1
|
Wang P, Zhang SY, Dong Y, Zeng G, Liu H, Wang X, Jiang C, Li Y. Adipose ADM2 ameliorates NAFLD via promotion of ceramide catabolism. Acta Pharm Sin B 2024; 14:4883-4898. [PMID: 39664433 PMCID: PMC11628856 DOI: 10.1016/j.apsb.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 12/13/2024] Open
Abstract
The adipose tissue of mammals represents an important energy-storing and endocrine organ, and its dysfunction is relevant to the onset of several health problems, including non-alcoholic fatty liver disease (NAFLD). However, whether treatments targeting adipose dysfunction could alleviate NAFLD has not been well-studied. Adrenomedullin 2 (ADM2), belonging to the CGRP superfamily, is a protective peptide that has been shown to inhibit adipose dysfunction. To investigate the adipose tissue-specific effects of ADM2 on NAFLD, adipose-specific ADM2-overexpressing transgenic (aADM2-tg) mice were developed. When fed a high-fat diet, aADM2-tg mice displayed decreased hepatic triglyceride accumulation compared to wild-type mice, which was attributable to the inhibition of hepatic de novo lipogenesis. Results from lipidomics studies showed that ADM2 decreased ceramide levels in adipocytes through the upregulation of ACER2, which catalyzes ceramide catabolism. Mechanically, activation of adipocyte HIF2α was required for ADM2 to promote ACER2-dependent adipose ceramide catabolism as well as to decrease hepatic lipid accumulation. This study highlights the role of ADM2 and adipose-derived ceramide in NAFLD and suggests that its therapeutic targeting could alleviate disease symptoms.
Collapse
Affiliation(s)
- Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China
| | - Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - YongQiang Dong
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing 100191, China
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
| | - Yin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, State Key Laboratory of Vascular Homeostasis and Remodeling, Beijing 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University; Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
2
|
Zhao J, Han L, Zhang YR, Liu SM, Ji DR, Wang R, Yu YR, Jia MZ, Chai SB, Tang HF, Huang W, Qi YF. Intermedin Alleviates Diabetic Cardiomyopathy by Up-Regulating CPT-1β through Activation of the Phosphatidyl Inositol 3 Kinase/Protein Kinase B Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:1204. [PMID: 39338366 PMCID: PMC11435185 DOI: 10.3390/ph17091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with myocardial fatty acid metabolism. Carnitine palmitoyltransferase-1β (CPT-1β) is the rate-limiting enzyme responsible for β-oxidation of long-chain fatty acids. Intermedin (IMD) is a pivotal bioactive small molecule peptide, participating in the protection of various cardiovascular diseases. However, the role and underlying mechanisms of IMD in DCM are still unclear. In this study, we investigated whether IMD alleviates DCM via regulating CPT-1β. A rat DCM model was established by having rats to drink fructose water for 12 weeks. A mouse DCM model was induced by feeding mice a high-fat diet for 16 weeks. We showed that IMD and its receptor complexes levels were significantly down-regulated in the cardiac tissues of DCM rats and mice. Reduced expression of IMD was also observed in neonatal rat cardiomyocytes treated with palmitic acid (PA, 300 μM) in vitro. Exogenous and endogenous IMD mitigated cardiac hypertrophy, fibrosis, dysfunction, and lipid accumulation in DCM rats and IMD-transgenic DCM mice, whereas knockout of IMD worsened these pathological processes in IMD-knockout DCM mice. In vitro, IMD alleviated PA-induced cardiomyocyte hypertrophy and cardiac fibroblast activation. We found that CPT-1β enzyme activity, mRNA and protein levels, and acetyl-CoA content were increased in T2DM patients, rats and mice. IMD up-regulated the CPT-1β levels and acetyl-CoA content in T2DM rats and mice. Knockdown of CPT-1β blocked the effects of IMD on increasing acetyl-CoA content and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. IMD receptor antagonist IMD17-47 and the phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt) inhibitor LY294002 reversed the effects of IMD on up-regulating CPT-1β and acetyl-CoA expression and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. We revealed that IMD alleviates DCM by up-regulating CPT-1β via calcitonin receptor-like receptor/receptor activity-modifying protein (CRLR/RAMP) receptor complexes and PI3K/Akt signaling. IMD may serve as a potent therapeutic target for the treatment of DCM.
Collapse
Affiliation(s)
- Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Ling Han
- Department of Cardiology, Fuxing Hospital, Capital Medical University, Beijing 100038, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Rui Wang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yan-Rong Yu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Mo-Zhi Jia
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing 102206, China
| | - Hui-Fang Tang
- Department of Cardiology Laboratory, First Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Wei Huang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, China
| |
Collapse
|
3
|
Zhang YR, Liu SM, Chen Y, Zhang LS, Ji DR, Zhao J, Yu YR, Jia MZ, Tang CS, Huang W, Zhou YB, Chai SB, Qi YF. Intermedin alleviates diabetic vascular calcification by inhibiting GLUT1 through activation of the cAMP/PKA signaling pathway. Atherosclerosis 2023; 385:117342. [PMID: 37879153 DOI: 10.1016/j.atherosclerosis.2023.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND AIMS Vascular calcification (VC) is regarded as an independent risk factor for cardiovascular events in type 2 diabetic patients. Glucose transporter 1 (GLUT1) involves VC. Intermedin/Adrenomedullin-2 (IMD/ADM2) is a cardiovascular protective peptide that can inhibit multiple disease-associated VC. However, the role and mechanism of IMD in diabetic VC remain unclear. Here, we investigated whether IMD inhibits diabetic VC by inhibiting GLUT1. METHODS AND RESULTS It was found that plasma IMD concentration was significantly decreased in type 2 diabetic patients and in fructose-induced diabetic rats compared with that in controls. Plasma IMD content was inversely correlated with fasting blood glucose level and VC severity. IMD alleviated VC in fructose-induced diabetic rats. Deficiency of Adm2 aggravated and Adm2 overexpression attenuated VC in high-fat diet-induced diabetic mice. In vitro, IMD mitigated high glucose-induced calcification of vascular smooth muscle cells (VSMCs). Mechanistically, IMD reduced advanced glycation end products (AGEs) content and the level of receptor for AGEs (RAGE). IMD decreased glucose transporter 1 (GLUT1) levels. The inhibitory effect of IMD on RAGE protein level was blocked by GLUT1 knockdown. GLUT1 knockdown abolished the effect of IMD on alleviating VSMC calcification. IMD receptor antagonist IMD17-47 and cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) inhibitor H89 abolished the inhibitory effects of IMD on GLUT1 and VSMC calcification. CONCLUSIONS These findings revealed that IMD exerted its anti-calcification effect by inhibiting GLUT1, providing a novel therapeutic target for diabetic VC.
Collapse
Affiliation(s)
- Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Chao-Shu Tang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Wei Huang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, 102206, China.
