synonym of Philesiaceae. The ancestral state reconstruction indicated synapomorphies for each family of Liliales, except Liliaceae, Melanthiaceae and Colchicaceae. A taxonomic key for all nine families of Liliales is also provided.
Collapse
|
11
|
Lallemand F, Logacheva M, Le Clainche I, Bérard A, Zheleznaia E, May M, Jakalski M, Delannoy É, Le Paslier MC, Selosse MA. Thirteen New Plastid Genomes from Mixotrophic and Autotrophic Species Provide Insights into Heterotrophy Evolution in Neottieae Orchids. Genome Biol Evol 2019; 11:2457-2467. [PMID: 31396616 PMCID: PMC6733356 DOI: 10.1093/gbe/evz170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Mixotrophic species use both organic and mineral carbon sources. Some mixotrophic plants combine photosynthesis and a nutrition called mycoheterotrophy, where carbon is obtained from fungi forming mycorrhizal symbiosis with their roots. These species can lose photosynthetic abilities and evolve full mycoheterotrophy. Besides morphological changes, the latter transition is associated with a deep alteration of the plastid genome. Photosynthesis-related genes are lost first, followed by housekeeping genes, eventually resulting in a highly reduced genome. Whether relaxation of selective constraints already occurs for the plastid genome of mixotrophic species, which remain photosynthetic, is unclear. This is partly due to the difficulty of comparing plastid genomes of autotrophic, mixotrophic, and mycoheterotrophic species in a narrow phylogenetic framework. We address this question in the orchid tribe Neottieae, where this large assortment of nutrition types occurs. We sequenced 13 new plastid genomes, including 9 mixotrophic species and covering all 6 Neottieae genera. We investigated selective pressure on plastid genes in each nutrition type and conducted a phylogenetic inference of the group. Surprisingly, photosynthesis-related genes did not experience selection relaxation in mixotrophic species compared with autotrophic relatives. Conversely, we observed evidence for selection intensification for some plastid genes. Photosynthesis is thus still under purifying selection, maybe because of its role in fruit formation and thus reproductive success. Phylogenetic analysis resolved most relationships, but short branches at the base of the tree suggest an evolutionary radiation at the beginning of Neottieae history, which, we hypothesize, may be linked to mixotrophy emergence.
Collapse
Affiliation(s)
- Félix Lallemand
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Maria Logacheva
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Isabelle Le Clainche
- Etude du Polymorphisme des Génomes Végétaux (EPGV), INRA, Université Paris-Saclay, Evry, France
| | - Aurélie Bérard
- Etude du Polymorphisme des Génomes Végétaux (EPGV), INRA, Université Paris-Saclay, Evry, France
| | - Ekaterina Zheleznaia
- Peoples’ Friendship University of Russia, Timiryazev State Biological Museum, Moscow, Russia
| | - Michał May
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Poland
| | - Marcin Jakalski
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Poland
| | - Étienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Orsay, France
- Université Evry, Université Paris-Saclay, Orsay, France
| | | | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Poland
| |
Collapse
|
12
|
Nicola MV, Johnson LA, Pozner R. Unraveling patterns and processes of diversification in the South Andean-Patagonian Nassauvia subgenus Strongyloma (Asteraceae, Nassauvieae). Mol Phylogenet Evol 2019; 136:164-182. [PMID: 30858079 DOI: 10.1016/j.ympev.2019.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022]
Abstract
Congruence among different sources of data is highly desirable in phylogenetic analyses. However, plastid and nuclear DNA may record different evolutionary processes such that incongruence among results from these sources can help unravel complex evolutionary histories. That is the case of Nassauvia subgenus Strongyloma (Asteraceae), a taxon with five putative species distributed in the southern Andes and Patagonian steppe. Morphometric and phylogeographic information cast doubt on the integrity of its species, and previous molecular data even questioned the monophyly of the subgenus. We tested those questions using plastid and nuclear DNA sequences by the application of different methods such as phylogenetic trees, networks, a test of genealogical sorting, an analysis of population structure, calibration of the trees, and hybridization test, assembling non-synchronous incongruent results at subgenus and species levels in a single reconstruction. The integration of our molecular analyses and previous taxonomic, morphological, and molecular studies support subgenus Strongyloma as a monophyletic group. However, the topology of the nuclear trees and the evidence of polyploids within subgenus Nassauvia, suggest a hypothetical origin and initial radiation of Nassauvia related to an ancient hybridization event that occurred around 17-6.3 Myr ago near the Andes in west-central Patagonia. Plastid data suggest a recent diversification within subgenus Strongyloma, at most 9.8 Myr ago, towards the Patagonian steppe east of the Andes. These processes cause phylogenies to deviate from the species tree since each putative species lack exclusive ancestry. The non-monophyly of its species using both plastid and nuclear data is caused mainly by incomplete lineage sorting occurred since the Miocene. The final uplift of the Andes and Pliocene-Pleistocene glacial-interglacial and its consequences on the landscape and climate structured the genetic composition of this group of plants in the Patagonian steppe. The molecular data presented here agree with previous morphological studies, in that the five putative species typically accepted in this subgenus are not independent taxa. This study emphasizes that adding more than one sequence per species, not combining data with dissimilar inheritance patterns without first performed incongruence tests, exploring data through different methodologies, considering the timing of events, and searching for the causes of poorly resolved and/or incongruent phylogenies help to reveal complex biological underlying processes, which might otherwise remain hidden.
