1
|
Tan Y, Zhong J, Zheng T, Fu Y, Liu M, Wang G. Associations of BRAF V600E mutation with the American College of Radiology Thyroid Imaging Reporting and Data System and clinicopathological characteristics in pediatric patients with papillary thyroid carcinoma. Pediatr Radiol 2024; 54:1128-1136. [PMID: 38771344 DOI: 10.1007/s00247-024-05943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Identifying the associations between BRAFV600E mutation, the American College of Radiology Thyroid Imaging Reporting and Data System (TI-RADS) and clinicopathological characteristics could assist in making appropriate treatment strategies for pediatric patients with papillary thyroid carcinoma. OBJECTIVE To retrospectively assess the associations between BRAFV600E mutation, TI-RADS, and clinicopathological characteristics in pediatric patients with papillary thyroid carcinoma. MATERIALS AND METHODS Between May 2013 and May 2023, pediatric patients with papillary thyroid carcinoma who underwent thyroidectomy were retrospectively evaluated. Univariate and multivariate logistic regression analyses were performed to determine the associations between BRAFV600E mutation, TI-RADS, and clinicopathological characteristics. The diagnostic performance of TI-RADS to predict BRAFV600E mutation was assessed. RESULTS The BRAFV600E mutation was found in 59.1% (39/66) of pediatric patients with papillary thyroid carcinoma. Multivariate analyses showed that hypoechoic/very hypoechoic [odds ratio (OR) = 8.48; 95% confidence interval (CI) = 1.48-48.74); P-value = 0.02] and punctate echogenic foci (OR = 24.3; 95% CI = 3.80-155.84; P-value = 0.001) were independent factors associated with BRAFV600E mutation. In addition, BRAFV600E mutation was significantly associated with TI-RADS 5 (OR = 12.61; 95% CI = 1.28-124.49; P-value = 0.03). There were no associations between BRAFV600E mutation and nodule size, composition, shape, margin, cervical lymph node metastasis, or Hashimoto's thyroiditis (P-value > 0.05). Combined with hypoechoic/very hypoechoic and punctate echogenic foci, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 89.7%, 85.2%, 89.7%, 85.2%, and 87.9%, respectively. CONCLUSIONS Hypoechoic/very hypoechoic, punctate echogenic foci, and TI-RADS 5 are independently associated with BRAFV600E mutation in pediatric patients with papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Yan Tan
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Jia Zhong
- Department of Ultrasound, Mawangdui District of Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China
| | - Taiqing Zheng
- Department of Pathology, Hunan Children's Hospital, Changsha, China
| | - Yusi Fu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Minghui Liu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Guotao Wang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, 410011, China.
| |
Collapse
|
2
|
Spaulding SL, Maayah M, Dinauer CA, Prasad M, Darbinyan A, Morotti R, Christison-Lagay ER. Molecular Genetics Augment Cytopathologic Evaluation and Surgical Planning of Pediatric Thyroid Nodules. J Pediatr Surg 2024; 59:975-980. [PMID: 38246817 DOI: 10.1016/j.jpedsurg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Molecular genetic testing in conjunction with cytopathology may improve prediction of malignancy in thyroid nodules, particularly those with indeterminate cytology (Bethesda III/IV). Though now commonplace in adults, pediatric data are limited. This study examines molecular genetics of pediatric nodules with correlation to cytologic and histologic classification at time of surgery and the distribution of mutations. METHODS Retrospective chart review of 164 patients <22 years who underwent surgical resection of a thyroid nodule between 2002 and 2020 with molecular testing on fine-needle aspiration biopsy (FNA) or final histopathology. RESULTS 85 (52 %) of 164 patients undergoing thyroid resection had available molecular genetic testing. BRAF V600E testing was performed on the FNA samples of 73 (86 %) patients and on 15 (18 %) surgical specimens; 31 (37 %) were positive. Of the remaining 54 patients, 21 had additional mutation/fusion testing. In 17 (81 %) cases, an alternate mutation/fusion was identified including 8 gene fusions, 3 DICER1 mutations, 4 NRAS mutations, one BRAF variant, and one unknown variant. BRAF, DICER1 mutations, and gene fusions predicted malignancy. Greater than 95 % of BRAF mutations were in Bethesda V/VI lesions and associated with classic variant PTC whereas fusions and DICER1 mutations clustered in Bethesda IV nodules. Bethesda III nodules harbored BRAF and NRAS mutations. In Bethesda IV nodules, a gene fusion or DICER mutation altered the surgical decision-making (upfront thyroidectomy rather than lobectomy) in 70 % of nodules submitted for genetic testing. CONCLUSION Expanded molecular genetic testing on FNA of pediatric thyroid nodules, particularly Bethesda III/IV, may improve prediction of malignancy and augment surgical decision-making. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Sarah L Spaulding
- Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| | - Marah Maayah
- Pediatric Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Catherine A Dinauer
- Endocrinology & Diabetes, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Manju Prasad
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Armine Darbinyan
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Raffaella Morotti
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
3
|
de Sousa MSA, Nunes IN, Christiano YP, Sisdelli L, Cerutti JM. Genetic alterations landscape in paediatric thyroid tumours and/or differentiated thyroid cancer: Systematic review. Rev Endocr Metab Disord 2024; 25:35-51. [PMID: 37874477 DOI: 10.1007/s11154-023-09840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Differentiated thyroid cancer (DTC) is a rare disease in the paediatric population (≤ 18 years old. at diagnosis). Increasing incidence is reflected by increases in incidence for papillary thyroid carcinoma (PTC) subtypes. Compared to those of adults, despite aggressive presentation, paediatric DTC has an excellent prognosis. As for adult DTC, European and American guidelines recommend individualised management, based on the differences in clinical presentation and genetic findings. Therefore, we conducted a systematic review to identify the epidemiological landscape of all genetic alterations so far investigated in paediatric populations at diagnosis affected by thyroid tumours and/or DTC that have improved and/or informed preventive and/or curative diagnostic and prognostic clinical conduct globally. Fusions involving the gene RET followed by NTRK, ALK and BRAF, were the most prevalent rearrangements found in paediatric PTC. BRAF V600E was found at lower prevalence in paediatric (especially ≤ 10 years old) than in adults PTC. We identified TERT and RAS mutations at very low prevalence in most countries. DICER1 SNVs, while found at higher prevalence in few countries, they were found in both benign and DTC. Although the precise role of DICER1 is not fully understood, it has been hypothesised that additional genetic alterations, similar to that observed for RAS gene, might be required for the malignant transformation of these nodules. Regarding aggressiveness, fusion oncogenes may have a higher growth impact compared with BRAF V600E. We reported the shortcomings of the systematized research and outlined three key recommendations for global authors to improve and inform precision health approaches, glocally.