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China.
| |
Collapse
|
4
|
Yang Z, Li H, Wu P, Li Q, Yu C, Wang D, Li W. Multi-biological functions of intermedin in diseases. Front Physiol 2023; 14:1233073. [PMID: 37745233 PMCID: PMC10511904 DOI: 10.3389/fphys.2023.1233073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP)/calcitonin (CT) superfamily, and it is expressed extensively throughout the body. The typical receptors for IMD are complexes composed of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP), which leads to a biased activation towards Gαs. As a diagnostic and prognostic biomarker, IMD regulates the initiation and metastasis of multiple tumors. Additionally, IMD functions as a proangiogenic factor that can restrain excessive vascular budding and facilitate the expansion of blood vessel lumen, ultimately resulting in the fusion of blood vessels. IMD has protective roles in various diseases, including ischemia-reperfusion injury, metabolic disease, cardiovascular diseases and inflammatory diseases. This review systematically elucidates IMD's expression, structure, related receptors and signal pathway, as well as its comprehensive functions in the context of acute kidney injury, obesity, diabetes, heart failure and sepsis. However, the precise formation process of IMD short peptides in vivo and their downstream signaling pathway have not been fully elucidated yet. Further in-depth studies are need to translate IMD research into clinical applications.
Collapse
Affiliation(s)
- Zhi Yang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Yu
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Ceccherini E, Cecchettini A, Gisone I, Persiani E, Morales MA, Vozzi F. Vascular Calcification: In Vitro Models under the Magnifying Glass. Biomedicines 2022; 10:biomedicines10102491. [PMID: 36289753 DOI: 10.3390/biomedicines10102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular calcification is a systemic disease contributing to cardiovascular morbidity and mortality. The pathophysiology of vascular calcification involves calcium salt deposition by vascular smooth muscle cells that exhibit an osteoblast-like phenotype. Multiple conditions drive the phenotypic switch and calcium deposition in the vascular wall; however, the exact molecular mechanisms and the connection between vascular smooth muscle cells and other cell types are not fully elucidated. In this hazy landscape, effective treatment options are lacking. Due to the pathophysiological complexity, several research models are available to evaluate different aspects of the calcification process. This review gives an overview of the in vitro cell models used so far to study the molecular processes underlying vascular calcification. In addition, relevant natural and synthetic compounds that exerted anticalcifying properties in in vitro systems are discussed.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Gisone
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Elisa Persiani
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Maria Aurora Morales
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council (CNR), 56124 Pisa, Italy
| |
Collapse
|
6
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
7
|
Liu SM, Zhang YR, Chen Y, Ji DR, Zhao J, Fu S, Jia MZ, Yu YR, Tang CS, Huang W, Zhou YB, Qi YF. Intermedin Alleviates Vascular Calcification in CKD through Sirtuin 3-Mediated Inhibition of Mitochondrial Oxidative Stress. Pharmaceuticals (Basel) 2022; 15:ph15101224. [PMID: 36297336 PMCID: PMC9608591 DOI: 10.3390/ph15101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Vascular calcification (VC) is a common pathophysiological process of chronic kidney disease (CKD). Sirtuin 3 (Sirt3), a major NAD+-dependent protein deacetylase predominantly in mitochondria, is involved in the pathogenesis of VC. We previously reported that intermedin (IMD) could protect against VC. In this study, we investigated whether IMD attenuates VC by Sirt3-mediated inhibition of mitochondrial oxidative stress. A rat VC with CKD model was induced by the 5/6 nephrectomy plus vitamin D3. Vascular smooth muscle cell (VSMC) calcification was induced by CaCl2 and β-glycerophosphate. IMD1-53 treatment attenuated VC in vitro and in vivo, rescued the depressed mitochondrial membrane potential (MMP) level and decreased mitochondrial ROS levels in calcified VSMCs. IMD1-53 treatment recovered the reduced protein level of Sirt3 in calcified rat aortas and VSMCs. Inhibition of VSMC calcification by IMD1-53 disappeared when the cells were Sirt3 absent or pretreated with the Sirt3 inhibitor 3-TYP. Furthermore, 3-TYP pretreatment blocked IMD1-53-mediated restoration of the MMP level and inhibition of mitochondrial oxidative stress in calcified VSMCs. The attenuation of VSMC calcification by IMD1-53 through upregulation of Sirt3 might be achieved through activation of the IMD receptor and post-receptor signaling pathway AMPK, as indicated by pretreatment with an IMD receptor antagonist or AMPK inhibitor blocking the inhibition of VSMC calcification and upregulation of Sirt3 by IMD1-53. AMPK inhibitor treatment reversed the effects of IMD1-53 on restoring the MMP level and inhibiting mitochondrial oxidative stress in calcified VSMCs. In conclusion, IMD attenuates VC by improving mitochondrial function and inhibiting mitochondrial oxidative stress through upregulating Sirt3.
Collapse
Affiliation(s)
- Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yao Chen
- Department of Physiology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Su Fu
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (Y.-B.Z.); (Y.-F.Q.)
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
- Correspondence: (Y.-B.Z.); (Y.-F.Q.)