Collapse
Affiliation(s)
- Marcela V Nicola
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, C.C. 22, B1642HYD, San Isidro, Provincia de Buenos Aires, Argentina.
| | - Leigh A Johnson
- Department of Biology and Bean Life Science Museum, 4102 LSB, Brigham Young University, Provo, UT 84602, USA
| | - Raúl Pozner
- Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, C.C. 22, B1642HYD, San Isidro, Provincia de Buenos Aires, Argentina
| |
Collapse
|
13
|
Godoy-Bürki AC, Acosta JM, Aagesen L. Phylogenetic relationships within the New World subfamily Larreoideae (Zygophyllaceae) confirm polyphyly of the disjunct genus Bulnesia. SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2018.1451406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- A. C. Godoy-Bürki
- Instituto de Botánica Darwinion, Labardén 200, Casilla de correo 22, B1642HYD San Isidro, Buenos Aires, Argentina
| | - J. M. Acosta
- Instituto de Botánica Darwinion, Labardén 200, Casilla de correo 22, B1642HYD San Isidro, Buenos Aires, Argentina
| | - L. Aagesen
- Instituto de Botánica Darwinion, Labardén 200, Casilla de correo 22, B1642HYD San Isidro, Buenos Aires, Argentina
| |
Collapse
|
14
|
Complete Chloroplast Genome Sequences of Four Meliaceae Species and Comparative Analyses. Int J Mol Sci 2018; 19:ijms19030701. [PMID: 29494509 PMCID: PMC5877562 DOI: 10.3390/ijms19030701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 01/02/2023] Open
Abstract
The Meliaceae family mainly consists of trees and shrubs with a pantropical distribution. In this study, the complete chloroplast genomes of four Meliaceae species were sequenced and compared with each other and with the previously published Azadirachta indica plastome. The five plastomes are circular and exhibit a quadripartite structure with high conservation of gene content and order. They include 130 genes encoding 85 proteins, 37 tRNAs and 8 rRNAs. Inverted repeat expansion resulted in a duplication of rps19 in the five Meliaceae species, which is consistent with that in many other Sapindales, but different from many other rosids. Compared to Azadirachta indica, the four newly sequenced Meliaceae individuals share several large deletions, which mainly contribute to the decreased genome sizes. A whole-plastome phylogeny supports previous findings that the four species form a monophyletic sister clade to Azadirachta indica within the Meliaceae. SNPs and indels identified in all complete Meliaceae plastomes might be suitable targets for the future development of genetic markers at different taxonomic levels. The extended analysis of SNPs in the matK gene led to the identification of four potential Meliaceae-specific SNPs as a basis for future validation and marker development.