Collapse
Affiliation(s)
- Maria Sharmila Alina de Sousa
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil
| | - Isabela Nogueira Nunes
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil
| | - Yasmin Paz Christiano
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil
| | - Luiza Sisdelli
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil
- PreScouter Inc., 29 E Madison St #500, Chicago, IL, 60602, USA
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumours Laboratory, Division of Genetics, Department of Morphology and Genetics and Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 11 andar, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
4
|
Kotanidou EP, Giza S, Tsinopoulou VR, Margaritis K, Papadopoulou A, Sakellari E, Kolanis S, Litou E, Serbis A, Galli-Tsinopoulou A. The Prognostic Significance of BRAF Gene Analysis in Children and Adolescents with Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:diagnostics13061187. [PMID: 36980495 PMCID: PMC10047331 DOI: 10.3390/diagnostics13061187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Thyroid cancer represents the prominent endocrine cancer in children. Papillary thyroid cancer (PTC) constitutes its most frequent (>90%) pediatric histological type. Mutations energizing the mitogen-activated-protein kinase (MAPK) pathway are definitely related to PTC. Its most common genetic alteration is in proto-oncogene B-Raf (BRAF). Mutated BRAF is proposed as a prognostic tool in adult PTC. We conducted a systematic review and meta-analysis evaluating the association of mutated BRAF gene and prognostic clinicopathological characteristics of PTC in children/adolescents. Systematic search for relevant studies included PubMed, MEDLINE, Scopus, clinicaltrials.gov and Cochrane Library. Pooled estimates of odds ratios for categorical data and mean difference for continuous outcomes were calculated using random/fixed-effect meta-analytic models. BRAFV600E mutation presents a pooled pediatric/adolescent prevalence of 33.12%. Distant metastasis is significantly associated with mutated BRAF gene (OR = 0.32, 95% CI = 0.16-0.61, p = 0.001). Tumor size (MD = -0.24, 95% CI = -0.62-0.135, p = 0.21), multifocality (OR = 1.13, 95% CI = 0.65-2.34, p = 0.74), vascular invasion (OR = 1.17, 95% CI = 0.67-2.05, p = 0.57), lymph node metastasis (OR = 0.92, 95% CI = 0.63-1.33, p = 0.66), extra-thyroid extension (OR = 0.78, 95% CI = 0.53-1.13, p = 0.19) and tumor recurrence (OR = 1.66, 95% CI = 0.68-4.21, p = 0.376) presented no association or risk with BRAF mutation among pediatric/adolescent PTC. Mutated BRAF gene in children and adolescents is less common than in adults. Mutation in BRAF relates significantly to distant metastasis among children/adolescents with PTC.
Collapse
Affiliation(s)
- Eleni P Kotanidou
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Styliani Giza
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Vasiliki Rengina Tsinopoulou
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Kosmas Margaritis
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Eleni Sakellari
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Savvas Kolanis
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Eleni Litou
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Anastasios Serbis
- Department of Pediatrics, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece
| | - Assimina Galli-Tsinopoulou
- Unit of Pediatric Endocrinology and Metabolism, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| |
Collapse
|
5
|
Molecular Landscape of Pediatric Thyroid Cancer: A Review. Diagnostics (Basel) 2022; 12:diagnostics12123136. [PMID: 36553142 PMCID: PMC9776958 DOI: 10.3390/diagnostics12123136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Thyroid carcinomas (TC) are rare in the pediatric population; however, they constitute the most common endocrine malignancy. Despite some similarities with adult carcinomas, they have distinct clinical behavior and responses to therapy due to their unique pathology and molecular characteristics. The age cut-off used for defining the pediatric age group has been variable across different studies, and the universally accepted recommendations influence accurate interpretation of the available data. Moreover, factors such as radiation exposure and germline mutations have greater impact in children than in adults. Papillary TC is the most common and the most evaluated pediatric TC. Others, including follicular, poorly differentiated and medullary carcinomas, are rarer and have limited available literature. Most studies are from the West. Asian studies are primarily from Japan, with few from China, India, Saudi Arabia and Republic of Korea. This review provides a comprehensive account of the well-established and novel biomarkers in the field, including point mutations, fusions, miRNA, and thyroid differentiation genes. Familial and syndromic associations are also discussed. Current management guidelines for pediatric patients are largely derived from those for adults. An awareness of the molecular landscape is essential to acknowledge the uniqueness of these tumors and establish specific diagnostic and therapeutic guidelines.