| |
Collapse
|
8
|
Wang S, Hu S. The Role of Sirtuins in Osteogenic Differentiation of Vascular Smooth Muscle Cells and Vascular Calcification. Front Cardiovasc Med 2022; 9:894692. [PMID: 35722093 PMCID: PMC9198215 DOI: 10.3389/fcvm.2022.894692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular calcification (VC) is a common pathological change in many chronic diseases, such as diabetes and chronic kidney disease. It is mainly deposited in the intima and media of vessels in the form of hydroxyapatite. Recently, a lot of research has been performed to show that VC is associated with various cellular stresses, such as hyperphosphate, hyperglycemia and oxidative stress. Unfortunately, our understanding of the pathogenesis of calcification is far from comprehensive. Sirtuins belong to a family of class III highly conserved deacetylases that are involved in the regulation of biological and cellular processes including mitochondrial biogenesis, metabolism, oxidative stress, inflammatory response, DNA repair, etc. Numerous studies have shown that sirtuins might play protective roles in VC, and restoring the activity of sirtuins may be a potentially effective treatment for VC. However, the exact mechanism of their vascular protection remains unclear. Here, we reviewed the roles of sirtuins in the osteogenic transformation of vascular smooth muscle cells and the development of VC. We also elucidated the applications of sirtuins agonists for the treatment of VC.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Department of Cardiology, The First People's Hospital of Wenling (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
| | - Siwang Hu
- The Orthopedic Center, The First People's Hospital of Wenling (The Affiliated Wenling Hospital of Wenzhou Medical University), Wenling, China
- *Correspondence: Siwang Hu
| |
Collapse
|
9
|
Bao W, He L, Zhang A. Compensatory elevated serum intermedin levels are associated with increased vascular calcification in hemodialysis patients. Int Urol Nephrol 2022; 54:3001-3007. [PMID: 35644015 DOI: 10.1007/s11255-022-03240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Vascular calcification (VC), which is a pathological process of abnormal calcium and phosphorus deposition in blood vessels, valves, heart and other tissues, is highly prevalent and predicts mortality in dialysis patients. Its mechanisms are complex and unclear. We presume that intermedin (IMD), a kind of small molecule active peptide, may play roles in VC in hemodialysis (HD) patients. This study aims to evaluate serum IMD levels and establish their relation to VC and other parameters in HD patients. METHODS A total of 116 patients on maintenance HD treatment and 52 age- and sex-matched healthy controls were enrolled in this study. Serum IMD levels were measured by radioimmunoassay (RIA). VC was evaluated by abdominal aortic calcification scores. RESULTS Serum IMD levels were significantly lower in HD patients than in controls [24.89 (13.55, 50.24) pg/ml vs. 137.79 (93.21, 201.64) pg/ml, P < 0.0001]. In addition, IMD was negatively correlated with the serum phosphate level (P = 0.036) in HD patients. However, compared with the group whose IMD levels were above the median, patients with IMD levels less than the median had a lower incidence of VC (P = 0.031). Multivariate logistic regression analyses revealed that serum IMD levels more than 24.89 pg/ml (P = 0.014, OR = 0.285), higher serum iPTH levels (P < 0.0001, OR = 1.093) and older age (P = 0.009, OR = 1.003) were significant independent determinant factors for VC in HD patients. CONCLUSION The serum IMD levels were significantly lower in HD patients than that in healthy group. In addition to higher PTH levels and older age, compensatory elevated IMD levels may be an independently determinant factor for VC in HD patients. This was the first study about IMD and VC in dialysis patients.
Collapse
Affiliation(s)
- Wenhan Bao
- Department of Nephrology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China
| | - Lian He
- Department of Nephrology, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, 100191, China.
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Rd, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
10
|
Zhang LS, Zhang JS, Hou YL, Lu WW, Ni XQ, Lin F, Liu XY, Wang XJ, Yu YR, Jia MZ, Tang CS, Han L, Chai SB, Qi YF. Intermedin 1-53 Inhibits NLRP3 Inflammasome Activation by Targeting IRE1α in Cardiac Fibrosis. Inflammation 2022; 45:1568-1584. [PMID: 35175495 DOI: 10.1007/s10753-022-01642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
Intermedin (IMD), a paracrine/autocrine peptide, protects against cardiac fibrosis. However, the underlying mechanism remains poorly understood. Previous study reports that activation of nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contributes to cardiac fibrosis. In this study, we aimed to investigate whether IMD mitigated cardiac fibrosis by inhibiting NLRP3. Cardiac fibrosis was induced by angiotensin II (Ang II) infusion for 2 weeks in rats. Western blot, real-time PCR, histological staining, immunofluorescence assay, RNA sequencing, echocardiography, and hemodynamics were used to detect the role and the mechanism of IMD in cardiac fibrosis. Ang II infusion resulted in rat cardiac fibrosis, shown as over-deposition of myocardial interstitial collagen and cardiac dysfunction. Importantly, NLRP3 activation and endoplasmic reticulum stress (ERS) were found in Ang II-treated rat myocardium. Ang II infusion decreased the expression of IMD and increased the expression of the receptor system of IMD in the fibrotic rat myocardium. IMD treatment attenuated the cardiac fibrosis and improved cardiac function. In addition, IMD inhibited the upregulation of NLRP3 markers and ERS markers induced by Ang II. In vitro, IMD knockdown by small interfering RNA significantly promoted the Ang II-induced cardiac fibroblast and NLRP3 activation. Moreover, silencing of inositol requiring enzyme 1 α (IRE1α) blocked the effects of IMD inhibiting fibroblast and NLRP3 activation. Pre-incubation with PKA pathway inhibitor H89 blocked the effects of IMD on the anti-ERS, anti-NLRP3, and anti-fibrotic response. In conclusion, IMD alleviated cardiac fibrosis by inhibiting NLRP3 inflammasome activation through suppressing IRE1α via the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Lin-Shuang Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China.,School of Nursing, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Sheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Yue-Long Hou
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei-Wei Lu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Xian-Qiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Fan Lin
- Department of Respiratory Disease, Peking University Third Hospital, Beijing, China
| | - Xiu-Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Ling Han
- Department of Cardiology, Fu Xing Hospital, Capital Medical University, A20 Fuxingmenwai Street, Xicheng District, Beijing, 100038, China.
| | - San-Bao Chai
- Department of Endocrinology, Peking University International Hospital, Life Park Road No. 1, Zhongguancun Life Science Park, Changping District, Beijing, 102206, China.
| | - Yong-Fen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China. .,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, HaidianDistrict, No. 38 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
11
|
IMD/ADM2 operates as a secretory factor that controls cumulus-oocyte complexes (COCs) conformation for oocytes in vitro maturation. In Vitro Cell Dev Biol Anim 2022; 58:149-168. [PMID: 35102467 DOI: 10.1007/s11626-022-00647-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022]
Abstract
During in vitro maturation (IVM), the compact structure of cumulus-oocyte complexes (COCs) is vital for oocyte competence acquisition. Intermedin/Adrenomedullin-2 (IMD/ADM2) binds to the receptor RAMP (1, 2, or 3):CLR. Recently, it was demonstrated that IMD/ADM2 stimulates oocyte competence and improves bovine embryo quality. Therefore, this study aimed to examine the IMD/ADM2 as a secretory factor controlling COCs conformation for oocyte maturation. The results showed that traditional M-CDM medium induced in COCs the Imd/Adm2 gene expression during IVM and produced IMD/ADM2 peptide secretion. Furthermore, after IVM, in the oocytes, the expression of ramps (1, 2, or 3) and clr was demolished, and RAMPs and CLR proteins were decreased, with a negative Pearson correlation. These results suggest that RAMPs and CLR are synthesized and stored during oocyte maturation. Supplementing the M-CDM with α-RAMP1 or α-IMD/ADM2 antibodies elicits a negative effect (P < 0.05) in COCs compaction. Blocking the IMD/ADM2 signaling pathway with any α-RAMPs or α-CLR antibodies produces a similar lower yield of oocytes in metaphase II (P > 0.05) but was lower than control culture medium (P < 0.05). In conclusion, when COCs are cultured with M-CDM, the IMD/ADM2 becomes expressed and secreted. In turn, it acts as a ligand preferentially to RAMP1:CLR or RAMP3:CLR, present in cumulus cells and oocytes. Sequentially, COCs compact structure is conformed to promote an adequate bidirectional communication that conduces the oocytes' maturation.