Collapse
|
15
|
Xu WB, Guo J, Pan B, Han MQ, Liu Y, Chung KF. Three new species of Paraboea (Gesneriaceae) from limestone karsts of China based on morphological and molecular evidence. BOTANICAL STUDIES 2017; 58:56. [PMID: 29192357 PMCID: PMC5709257 DOI: 10.1186/s40529-017-0207-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/15/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND The limestone karsts of Southeast Asia and South China are a major biodiversity hotspot of global terrestrial biomes. With more than 130 described species, Paraboea has become one of the most characteristic plant groups in the Southeast Asian limestone flora. During the course of extensive field work on the limestone formations of southern and southwestern China, three unknown species of Paraboea were collected. RESULTS Molecular phylogenetic analyses based on nuclear ITS and chloroplast trnL-F sequences strongly confirm the placements of the three new species in Paraboea sensu Puglisi et al. (Taxon 65:277-292. https://doi.org/10.12705/652.5 , 2016). Moreover, these three novelties can be distinguished from known Paraboea species with distinct morphological characters, further supporting their recognition as new species. CONCLUSIONS With the support of detailed morphological studies and molecular phylogenetic analyses, Paraboea dushanensis, P. sinovietnamica and P. xiangguiensis are recognized as three species new to science.
Collapse
Affiliation(s)
- Wei-Bin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Jing Guo
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Bo Pan
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Meng-Qi Han
- College of Life Sciences, Guangxi Normal University, Guilin, 541004 China
| | - Yan Liu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin, 541006 China
| | - Kuo-Fang Chung
- Research Museum and Herbarium (HAST), Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
16
|
Wang W, Ortiz RDC, Jacques FMB, Chung SW, Liu Y, Xiang XG, Chen ZD. New insights into the phylogeny of Burasaieae (Menispermaceae) with the recognition of a new genus and emphasis on the southern Taiwanese and mainland Chinese disjunction. Mol Phylogenet Evol 2017; 109:11-20. [PMID: 28049039 DOI: 10.1016/j.ympev.2016.12.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/25/2016] [Accepted: 12/29/2016] [Indexed: 01/19/2023]
Abstract
Taiwan is a continental island lying at the boundary between the Eurasian and the Philippine tectonic plates and possesses high biodiversity. Southern Taiwan, viz. Hengchun Peninsula, is notably floristically different from northern Taiwan. The floristic origin and relationships of the Hengchun Peninsula have been rarely investigated in a phylogenetic context. In this study, data from six plastid and nuclear sequences were used to reconstruct phylogenetic relationships within Burasaieae (Menispermaceae), which mainly inhabits tropical rainforests. The tree-based comparisons indicate that the position of Tinospora sensu stricto conflicts significantly between the cpDNA and ITS trees. However, alternative hypothesis tests from the ITS data did not reject the result of the cpDNA data, which suggests that tree-based comparisons might sometimes generate an artificial incongruence, especially when markers with high homoplasy are used. Based on the combined cpDNA and ITS data, we present an inter-generic phylogenetic framework for Burasaieae. Sampled species of Tinospora are placed in three different clades, including Tinospora dentata from southern Taiwan and T. sagittata from mainland China in an unresolved position alongside six lineages of Burasaieae. By integrating lines of evidence from molecular phylogeny, divergence times, and morphology, we recognize the three Tinospora clades as three different genera, including Tinospora sensu stricto, a new genus (Paratinospora) for T. dentata and T. sagittata, and Hyalosepalum resurrected. Tinospora dentata, now endemic to the Hengchun Peninsula, originated from the Late Eocene (ca. 39Ma), greatly predating the formation of Taiwan. Our study suggests that the flora of the Hengchun Peninsula contains some ancient components that might have migrated from mainland China.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rosa Del C Ortiz
- Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| | - Frédéric M B Jacques
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Shih-Wen Chung
- Department of Botany, Taiwan Forestry Research Institute, 20 Nan-Hai Road, Taipei 100, China
| | - Yang Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Shenzhen Fairy Lake Botanical Garden, Shenzhen 518004, China
| | - Xiao-Guo Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi-Duan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
17
|
Yu SX, Janssens SB, Zhu XY, Lidén M, Gao TG, Wang W. Phylogeny ofImpatiens(Balsaminaceae): integrating molecular and morphological evidence into a new classification. Cladistics 2015; 32:179-197. [DOI: 10.1111/cla.12119] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sheng-Xiang Yu
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | | | - Xiang-Yun Zhu
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Magnus Lidén
- Botaniska Trädgården; Uppsala Universitet; Villavägen 8 Uppsala 75236 Sweden
| | - Tian-Gang Gao
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany; Institute of Botany; Chinese Academy of Sciences; Beijing 100093 China
| |
Collapse
|