Collapse
|
6
|
Satapathy S, Bal C. Genomic landscape of sporadic pediatric differentiated thyroid cancers: a systematic review and meta-analysis. J Pediatr Endocrinol Metab 2022; 35:749-760. [PMID: 35434981 DOI: 10.1515/jpem-2021-0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Differentiated thyroid cancers (DTCs) in the paediatric population differ from that of their adult counterparts in terms of clinicopathological characteristics and treatment outcomes. This systematic review and meta-analysis was conducted to comprehensively evaluate the prevalence of various genetic alterations underlying the pathogenesis of sporadic paediatric DTCs. METHODS This study followed the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. Systematic searches were made on the PubMed and Embase databases using relevant keywords, and articles published until October 15, 2021 were selected. Data on the prevalence of various genetic alterations were extracted from the individual articles. Random-effects model was employed for meta-analysis to generate pooled estimates and their 95% confidence intervals (95% CIs). RESULTS Thirty-three articles comprising 1,380 paediatric patients were included. RET rearrangement (pooled prevalence: 24.4%, 95% CI: 19.1-30.1) was observed to be the most common genetic alteration in sporadic paediatric DTCs, closely followed by BRAF point mutation (pooled prevalence: 21.2%, 95% CI: 17.2-25.5). Other common alterations included: NTRK rearrangement (pooled prevalence: 13.5%, 95% CI: 9.5-17.9) and DICER1 mutation (pooled prevalence: 12.5%, 95% CI: 3.6-25.7). RAS and TERT mutations were observed to be relatively uncommon (pooled prevalence: 5.7%, 95% CI: 2.9-9.3, and 2.2%, 95% CI: 0.4-5.5, respectively). There was no evidence of publication bias. CONCLUSIONS Fusion oncogenes are noted to be the major oncogenic drivers in sporadic paediatric DTCs and underlie their unique behaviour. However, despite the relatively lower frequency of BRAF point mutation compared to adults, it remains a major player in childhood DTCs.
Collapse
Affiliation(s)
- Swayamjeet Satapathy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Giles Şenyürek Y, İşcan Y, Sormaz İC, Poyrazoğlu Ş, Tunca F. The Role of American Thyroid Association Pediatric Thyroid Cancer Risk Stratification and BRAFV600E Mutation in Predicting the
Response to Treatment in Papillary Thyroid Cancer Patients ≤18 Years Old. J Clin Res Pediatr Endocrinol 2022; 14:196-206. [PMID: 35135184 PMCID: PMC9176084 DOI: 10.4274/jcrpe.galenos.2022.2021-10-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the role of risk stratification by the American Thyroid Association (ATA) pediatric thyroid cancer risk levels and BRAFV600E mutation to predict the response to treatment in papillary thyroid cancer (PTC) patients ≤18 years old. METHODS Clinical outcomes during a median period of 6 (2-21.8) years were assessed in 70 patients, according to ATA pediatric risk stratification, BRAFV600E mutation status, and dynamic risk stratification (DRS) at final follow-up. RESULTS Of 70 patients, 44 (63%), 14 (20%), and 12 (17%) were classified initially as low-, intermediate-, and high-risk, respectively. BRAFV600E mutation analysis data was available in 55 (78.6%) patients, of whom 18 (32.7%) had the BRAFV600E mutation. According to the final DRS, 61 (87%), two (3%), six (9%), and one (1%) patients were classified as an excellent, incomplete biochemical, incomplete structural, and indeterminate response, respectively. All ATA low-risk patients showed excellent response to treatment, whereas the rate of excellent response was 65.4% in intermediate- and high-risk levels (p<0.001). The rates of excellent response in BRAFV600E positive and negative patients were 83% and 92%, respectively (p=0.339). The rate of locoregional recurrence was significantly higher in BRAFV600E positive vs negative patients (33.3% vs 2.7% respectively, p=0.001). CONCLUSION ATA pediatric risk stratification is effective in predicting response to treatment in PTC patients ≤18 years old. The presence of BRAFV600E mutation was highly predictive for recurrence but had no significant impact on the rate of excellent response to treatment at final follow-up.