Collapse
|
12
|
Intermedin 1-53 attenuates atherosclerotic plaque vulnerability by inhibiting CHOP-mediated apoptosis and inflammasome in macrophages. Cell Death Dis 2021; 12:436. [PMID: 33934111 PMCID: PMC8088440 DOI: 10.1038/s41419-021-03712-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic plaque vulnerability and rupture increase the risk of acute coronary syndromes. Advanced lesion macrophage apoptosis plays important role in the rupture of atherosclerotic plaque, and endoplasmic reticulum stress (ERS) has been proved to be a key mechanism of macrophage apoptosis. Intermedin (IMD) is a regulator of ERS. Here, we investigated whether IMD enhances atherosclerotic plaque stability by inhibiting ERS-CHOP-mediated apoptosis and subsequent inflammasome in macrophages. We studied the effects of IMD on features of plaque vulnerability in hyperlipemia apolipoprotein E-deficient (ApoE−/−) mice. Six-week IMD1-53 infusion significantly reduced atherosclerotic lesion size. Of note, IMD1-53 lowered lesion macrophage content and necrotic core size and increased fibrous cap thickness and vascular smooth muscle cells (VSMCs) content thus reducing overall plaque vulnerability. Immunohistochemical analysis indicated that IMD1-53 administration prevented ERS activation in aortic lesions of ApoE−/− mice, which was further confirmed in oxidized low-density lipoproteins (ox-LDL) induced macrophages. Similar to IMD, taurine (Tau), a non-selective ERS inhibitor significantly reduced atherosclerotic lesion size and plaque vulnerability. Moreover, C/EBP-homologous protein (CHOP), a pro-apoptosis transcription factor involved in ERS, was significantly increased in advanced lesion macrophages, and deficiency of CHOP stabilized atherosclerotic plaques in AopE−/− mice. IMD1-53 decreased CHOP level and apoptosis in vivo and in macrophages treated with ox-LDL. In addition, IMD1-53 infusion ameliorated NLRP3 inflammasome and subsequent proinflammatory cytokines in vivo and in vitro. IMD may attenuate the progression of atherosclerotic lesions and plaque vulnerability by inhibiting ERS-CHOP-mediated macrophage apoptosis, and subsequent NLRP3 triggered inflammation. The inhibitory effect of IMD on ERS-induced macrophages apoptosis was probably mediated by blocking CHOP activation.
Collapse
|
13
|
Xiao F, Li H, Feng Z, Huang L, Kong L, Li M, Wang D, Liu F, Zhu Z, Wei Y, Zhang W. Intermedin facilitates hepatocellular carcinoma cell survival and invasion via ERK1/2-EGR1/DDIT3 signaling cascade. Sci Rep 2021; 11:488. [PMID: 33436794 PMCID: PMC7803743 DOI: 10.1038/s41598-020-80066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most malignant cancer types, hepatocellular carcinoma (HCC) is highly invasive and capable of metastasizing to distant organs. Intermedin (IMD), an endogenous peptide belonging to the calcitonin family, has been suggested playing important roles in cancer cell survival and invasion, including in HCC. However, how IMD affects the behavior of HCC cells and the underlying mechanisms have not been fully elucidated. Here, we show that IMD maintains an important homeostatic state by activating the ERK1/2-EGR1 (early growth response 1) signaling cascade, through which HCC cells acquire a highly invasive ability via significantly enhanced filopodia formation. The inhibition of IMD blocks the phosphorylation of ERK1/2, resulting in EGR1 downregulation and endoplasmic reticulum stress (ER) stress, which is evidenced by the upregulation of ER stress marker DDIT3 (DNA damage-inducible transcript 3). The high level of DDIT3 induces HCC cells into an ER-stress related apoptotic pathway. Along with our previous finding that IMD plays critical roles in the vascular remodeling process that improves tumor blood perfusion, IMD may facilitate the acquisition of increased invasive abilities and a survival benefit by HCC cells, and it is easier for HCC cells to obtain blood supply via the vascular remodeling activities of IMD. According to these results, blockade of IMD activity may have therapeutic potential in the treatment of HCC.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongyu Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Denian Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Liu
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhijun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yong'gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Li Z, Guo J, Bian Y, Zhang M. Intermedin protects thapsigargin‑induced endoplasmic reticulum stress in cardiomyocytes by modulating protein kinase A and sarco/endoplasmic reticulum Ca 2+‑ATPase. Mol Med Rep 2020; 23:107. [PMID: 33300086 PMCID: PMC7723158 DOI: 10.3892/mmr.2020.11746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Intermedin (IMD) is a calcitonin/calcitonin-related peptide that elicits cardioprotective effects in a variety of heart diseases, such as cardiac hypertrophy and heart failure. However, the molecular mechanism of IMD remains unclear. The present study investigated the effects of IMD on neonatal rat ventricular myocytes treated with thapsigargin. The results of the present study demonstrated that thapsigargin induced apoptosis in cardiomyocytes in a dose- and time-dependent manner. Thapsigargin induced endoplasmic reticulum stress, as determined by increased expression levels of 78-kDa glucose-regulated protein, C/EBP-homologous protein and caspase-12, which were dose-dependently attenuated by pretreatment with IMD. In addition, IMD treatment counteracted the thapsigargin-induced suppression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity and protein expression levels, and cytoplasmic Ca2+ overload. IMD treatment also augmented the phosphorylation of phospholamban, which is a crucial regulator of SERCA. Additionally, treatment with the protein kinase A antagonist H-89 inhibited the IMD-mediated cardioprotective effects, including SERCA activity restoration, anti-Ca2+ overload, endoplasmic reticulum stress inhibition and antiapoptosis effects. In conclusion, the results of the present study suggested that IMD may protect cardiomyocytes against thapsigargin-induced endoplasmic reticulum stress and the associated apoptosis at least partly by activating the protein kinase A/SERCA pathway.
Collapse
Affiliation(s)
- Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jia Guo
- Department of Cardiology, Shanxi Medical University First Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Yunfei Bian
- Department of Cardiology, Shanxi Medical University Second Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
15
|
Tellİ G, Tel BC, GÜmÜŞel B. The Cardiopulmonary Effects of the Calcitonin Gene-related Peptide Family. Turk J Pharm Sci 2020; 17:349-356. [PMID: 32636714 DOI: 10.4274/tjps.galenos.2019.47123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 01/12/2023]
Abstract
Cardiopulmonary diseases are very common among the population. They are high-cost diseases and there are still no definitive treatments. The roles of members of the calcitonin-gene related-peptide (CGRP) family in treating cardiopulmonary diseases have been studied for many years and promising results obtained. Especially in recent years, two important members of the family, adrenomedullin and adrenomedullin2/intermedin, have been considered new treatment targets in cardiopulmonary diseases. In this review, the roles of CGRP family members in cardiopulmonary diseases are investigated based on the studies performed to date.
Collapse
Affiliation(s)
- Gökçen Tellİ
- Hacettepe University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Banu Cahide Tel
- Hacettepe University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Bülent GÜmÜŞel
- Lokman Hekim University Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
16
|
Zhang LS, Liu Y, Chen Y, Ren JL, Zhang YR, Yu YR, Jia MZ, Ning ZP, Du J, Tang CS, Qi YF. Intermedin alleviates pathological cardiac remodeling by upregulating klotho. Pharmacol Res 2020; 159:104926. [PMID: 32502636 DOI: 10.1016/j.phrs.2020.104926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 11/19/2022]
Abstract
Cardiac remodeling is accompanied by cardiac hypertrophy, fibrosis, dysfunction, and eventually leading to heart failure. Intermedin (IMD), as a paracrine/autocrine peptide, has a protective effect in cardiovascular diseases. In this study, we elucidated the role and the underlying mechanism of IMD in pathological remodeling. Pathological remodeling mouse models were induced by abdominal aorta constriction for 4 weeks or angiotensin II (Ang II) infusion for 2 weeks in wildtype, IMD-overexpression, IMD-knockout and klotho-knockdown mice. Western blot, real-time PCR, histological staining, echocardiography and hemodynamics were used to detect the role of IMD in cardiac remodeling. Cardiac hypertrophy, fibrosis and dysfunction were significantly aggravated in IMD-knockout mice versus wildtype mice, and the expression of klotho was downregulated. Conversely, cardiac remodeling was alleviated in IMD-overexpression mice, and the expression of klotho was upregulated. Hypertension induced by Ang II infusion rather than abdominal aorta constriction was mitigated by IMD. However, the cardioprotective effect of IMD was blocked in klotho-knockdown mice. Similar results were found in cultured neonatal rat cardiomyocytes, which was pretreated with IMD before Ang II stimulation. Mechanistically, IMD inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the activity of calcineurin to protect against cardiac hypertrophy through upregulating klotho in vivo and in vitro. Furthermore, peroxisome proliferator-activated receptor γ (PPARγ) might mediate IMD upregulating klotho. In conclusion, pathological remodeling may be alleviated by endogenous IMD, which inhibits the expression of calcineurin and p-CaMKII by upregulating klotho via the PPARγ pathway. It suggested that IMD might be a therapeutic target for heart disease.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Abdominal/physiopathology
- Aorta, Abdominal/surgery
- Calcineurin/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cells, Cultured
- Constriction
- Disease Models, Animal
- Fibrosis
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Klotho Proteins
- Mice, Inbred C57BL
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Neuropeptides/genetics
- Neuropeptides/metabolism
- PPAR gamma/metabolism
- Peptide Hormones/pharmacology
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yan Liu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, Beijing, 100029, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, Beijing, 100029, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100083, China.
| |
Collapse
|
17
|
Yu QQ, Cheng DX, Xu LR, Li YK, Zheng XY, Liu Y, Li YF, Liu HL, Bai L, Wang R, Fan JL, Liu EQ, Zhao SH. Urotensin II and urantide exert opposite effects on the cellular components of atherosclerotic plaque in hypercholesterolemic rabbits. Acta Pharmacol Sin 2020; 41:546-553. [PMID: 31685976 PMCID: PMC7468446 DOI: 10.1038/s41401-019-0315-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
Increasing levels of plasma urotensin II (UII) are positively associated with atherosclerosis. In this study we investigated the role of macrophage-secreted UII in atherosclerosis progression, and evaluated the therapeutic value of urantide, a potent competitive UII receptor antagonist, in atherosclerosis treatment. Macrophage-specific human UII-transgenic rabbits and their nontransgenic littermates were fed a high cholesterol diet for 16 weeks to induce atherosclerosis. Immunohistochemical staining of the cellular components (macrophages and smooth muscle cells) of aortic atherosclerotic lesions revealed a significant increase (52%) in the macrophage-positive area in only male transgenic rabbits compared with that in the nontransgenic littermates. However, both male and female transgenic rabbits showed a significant decrease (45% in males and 31% in females) in the smooth muscle cell-positive area compared with that of their control littermates. The effects of macrophage-secreted UII on the plaque cellular components were independent of plasma lipid level. Meanwhile the wild-type rabbits were continuously subcutaneously infused with urantide (5.4 µg· kg-1· h-1) using osmotic mini-pumps. Infusion of urantide exerted effects opposite to those caused by UII, as it significantly decreased the macrophage-positive area in male wild-type rabbits compared with that of control rabbits. In cultured human umbilical vein endothelial cells, treatment with UII dose-dependently increased the expression of the adhesion molecules VCAM-1 and ICAM-1, and this effect was partially reversed by urantide. The current study provides direct evidence that macrophage-secreted UII plays a key role in atherogenesis. Targeting UII with urantide may promote plaque stability by decreasing macrophage-derived foam cell formation, which is an indicator of unstable plaque.
Collapse
|
18
|
Chen Y, Zhang LS, Ren JL, Zhang YR, Wu N, Jia MZ, Yu YR, Ning ZP, Tang CS, Qi YF. Intermedin 1-53 attenuates aging-associated vascular calcification in rats by upregulating sirtuin 1. Aging (Albany NY) 2020; 12:5651-5674. [PMID: 32229709 PMCID: PMC7185112 DOI: 10.18632/aging.102934] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/27/2020] [Indexed: 02/01/2023]
Abstract
Vascular calcification is a common phenomenon in older adults. Intermedin (IMD) is a cardiovascular bioactive peptide inhibiting vascular calcification. In this study, we aimed to investigate whether IMD1-53 attenuates aging-associated vascular calcification. Vascular calcification was induced by vitamin D3 plus nicotine (VDN) in young and old rats. The calcification in aortas was more severe in old rats treated with VDN than young control rats, and IMD expression was lower. Exogenous administration of IMD1-53 significantly inhibited the calcium deposition in aortas and the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) in VDN-treated old rats. Moreover, levels of aging-related p16, p21 and β-galactosidase were all greatly decreased by IMD1-53. These results were further confirmed in rat and human VSMCs in vitro. In addition, IMD-deficient mouse VSMCs showed senescence features coinciding with osteogenic transition as compared with wild-type mouse VSMCs. Mechanistically, IMD1-53 significantly increased the expression of the anti-aging factor sirtuin 1 (sirt1); the inhibitory effects of IMD1-53 on calcification and senescence were blocked by sirt1 knockdown. Furthermore, preincubation with inhibitors of PI3K, AMPK or PKA efficiently blunted the upregulatory effect of IMD1-53 on sirt1. Consequently, IMD1-53 could attenuate aging-associated vascular calcification by upregulating sirt1 via activating PI3K/Akt, AMPK and cAMP/PKA signaling.