Collapse
Affiliation(s)
- Yasemin Giles Şenyürek
- İstanbul University, İstanbul Faculty of Medicine, Department of Surgery, İstanbul, Turkey,* Address for Correspondence: İstanbul University, İstanbul Faculty of Medicine, Department of Surgery, İstanbul, Turkey Phone: +90 542 804 92 32 E-mail:
| | - Yalın İşcan
- İstanbul University, İstanbul Faculty of Medicine, Department of Surgery, İstanbul, Turkey
| | - İsmail Cem Sormaz
- İstanbul University, İstanbul Faculty of Medicine, Department of Surgery, İstanbul, Turkey
| | - Şükran Poyrazoğlu
- İstanbul University, İstanbul Faculty of Medicine, Department of Pediatrics, Unit of Pediatric Endocrinology, İstanbul, Turkey
| | - Fatih Tunca
- İstanbul University, İstanbul Faculty of Medicine, Department of Surgery, İstanbul, Turkey
| |
Collapse
|
8
|
Zurnadzhy L, Bogdanova T, Rogounovitch TI, Ito M, Tronko M, Yamashita S, Mitsutake N, Chernyshov S, Masiuk S, Saenko VA. The BRAFV600E Mutation Is Not a Risk Factor for More Aggressive Tumor Behavior in Radiogenic and Sporadic Papillary Thyroid Carcinoma at a Young Age. Cancers (Basel) 2021; 13:cancers13236038. [PMID: 34885148 PMCID: PMC8656579 DOI: 10.3390/cancers13236038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Analysis of the groups of young Ukrainian patients (aged ≤28 years) with radiogenic and sporadic papillary thyroid carcinomas (PTCs) showed that the frequency of BRAFV600E was increasing with patient age, consistently remaining lower in radiogenic PTCs. In both etiopathogenic groups, the BRAFV600E-positive PTCs more frequently had a dominant papillary growth pattern, smaller tumor size, higher Ki67 labeling index, and a frequency of the major indicators of tumor invasiveness that is lower than or equal to that of the BRAFV600E-negative tumors. Comparison of the BRAFV600E-positive PTCs across the groups found a virtual absence of differences, while the BRAFV600E-negative tumors differed markedly and displayed a higher frequency of invasive tumor features in the radiogenic PTCs. Hence, there is evidence that BRAFV600E does not confer a more aggressive course of PTC in young patients regardless of tumor etiology. Abstract Histopathological changes in the fusion oncogene-driven papillary thyroid carcinomas (PTCs) from children and adolescents exposed to Chernobyl fallout have been extensively studied. However, characteristics of the radiogenic BRAFV600E-positive PTCs, whose proportion is growing with time, are not well described yet. We analyzed the relationship between the BRAFV600E status (determined immunohistochemically with the VE1 antibody) and the clinicopathological features of 247 radiogenic and 138 sporadic PTCs from young Ukrainian patients aged ≤28 years. The frequency of BRAFV600E was increasing with patient age, consistently remaining lower in radiogenic PTCs. In both etiopathogenic groups, the BRAFV600E-positive PTCs more frequently had a dominant papillary growth pattern, smaller tumor size, higher Ki67 labeling index, and a frequency of the major indicators of tumor invasiveness that is lower than or equal to that of the BRAFV600E-negative tumors. Comparison of the BRAFV600E-positive PTCs across the groups found a virtual absence of differences. In contrast, the BRAFV600E-negative radiogenic PTCs displayed less frequent dominant papillary and more frequent solid growth patterns, lower Ki67 labeling index, and higher invasiveness than the BRAFV600E-negative sporadic tumors. Thus, BRAFV600E is not associated with a more aggressive course of PTC in young patients regardless of etiology. The major clinicopathological differences between the radiogenic and sporadic PTCs are observed among the BRAFV600E-negative tumors.
Collapse
Affiliation(s)
- Liudmyla Zurnadzhy
- State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, 69 Vyshgorodska Str., 04114 Kyiv, Ukraine; (L.Z.); (T.B.); (M.T.); (S.C.)
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Tetiana Bogdanova
- State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, 69 Vyshgorodska Str., 04114 Kyiv, Ukraine; (L.Z.); (T.B.); (M.T.); (S.C.)
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Tatiana I. Rogounovitch
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan;
- Correspondence: ; Tel.: +81-(0)95-819-7116
| | - Masahiro Ito
- Nagasaki Medical Center, 2-1001-1 Kubara, Omura 856-8562, Japan;
| | - Mykola Tronko
- State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, 69 Vyshgorodska Str., 04114 Kyiv, Ukraine; (L.Z.); (T.B.); (M.T.); (S.C.)
| | - Shunichi Yamashita
- Fukushima Medical University, Hikarigaoka 1, Fukushima 960-1295, Japan;
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba 263-8555, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Serhii Chernyshov
- State Institution “V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine”, 69 Vyshgorodska Str., 04114 Kyiv, Ukraine; (L.Z.); (T.B.); (M.T.); (S.C.)
| | - Sergii Masiuk
- State Institution “National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine”, 53 Illienka Str., 04050 Kyiv, Ukraine;
| | - Vladimir A. Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| |
Collapse
|
9
|
Rogounovitch TI, Mankovskaya SV, Fridman MV, Leonova TA, Kondratovitch VA, Konoplya NE, Yamashita S, Mitsutake N, Saenko VA. Major Oncogenic Drivers and Their Clinicopathological Correlations in Sporadic Childhood Papillary Thyroid Carcinoma in Belarus. Cancers (Basel) 2021; 13:3374. [PMID: 34282777 PMCID: PMC8268670 DOI: 10.3390/cancers13133374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Childhood papillary thyroid carcinoma (PTC) diagnosed after the Chernobyl accident in Belarus displayed a high frequency of gene rearrangements and low frequency of point mutations. Since 2001, only sporadic thyroid cancer occurs in children aged up to 14 years but its molecular characteristics have not been reported. Here, we determine the major oncogenic events in PTC from non-exposed Belarusian children and assess their clinicopathological correlations. Among the 34 tumors, 23 (67.6%) harbored one of the mutually exclusive oncogenes: 5 (14.7%) BRAFV600E, 4 (11.8%) RET/PTC1, 6 (17.6%) RET/PTC3, 2 (5.9%) rare fusion genes, and 6 (17.6%) ETV6ex4/NTRK3. No mutations in codons 12, 13, and 61 of K-, N- and H-RAS, BRAFK601E, or ETV6ex5/NTRK3 or AKAP9/BRAF were detected. Fusion genes were significantly more frequent than BRAFV600E (p = 0.002). Clinicopathologically, RET/PTC3 was associated with solid growth pattern and higher tumor aggressiveness, BRAFV600E and RET/PTC1 with classic papillary morphology and mild clinical phenotype, and ETV6ex4/NTRK3 with follicular-patterned PTC and reduced aggressiveness. The spectrum of driver mutations in sporadic childhood PTC in Belarus largely parallels that in Chernobyl PTC, yet the frequencies of some oncogenes may likely differ from those in the early-onset Chernobyl PTC; clinicopathological features correlate with the oncogene type.