Collapse
Affiliation(s)
- Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Ning Wu
- Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100083, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100083, China.,Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| |
Collapse
|
19
|
IMD/ADM2 1-47, a factor that improves embryo quality. Theriogenology 2020; 146:1-13. [PMID: 32035360 DOI: 10.1016/j.theriogenology.2020.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 11/22/2022]
Abstract
Starting in vitro fertilization process with competent oocytes that may endure first cellular divisions is a critical step for obtaining an embryo. To obtain in vitro competent oocytes, culture conditions should emulate the in vivo microenvironment as close as possible. With the aim of improving the in vitro culture medium, the present study evaluated the IMD/ADM21-47 peptide as a factor that promotes oocyte competence and improves embryo quality in bovine systems. The culture supplemented with 153 μg/mL of IMD/ADM21-47 was correlated with the production of healthy oocytes in metaphase II (MII) stage in compacted cumulus-oocyte complexes (COC) with a decrease of BAX/BCL-2 to mRNA ratio and a reduction of late apoptosis by TUNEL in MII oocytes. In addition to this, treatment with IMD/ADM21-47 caused cAMPi level to be constant over time, and the cAMPi level kept increasing until 6 h. COC supplementation with 153 μg/mL of IMD/ADM21-47 increased the blastocyst production rate two-fold in comparison with control conditions. Only embryos from COC treatment with this peptide were capable of developing blastocysts in stage-6 grade I; compared with the control culture, it was the treatment with the greater number of blastocysts stage-5; these are characteristics of good quality blastocysts.
Collapse
|
20
|
Ranjbaran A, Nejabati HR, Ghasemnejad T, Latifi Z, Hamdi K, Hajipour H, Raffel N, Bahrami-Asl Z, Hakimi P, Mihanfar A, Nouri M, Fattahi A. Follicular Fluid Levels of Adrenomedullin 2, Vascular Endothelial Growth Factor and its Soluble Receptors Are Associated with Ovarian Response During ART Cycles. Geburtshilfe Frauenheilkd 2019; 79:86-93. [PMID: 30686838 PMCID: PMC6336467 DOI: 10.1055/a-0764-4765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction
Adrenomedullin 2 (ADM2) and vascular endothelial growth factor (VEGF) affect ovarian function, especially angiogenesis and follicular development. The actions of VEGF can be antagonized by its soluble receptors, soluble Fms-like tyrosine kinase-1 (sFlt-1) and soluble VEGF receptor 2 (sVEGFR-2), as they decrease its free form. In the present study, we evaluated the relationship between follicular fluid (FF) levels of AMD2, VEGF and its soluble receptors, and ICSI outcomes.
Materials and Methods
ICSI cycle outcomes were evaluated and FF levels of VEGF, sFlt-1, sVEGFR-2 and ADM2 were determined using ELISA kits.
Results
FF levels of ADM2, VEGF, and sVEGFR-2 were significantly higher in non-responders compared to other ovarian response groups (p < 0.05). There were significant correlations between ADM2, VEGF and sVEGFR-2 levels as well as VEGF/sFlt-1 and VEGF/sVEGFR-2 ratios (r = 0.586, 0.482, 0.260, and − 0.366, respectively). Based on the ROC curve, the cutoff value for ADM2 as a non-responder predictor was 348.55 (pg/ml) with a sensitivity of 67.7% and a specificity of 94.6%.
Conclusions
For the first time we measured FF ADM2 levels to determine the relationship to VEGF and its soluble receptors. We suggest that ADM2 could be a potential predictive marker for non-responders. Although the exact function of ADM2 in ovarian angiogenesis is not yet understood, our study may shed light on the possible role of ADM2 in folliculogenesis and ovulation.
Collapse
Affiliation(s)
- Ali Ranjbaran
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nathalie Raffel
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Zahra Bahrami-Asl
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Hakimi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynaz Mihanfar
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
21
|
Ni XQ, Lu WW, Zhang JS, Zhu Q, Ren JL, Yu YR, Liu XY, Wang XJ, Han M, Jing Q, Du J, Tang CS, Qi YF. Inhibition of endoplasmic reticulum stress by intermedin1-53 attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE KO Mice. Endocrine 2018; 62:90-106. [PMID: 29943223 DOI: 10.1007/s12020-018-1657-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum stress (ERS) is involved in the development of abdominal aortic aneurysm (AAA). Since bioactive peptide intermedin (IMD)1-53 protects against AAA formation, here we investigated whether IMD1-53 attenuates AAA by inhibiting ERS. AAA model was induced by angiotensin II (AngII) in ApoE KO mouse background. AngII-treated mouse aortas showed increased ERS gene transcription of caspase12, eukaryotic translation initiation factor 2a (eIf2a) and activating transcription factor 4(ATF4).The protein level of ERS marker glucose regulated protein 94(GRP94), ATF4 and C/EBP homologous protein 10(CHOP) was also up-regulated by AngII. Increased ERS levels were accompanied by severe VSMC apoptosis in human AAA aorta. In vivo administration of IMD1-53 greatly reduced AngII-induced AAA and abrogated the activation of ERS. To determine whether IMD inhibited AAA by ameliorating ERS, we used 2 non-selective ERS inhibitors phenyl butyrate (4-PBA) and taurine (TAU). Similar to IMD, PBA, and TAU significantly reduced the incidence of AAA and AAA-related pathological disorders. In vitro, AngII infusion up-regulated CHOP, caspase12 expression and led to VSMC apoptosis. IMD siRNA aggravated the CHOP, caspase12-mediated VSMC apoptosis, which was abolished by ATF4 silencing. IMD infusion promoted the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in aortas in ApoE KO mice, and the AMPK inhibitor compound C abolished the protective effect of IMD on VSMC ERS and apoptosis induced by AngII. In conclusion, IMD may protect against AAA formation by inhibiting ERS via activating AMPK phosphorylation.
Collapse
MESH Headings
- Adenylate Kinase/metabolism
- Angiotensin II
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Endoplasmic Reticulum Stress/drug effects
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Peptide Hormones/pharmacology
- Peptide Hormones/therapeutic use
- Phosphorylation/drug effects
Collapse
Affiliation(s)
- Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Jin-Sheng Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Yan-Rong Yu
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Xiu-Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, 050017, Shijiazhuang, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, 100029, Beijing, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China.