Collapse
Affiliation(s)
- Tatiana I. Rogounovitch
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan; (T.I.R.); (N.M.)
| | - Svetlana V. Mankovskaya
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Mikhail V. Fridman
- Republican Centre for Thyroid Tumors, Department of Pathology, Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus;
| | - Tatiana A. Leonova
- Counseling-Diagnostic Department of Thyroid Diseases, Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus;
| | | | - Natalya E. Konoplya
- N.N.Alexandrov National Cancer Centre of Belarus, Department of Chemotherapy, 223040 Minsk, Belarus;
| | - Shunichi Yamashita
- Radiation Medical Science Center, Fukushima Medical University, Fukushima 960-1295, Japan;
- Center for Advanced Radiation Emergency Medicine, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan; (T.I.R.); (N.M.)
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Vladimir A. Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
10
|
Mitsutake N, Saenko V. Molecular pathogenesis of pediatric thyroid carcinoma. JOURNAL OF RADIATION RESEARCH 2021; 62:i71-i77. [PMID: 33978172 PMCID: PMC8114219 DOI: 10.1093/jrr/rraa096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Indexed: 06/12/2023]
Abstract
There has been little understanding of the molecular pathogenesis of pediatric thyroid cancers. Most of them are histologically classified as papillary thyroid carcinoma (PTC). Ionizing radiation is the most important environmental factor to induce PTC, especially in children. Particularly, radiation-related pediatric PTCs after the Chernobyl accident provided invaluable information. In addition, the recent accumulation of sporadic pediatric PTC cases, partly due to advances in diagnostic imaging, has also provided insight into their general pathogenesis. In PTC development, basically two types of genetic alterations, fusion oncogenes, mainly RET/PTC, and a point mutation, mainly BRAFV600E, are thought to play a key role as driver oncogenes. Their frequencies vary depending on patient age. The younger the age, the more prevalent the fusion oncogenes are. Higher incidence of fusion oncogenes was also observed in cases exposed to radiation. In short, fusion oncogenes are associated with both age and radiation and are not evidence of radiation exposure. The type of driver oncogene is shifted toward BRAFV600E during adolescence in sporadic PTCs. However, until about this age, fusion oncogenes seem to still confer dominant growth advantages, which may lead to the higher discovery rate of the fusion oncogenes. It has been postulated that RET/PTC in radiation-induced PTC is generated by ionizing radiation; however, there is an interesting hypothesis that thyroid follicular cell clones with pre-existing RET/PTC were already present, and radiation may play a role as a promoter/progressor but not initiator. Telomerase reverse transcriptase gene (TERT) promoter mutations, which are the strongest marker of tumor aggressiveness in adult PTC cases, have not been detected in pediatric cases; however, TERT expression without the mutations may play a role in tumor aggressiveness. In this paper, the recent information regarding molecular findings in sporadic and radiation-associated pediatric PTCs is summarized.
Collapse
Affiliation(s)
- Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Vladimir Saenko
- Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
11
|
Ozolek JA. Selected Topics in the Pathology of the Thyroid and Parathyroid Glands in Children and Adolescents. Head Neck Pathol 2021; 15:85-106. [PMID: 33723755 PMCID: PMC8010056 DOI: 10.1007/s12105-020-01274-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
The goals of this chapter in keeping with the overall general themes of this special edition will be (1) to highlight aspects of development of the thyroid and parathyroid glands with particular focus on the role and contribution of the neural crest (or not) and how this may impact on the pathology that is seen, (2) to emphasize those lesions particularly more commonly arising in the pediatric population that actually generate specimens that the surgical pathologist would encounter, and (3) highlight more in depth specific lesions associated with heritable syndromes or specific gene mutations since the heritable syndromes tends to manifest in the pediatric age group. In this light, the other interesting areas of pediatric thyroid disease including medical thyroid diseases, congenital hypothyroidism, anatomic variants and aberrations of development that lead to structural anomalies will not be emphasized here.
Collapse
Affiliation(s)
- John A. Ozolek
- West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
12
|
Guo M, Chen Z, Li Y, Li S, Shen F, Gan X, Feng J, Cai W, Liu Q, Xu B. Tumor Mutation Burden Predicts Relapse in Papillary Thyroid Carcinoma With Changes in Genes and Immune Microenvironment. Front Endocrinol (Lausanne) 2021; 12:674616. [PMID: 34248843 PMCID: PMC8261145 DOI: 10.3389/fendo.2021.674616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The risk factors of papillary thyroid carcinoma (PTC) recurrence are meaningful for patients and clinicians. Tumor mutation burden (TMB) has been a biomarker for the effectiveness of immune checkpoint inhibitor (ICI) and prognosis in cancer. However, the role of TMB and its latent significance with immune cell infiltration in PTC are still unclear. Herein, we aimed to explore the effect of TMB on PTC prognosis. MATERIAL AND METHODS RNA-seq and DNA-seq datasets of PTC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Gene Ontology (GO) and gene set enrichment analysis (GSEA 4.0.1) were applied further to explore potential differences in PTC patients' biological functions. The differentially expressed genes (DEGs) and immune microenvironment between the high and low TMB groups were determined. RESULTS TMB had the highest AUC score than other clinical indicators in ROC analysis on recurrence-free survival, and a higher TMB score was related to a worse prognosis. Further, GSEA showed a higher level of oxidative phosphorylation (OXPHOS) in the high TMB group, and four genes correlated with recurrence-free survival rate were identified. The abundance of CD8+ T cells and M1 macrophages in the high TMB group was significantly lower than that in the low TMB group. CONCLUSIONS Our study found that TMB was a better predictor variable at evaluating the risk of PTC recurrence. Moreover, TMB-related genes conferred dramatically correlated prognosis, which was worth exploring in guiding postoperative follow-up and predicting recurrence for PTC patients.
Collapse
Affiliation(s)
- Mengli Guo
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhen Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yayi Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Sijin Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Fei Shen
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoxiong Gan
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Feng
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wensong Cai
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qingzhi Liu
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Qingzhi Liu, ; Bo Xu,
| | - Bo Xu
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Qingzhi Liu, ; Bo Xu,
| |
Collapse
|
13
|
Chakraborty D, Shakya S, Ballal S, Agarwal S, Bal C. BRAF V600E and TERT promoter mutations in paediatric and young adult papillary thyroid cancer and clinicopathological correlation. J Pediatr Endocrinol Metab 2020; 33:1465-1474. [PMID: 33027050 DOI: 10.1515/jpem-2020-0174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Objectives The primary objective of this study was to determine the prevalence of BRAF V600E and TERTpromoter mutations in paediatric and young adult patients with papillary thyroid carcinoma (PTC) and the secondary objective, to assess their association with clinicopathological features. Methods Patients ≤20 years who underwent surgery for differentiated thyroid cancer (DTC) from 2005 to 2018 were consecutively enrolled for BRAF V600E and TERTpromoter mutations analysis and records analysed for the association of aggressive features. Univariate analysis and multivariate logistic regression were used to identify the independent predictors of BRAF V600E mutations. Results Among 100 patients with DTC, 68 patients were ≤18 years and the remaining 30 patients were >18 years of age with a median age of 17 years (IQR 14-19 years) 98 patients had PTC and 2 had FTC. BRAF V600E mutation was present in 14/98 (14.3%) PTC and TERTpromoter mutation noted in none. Multivariate analysis identified RAI refractoriness (OR:10.57, 95% CI: 2.6 to 41.6, P-0.0008) as an independent factor associated with BRAF V600E mutation. 17 patients with distant metastases were negative for both BRAF V600E or TERTpromoter mutation. No significant association was observed between age, gender, PTC variants, extra-thyroidal extension, lymphovascular invasion, multifocality, RAI administration and event rate with BRAF V600E mutation. Irrespective of BRAF V600E mutation, radioiodine refractory status (p-0.0001) had a reduced EFS probability. Conclusion In paediatric & young adult PTC, TERTpromoter mutation is absent and BRAFV600E mutation is not associated with distant metastasis. The prevalence rate of the BRAF V600E mutation is much lower compared to adult PTC patients.
Collapse
Affiliation(s)
- Dhritiman Chakraborty
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Shakya
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Pediatric differentiated thyroid carcinoma: An update from the APSA Cancer Committee. J Pediatr Surg 2020; 55:2273-2283. [PMID: 32553450 DOI: 10.1016/j.jpedsurg.2020.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/04/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Differentiated thyroid carcinomas (DTCs) are rare in young children but represent almost 10% of all malignancies diagnosed in older adolescents. METHODS This article reviews the recent literature describing surgical therapeutic approaches to pediatric DTC, associated complications, and long-term recurrence and survival outcomes. RESULTS Similar to adult thyroid cancers, pediatric DTCs are more common in females and are associated with thyroid nodules, family history of thyroid cancer, radiation exposure, iodine deficiency, autoimmune thyroid disease, and genetic syndromes. Management of thyroid cancers in children involves ultrasound imaging, fine needle aspiration, and surgical resection with treatment decisions based on clinical and radiological features, cytology and risk assessment. CONCLUSIONS Total thyroidectomy and compartment based resection of clinically involved lymph node basins form the cornerstone of treatment of DTC. There is an evolving literature regarding the use of molecular genetics to inform treatment strategies and the use of targeted therapies to treat iodine refractory and surgically unresectable progressive disease. TYPE OF STUDY Summary review. LEVEL OF EVIDENCE This is a review article of previously published Level 1-5 articles that includes expert opinion (Level 5).
Collapse
|
15
|
Rangel-Pozzo A, Sisdelli L, Cordioli MIV, Vaisman F, Caria P, Mai S, Cerutti JM. Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers (Basel) 2020; 12:E3146. [PMID: 33120984 PMCID: PMC7693829 DOI: 10.3390/cancers12113146] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer is a rare malignancy in the pediatric population that is highly associated with disease aggressiveness and advanced disease stages when compared to adult population. The biological and molecular features underlying pediatric and adult thyroid cancer pathogenesis could be responsible for differences in the clinical presentation and prognosis. Despite this, the clinical assessment and treatments used in pediatric thyroid cancer are the same as those implemented for adults and specific personalized target treatments are not used in clinical practice. In this review, we focus on papillary thyroid carcinoma (PTC), which represents 80-90% of all differentiated thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence the histologic subtypes in both children and adults. This review also highlights telomere-related genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers.