| |
Collapse
|
22
|
Wu D, Shi L, Li P, Ni X, Zhang J, Zhu Q, Qi Y, Wang B. Intermedin 1-53 Protects Cardiac Fibroblasts by Inhibiting NLRP3 Inflammasome Activation During Sepsis. Inflammation 2018; 41:505-514. [PMID: 29192367 DOI: 10.1007/s10753-017-0706-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sepsis is a disease that occurs as a result of systemic inflammatory response syndrome (SIRS) in response to an infection, contributing to multiple organ dysfunction and a high mortality rate. Interleukin-lβ (IL-1β) is a cytokine that plays critical roles in inflammation and cardiac dysfunction during severe sepsis. Intermedin1-53 (IMD1-53) has been recently discovered to possess potential endogenous anti-inflammatory and strong cardiovascular protective effects. To investigate whether IMD1-53 can inhibit the NLRP3/caspase-1/IL-1β pathway to alleviate cardiac injury and rescue heart function, sepsis was induced in vivo by caecal ligation and puncture (CLP) surgery, and lipopolysaccharides were used as septic stressors for cardiac fibroblasts (CFs) in vitro. The expressions of IMD1-53 receptors in sepsis rat heart were increased. After IMD1-53 treatment, inflammation caused by sepsis in vivo was greatly reduced, as shown by the downregulation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), nucleotide-binding domain and leucine-rich repeat containing family, pyrin containing 3 (NLRP3), pro-IL-1β, caspase 1, and nuclear translocation of nuclear factor-κB (NF-kB) protein levels. In addition, cardiac function was significantly improved and mean arterial blood pressure (MABP) increased by 34.8% (P < 0.05) which almost back to normal. Surprisingly, IMD1-53 inhibited cell apoptosis, as caspase 3 activity and Bax expression was significantly reduced in the heart upon IMD1-53 treatment. IMD1-53 abolished the upregulation of ASC, NLRP3, and caspase 1 protein levels in CFs induced by lipopolysaccharide (LPS). IMD1-53 increased cell survival rates and inhibited IL-1β production in the cell culture medium. IMD1-53 can protect against inflammation and heart injury during sepsis via attenuating the NLRP3/caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Di Wu
- The Peking University Aerospace School of Clinical Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Lin Shi
- The Peking University People's Hospital, Beijing, 100191, China
| | - Pengyang Li
- Texas Heart Institute, Houston, TX, 77030, USA
| | - Xianqiang Ni
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Jinsheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Qing Zhu
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
| | - Bin Wang
- The Peking University Aerospace School of Clinical Medicine, Peking University Health Science Center, Beijing, 100191, China.
- The First Affiliated Hospital of Shantou University Medical College, Guangdong, 515041, China.
| |
Collapse
|
23
|
Telli G, Tel BC, Yersal N, Korkusuz P, Gumusel B. Effect of intermedin/adrenomedullin2 on the pulmonary vascular bed in hypoxia-induced pulmonary hypertensive rats. Life Sci 2018; 192:62-67. [DOI: 10.1016/j.lfs.2017.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
24
|
Li H, Xiao CS, Bian YF, Bai R, Gao F. Intermedin attenuates high-glucose exacerbated simulated hypoxia/reoxygenation injury in H9c2 cardiomyocytes via ERK1/2 signaling. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x17744096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: This study investigated whether and how intermedin (IMD) exerted a protective effect against simulated hypoxia/reoxygenation (H/R) injury in high-glucose-treated H9c2 cells. Methods: Cellular viability was assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Oxidative stress was determined by malondialdehyde and superoxide dismutase content in the culture medium supernatant. Flow cytometry with Annexin V/propidium iodide staining was used to detect the cardiomyocyte apoptosis rate. The protein expression of Bax, Bcl-2, caspase-3, and ERK1/2 was determined by western blot. Results: IMD administration to H9c2 cells during H/R injury decreased oxidative stress product generation and inhibited apoptosis ( P < 0.05 or P < 0.01) while these effects were blocked by the ERK1/2 inhibitor ( P < 0.05 or P < 0.01). Through the application of a specific ERK1/2 inhibitor, it was demonstrated that IMD mitigates high-glucose-induced oxidative stress and apoptosis via ERK1/2 signaling. Conclusion: Intermedin may be a novel therapeutic agent for mitigating diabetic cardiovascular injury in the clinical setting.
Collapse
Affiliation(s)
- Hong Li
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chuan-Shi Xiao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yun-Fei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Bai
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fen Gao
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
25
|
Zhu Q, Ni XQ, Lu WW, Zhang JS, Ren JL, Wu D, Chen Y, Zhang LS, Yu YR, Tang CS, Qi YF. Intermedin reduces neointima formation by regulating vascular smooth muscle cell phenotype via cAMP/PKA pathway. Atherosclerosis 2017; 266:212-222. [PMID: 29053988 DOI: 10.1016/j.atherosclerosis.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/13/2017] [Accepted: 10/06/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) dedifferentiation contributes to neointima formation, which results in various vascular disorders. Intermedin (IMD), a cardiovascular paracrine/autocrine polypeptide, is involved in maintaining circulatory homeostasis. However, whether IMD protects against neointima formation remains largely unknown. The purpose of this study is to investigate the role of IMD in neointima formation and the possible mechanism. METHODS IMD1-53 (100ng/kg/h) or saline water was used on rat carotid-artery balloon-injury model. The mouse left common carotid-artery ligation-injury model was established using IMD-transgenic and C57BL/6J mice. Immunohistochemistry and immunofluorescence staining was used to detect the protein expression in rat carotid arteries. Radioimmunoassay was used to determine the serum IMD level. The hematoxylin andeosin staining was used for carotid arteries morphological testing. In vitro, for rat primary cultured VSMC phenotype transition, proliferation and migration assays, platelet-derived growth factor-BB (PDGF-BB) reagent and IMD1-53 peptide were added to the culture media at the final concentration of 20 ng/mL and 10-7mol/L respectively. Quantification of VSMC proliferation involved MTT and BrdU assay and migration was detected by wound-healing assay. Western blot and realtime PCR were used to detect the protein and mRNA levels of tissues or cells. RESULTS With the rat carotid-artery balloon-injury model, IMD was significantly downregulated in injured arteries and plasma. Exogenous IMD1-53 greatly inhibited neointima formation and prevented VSMC from switching to a synthetic phenotype. With the left common carotid-artery ligation-injury model, IMD-transgenic mice showed less neointima formation than C57BL/6J mice. PDGF-BB reduced IMD mRNA expression in rat primary cultured VSMCs but increased that of its receptors, calcitonin receptor-like receptor or receptor activity-modifying proteins. Furthermore, PDGF-BB promoted VSMC proliferation and migration and transformed VSMCs to the synthetic phenotype, which was reversed with IMD1-53 treatment. Mechanistically, IMD1-53 maintained the contractile VSMC phenotype via the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) pathway. CONCLUSIONS IMD attenuated neointima formation both in the rat model of carotid-artery balloon injury and mouse model of common carotid-artery ligation injury. IMD protection may be mediated by maintaining a VSMC contractile phenotype via the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jin-Sheng Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Di Wu
- The Peking University Aerospace School of Clinical Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yan-Rong Yu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China; Department of Microbiology and Parasitology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
26
|
Yang SX, Chen YX, Xu J, Yang ZH. Plasma Intermedin Level Indicates Severity and Treatment Efficacy of Septic Shock in Sprague-Dawley (SD) Rats. Med Sci Monit 2016; 22:5028-5034. [PMID: 27999422 PMCID: PMC5198747 DOI: 10.12659/msm.897885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the value of plasma intermedin (IMD) in assessing severity and treatment efficacy of septic shock. MATERIAL AND METHODS Healthy male Sprague-Dawley (SD) rats were chosen and divided into a normal control group (n=15) and a shock model group (n=27) that received intravenous injection of lipopolysaccharide (LPS). Then, 3 specimens were taken from each group. The shock model group rats were divided into an LPS group and a treatment group with 12 rats each. The treatment group received intravenous injection of compound sodium lactate solution. Plasma IMD and IMD1-47 mRNA expressions were compared and analyzed. RESULTS Mean arterial pressure (MAP) was lower while white blood cell count and TNF-α were higher in the shock model group than in the normal control group (P<0.05). After 10 h and 20 h, the treatment group had lower plasma IMD and IMD1-47 mRNA expressions compared with the LPS group (P<0.05). Plasma IMD and IMD1-47 mRNA expressions in the LPS group after 20 h were significantly higher than after 10 h (P<0.05). IMD was positively correlated with interleukins (IL-3, IL-6, and IL-8), white blood cell count, and body temperature (all P<0.05), but were negatively correlated with systolic pressure (r=-0.8474, P=0.0040). CONCLUSIONS Plasma IMD level can effectively reflect the severity of septic shock and can be used as an important indicator of septic shock treatment effectiveness.