Collapse
Affiliation(s)
- Aline Rangel-Pozzo
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Luiza Sisdelli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Maria Isabel V. Cordioli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| | - Fernanda Vaisman
- Instituto Nacional do Câncer, Rio de Janeiro, RJ 22451-000, Brazil;
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Sabine Mai
- Cell Biology, Research Institute of Oncology and Hematology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Janete M. Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo/EPM, São Paulo, SP 04039-032, Brazil; (L.S.); (M.I.V.C.); (J.M.C.)
| |
Collapse
|
16
|
Rashid FA, Munkhdelger J, Fukuoka J, Bychkov A. Prevalence of BRAFV600E mutation in Asian series of papillary thyroid carcinoma-a contemporary systematic review. Gland Surg 2020; 9:1878-1900. [PMID: 33224863 PMCID: PMC7667088 DOI: 10.21037/gs-20-430] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/04/2020] [Indexed: 12/30/2022]
Abstract
Papillary thyroid carcinoma (PTC), the most common malignancy of the endocrine system, is frequently driven by BRAFV600E mutation, which was reported in 35-60% cases in Western series. Numerous studies have recently emerged from Asian countries and regions; however sufficient summary is lacking to date. BRAF mutation serves as a diagnostic and prognostic tool in thyroid cancer, therefore establishing a rate of BRAF on the national scale could be of practical significance. We performed systematic reviews of available literature to investigate the prevalence of BRAF mutation in series of PTC from various Asian countries and regions. Out of the total 3,966 reports identified via initial screening, 138 studies encompassing over 40,000 PTCs were included for the final analysis. A vast majority (90.2%) of PTCs with known BRAF status were from East Asia, including China, South Korea, and Japan, with BRAF mutation rates of 71.2%, 75.5%, and 70.6%, respectively. Less abundant Indian and Saudi Arabian series found 45.6% and 46.3% prevalence of BRAFV600E in PTC, respectively. Much limited evidence was available from Thailand, Iran, Kazakhstan, Taiwan, Singapore, Indonesia, Hong Kong, Philippines, Vietnam, Iraq, and Myanmar. No relevant publications were found from other highly populated countries, such as Pakistan, Bangladesh, and Malaysia. After grouping by geographic region, we found that the highest rate of BRAFV600E was reported in the PTC series from East Asia (76.4%). Much lower rate (45-48%) was seen in PTC cohorts from South Asia, Central Asia, and the Middle East while the Southeast Asian series were in between (57%). Further subgroup analysis revealed that studies employing fresh frozen tissue and fine-needle aspirates showed higher rates of BRAF compared to those used formalin-fixed paraffin-embedded tissues. We found that the PTC series enrolled patients' cohorts after 2010 demonstrated a higher rate of BRAF compared to the earlier series. Finally, pediatric PTCs had lower BRAF prevalence compared to the baseline rate for the country. In conclusion, despite considerable among and within countries heterogeneity, the Asian PTC series showed a higher prevalence of BRAFV600E mutation than that in Western series. Causes of geographic heterogeneity, whether genuine (etiology, genetics) or methodology-related should be further investigated.
Collapse
Affiliation(s)
- Faiza Abdul Rashid
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan
| | | | - Junya Fukuoka
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, Japan
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, Japan
- Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
17
|
Prasad PK, Mahajan P, Hawkins DS, Mostoufi-Moab S, Venkatramani R. Management of pediatric differentiated thyroid cancer: An overview for the pediatric oncologist. Pediatr Blood Cancer 2020; 67:e28141. [PMID: 32275118 DOI: 10.1002/pbc.28141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 02/03/2023]
Abstract
Differentiated thyroid cancer (DTC) is the most common childhood thyroid malignancy. The standard of care for pediatric DTC is total thyroidectomy followed by radioactive iodine (RAI) treatment when indicated. Molecular changes and potential therapeutic targets have been recently described in pediatric thyroid cancer. Pediatric oncologists are increasingly involved in the evaluation of thyroid nodules in childhood cancer survivors and in the management of advanced thyroid cancer. In 2015, the American Thyroid Association published management guidelines for children with DTC. We provide an overview of the current standard of care and highlight available targeted therapies for progressive or RAI refractory DTC.
Collapse
Affiliation(s)
- Pinki K Prasad
- Louisiana State University Health Sciences Center, Children's Hospital of New Orleans, New Orleans, Louisiana
| | - Priya Mahajan
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Douglas S Hawkins
- Seattle Children's Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Sogol Mostoufi-Moab
- Divisions of Endocrinology and Hematology/Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rajkumar Venkatramani
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
18
|
Al-Salam S, Sharma C, Afandi B, Al Dahmani K, Al-Zahrani AS, Al Shamsi A, Al Kaabi J. BRAF and KRAS mutations in papillary thyroid carcinoma in the United Arab Emirates. PLoS One 2020; 15:e0231341. [PMID: 32315324 PMCID: PMC7173769 DOI: 10.1371/journal.pone.0231341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/22/2020] [Indexed: 01/09/2023] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is the most common malignant thyroid neoplasm comprising 80–90% of all thyroid malignancies. Molecular changes in thyroid follicular cells are likely associated with the development of PTC. Mutations in serine/threonine-protein kinase (BRAF) and Rat sarcoma viral oncogene homolog (RAS) are commonly seen in PTC. Methods In total, 90 cases of PTC are randomly selected from archive paraffin blocks and 10μm sections were cut and processed for DNA extraction. BRAFV600E mutation and 8 types of KRAS mutations were investigated using Real Time PCR. Results BRAFV600E mutation was identified in 46% of PTC while KRAS mutations were seen in 11% of PTC. There was significant correlation between BRAFV600E mutation and PTC larger than 5cm in diameter, positive surgical margin and lymph node metastasis. BRAFV600E mutation was significantly higher in patients with less than 55-year of age than those more than 55-year of age. BRAFV600E mutation was significantly higher in patients with family history of thyroid cancer than those without. There was no significant difference in BRAFV600E mutation between males and females, PTC classic and follicular variants, unifocal and multifocal PTC. There was a significant higher percentage of BRAFV600E mutation in classic PTC than papillary microcarcinoma variant. There was no significant age, gender, histologic type, tumor size, lymph node metastasis, tumor focality, and surgical margin status differences between KRAS mutated and non-mutated PTC. Conclusion BRAFV600E and KRAS mutation are seen in a significant number of PTC in the UAE. BRAF mutation is significantly correlated with large tumor size, positive surgical margins and lymph node metastasis suggesting an association between BRAFV600E mutation and tumor growth and spread.