Collapse
Affiliation(s)
- Su-Xian Yang
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| | - Yun-Xiu Chen
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| | - Jing Xu
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| | - Zhao-Hui Yang
- Department of Infectious Diseases, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| |
Collapse
|
27
|
Kovaleva IE, Garaeva AA, Chumakov PM, Evstafieva AG. Intermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4. Gene 2016; 590:177-85. [DOI: 10.1016/j.gene.2016.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
28
|
Zhang JS, Hou YL, Lu WW, Ni XQ, Lin F, Yu YR, Tang CS, Qi YF. Intermedin 1-53 Protects Against Myocardial Fibrosis by Inhibiting Endoplasmic Reticulum Stress and Inflammation Induced by Homocysteine in Apolipoprotein E-Deficient Mice. J Atheroscler Thromb 2016; 23:1294-1306. [PMID: 27052784 PMCID: PMC5113747 DOI: 10.5551/jat.34082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Endoplasmic reticulum stress (ERS) and inflammation participate in cardiac fibrosis. Importantly, a novel paracrine/autocrine peptide intermedin1-53 (IMD1-53) in the heart inhibits myocardial fibrosis in rats. However, the mechanisms are yet to be fully elucidated. METHODS Myocardial fibrosis in apolipoprotein E-deficient (ApoE -/-) mice and neonatal rat cardiac fibroblasts (CFs) were induced using homocysteine (Hcy). RESULTS IMD1-53 inhibited myocardial fibrosis in vivo and in vitro. Picrosirius red staining showed that IMD1-53 reduced myocardial interstitial collagen deposition in ApoE-/- mice treated with Hcy and decreased the expression of myocardial collagen I and III, which was further verified in rat CFs. IMD1-53 attenuated myocardial hypertrophy, as shown by cardiomyocyte cross-sectional area, ratio of heart weight to body weight, and mRNA levels of atrial natriuretic peptide and brain natriuretic peptide. IMD1-53 inhibited the upregulation of ERS hallmarkers such as glucose-regulated protein 78 (GRP78), GRP94, activating transcription factor 6 (ATF6), ATF4, inositol-requiring enzyme 1α, spliced-X-box-binding protein-1, protein kinase receptor-like ER kinase, and eukaryotic translation initiation factor 2α in mouse myocardium and rat CFs treated with Hcy. In addition, IMD1-53 decreased the production of inflammatory factors such as tumor necrosis factor-α, monocyte chemotactic protein-1, interleukin-6 (IL-6), and IL-1β in the mouse myocardium and rat CFs treated with Hcy. Concurrently, IMD1-53 ameliorated the expression of nuclear factor-κB, transforming growth factor-β1, and c-Jun N-terminal kinase in the mouse myocardium and rat CFs treated with Hcy. CONCLUSIONS IMD potentially protects against myocardial fibrosis induced by Hcy in ApoE-/- mice, possibly via attenuating myocardial ERS and inflammation.
Collapse
Affiliation(s)
- Jin-Sheng Zhang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Li P, Shi L, Han Y, Zhao Y, Qi Y, Wang B. Prognostic Value of Plasma Intermedin Level in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome. Medicine (Baltimore) 2016; 95:e3422. [PMID: 27100434 PMCID: PMC4845838 DOI: 10.1097/md.0000000000003422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Intermedin (IMD), an autocrine/paracrine biologically active peptide, plays a critical role in maintaining vascular homeostasis. Recent research has shown that high plasma levels of IMD are associated with poor outcomes for patients with ST-segment elevation acute myocardial infarction. However, the prognostic utility of IMD levels in non-ST-segment elevation acute coronary syndrome (NSTE-ACS) has not yet been investigated. We hypothesized that the level of plasma IMD would have prognostic value in patients with NSTE-ACS. Plasma IMD was determined by radioimmunoassay in 132 NSTE-ACS patients on admission to hospital and 132 sex- and age-matched healthy-control subjects. Major adverse cardiovascular events (MACEs), including death, heart failure, hospitalization, and acute myocardial infarction, were noted during follow-up. In total, 23 patients suffered MACEs during the follow-up period (mean 227 ± 118 days, range 2-421 days). Median IMD levels were higher in NSTE-ACS patients than control [320.0 (250.9/384.6) vs. 227.2 (179.7/286.9) pg/mL, P <0.001]. The area under the receiver-operating characteristic curve for IMD and N-terminal pro-B-type brain natriuretic peptide (NT-proBNP) did not significantly differ (0.73 and 0.79, both P <0.001, respectively; P = 0.946). ROC curve analysis revealed a cut-off value for IMD at 340.7 pg/mL. Cox regression analysis with cardiovascular risk variables and NT-proBNP showed that the risk of MACEs increased by a factor of 12.96 (95% CI, 3.26-49.42; P <0.001) with high IMD levels (at the cut-off value). IMD has potential as a prognostic biomarker for predicting MACEs in patients with NSTE-ACS.
Collapse
Affiliation(s)
- Pengyang Li
- From the Peking University Aerospace School of Clinical Medicine (PL, LS, BW), Peking University Health Science Center; Department of Cardiology (PL, YH, YZ, BW), Aerospace Central Hospital; Laboratory of Cardiovascular Bioactive Molecule (YQ), School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science (YQ), Ministry of Education; and Department of Pathogen Biology (YQ), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | |
Collapse
|