Collapse
Affiliation(s)
- Suhail Al-Salam
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bachar Afandi
- Endocrine Division, Tawam Hospital, Al Ain, United Arab Emirates
| | | | - Ali S. Al-Zahrani
- Department of Medicine, Molecular Endocrinology Division, Alfaisal University, Riyadh, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Amal Al Shamsi
- Department of Internal Medicine, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
19
|
Shi J, Ren M, Jia J, Tang M, Guo Y, Ni X, Shi T. Genotype-Phenotype Association Analysis Reveals New Pathogenic Factors for Osteogenesis Imperfecta Disease. Front Pharmacol 2019; 10:1200. [PMID: 31680973 PMCID: PMC6803541 DOI: 10.3389/fphar.2019.01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Osteogenesis imperfecta (OI), mainly caused by structural abnormalities of type I collagen, is a hereditary rare disease characterized by increased bone fragility and reduced bone mass. Clinical manifestations of OI mostly include multiple repeated bone fractures, thin skin, blue sclera, hearing loss, cardiovascular and pulmonary system abnormalities, triangular face, dentinogenesis imperfecta (DI), and walking with assistance. Currently, 20 causative genes with 18 subtypes have been identified for OI, of them, variations in COL1A1 and COL1A2 have been demonstrated to be major causative factors to OI. However, the complexity of the bone formation process indicates that there are potential new pathogenic genes associated with OI. To comprehensively explore the underlying mechanism of OI, we conducted association analysis between genotypes and phenotypes of OI diseases and found that mutations in COL1A1 and COL1A2 contributed to a large proportion of the disease phenotypes. We categorized the clinical phenotypes and the genotypes based on the variation types for those 155 OI patients collected from literature, and association study revealed that three phenotypes (bone deformity, DI, walking with assistance) were enriched in two variation types (the Gly-substitution missense and groups of frameshift, nonsense, and splicing variations). We also identified four novel variations (c.G3290A (p.G1097D), c.G3289C (p.G1097R), c.G3289A (p.G1097S), c.G3281A (p.G1094D)) in gene COL1A1 and two novel variations (c.G2332T (p.G778C), c.G2341T (p.G781C)) in gene COL1A2, which could potentially contribute to the disease. In addition, we identified several new potential pathogenic genes (ADAMTS2, COL5A2, COL8A1) based on the integration of protein–protein interaction and pathway enrichment analysis. Our study provides new insights into the association between genotypes and phenotypes of OI and novel information for dissecting the underlying mechanism of the disease.
Collapse
Affiliation(s)
- Jingru Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Meng Ren
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinmeng Jia
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Muxue Tang
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongli Guo
- Big Data and Engineering Research Center, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xin Ni
- Big Data and Engineering Research Center, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Big Data and Engineering Research Center, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Jia J, An Z, Ming Y, Guo Y, Li W, Liang Y, Guo D, Li X, Tai J, Chen G, Jin Y, Liu Z, Ni X, Shi T. eRAM: encyclopedia of rare disease annotations for precision medicine. Nucleic Acids Res 2019; 46:D937-D943. [PMID: 29106618 PMCID: PMC5753383 DOI: 10.1093/nar/gkx1062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023] Open
Abstract
Rare diseases affect over a hundred million people worldwide, most of these patients are not accurately diagnosed and effectively treated. The limited knowledge of rare diseases forms the biggest obstacle for improving their treatment. Detailed clinical phenotyping is considered as a keystone of deciphering genes and realizing the precision medicine for rare diseases. Here, we preset a standardized system for various types of rare diseases, called encyclopedia of Rare disease Annotations for Precision Medicine (eRAM). eRAM was built by text-mining nearly 10 million scientific publications and electronic medical records, and integrating various data in existing recognized databases (such as Unified Medical Language System (UMLS), Human Phenotype Ontology, Orphanet, OMIM, GWAS). eRAM systematically incorporates currently available data on clinical manifestations and molecular mechanisms of rare diseases and uncovers many novel associations among diseases. eRAM provides enriched annotations for 15 942 rare diseases, yielding 6147 human disease related phenotype terms, 31 661 mammalians phenotype terms, 10,202 symptoms from UMLS, 18 815 genes and 92 580 genotypes. eRAM can not only provide information about rare disease mechanism but also facilitate clinicians to make accurate diagnostic and therapeutic decisions towards rare diseases. eRAM can be freely accessed at http://www.unimd.org/eram/.
Collapse
Affiliation(s)
- Jinmeng Jia
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhongxin An
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Ming
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, The Ministry of Education Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yunxiang Liang
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dongming Guo
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Li
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jun Tai
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Geng Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Zhimei Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
21
|
Correlation between TERT C228T and clinic-pathological features in pediatric papillary thyroid carcinoma. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1563-1571. [PMID: 31321667 DOI: 10.1007/s11427-018-9546-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
The aims of the present study were to reveal the prevalence of the TERT C228T mutation in pediatric papillary thyroid carcinoma (PPTC) and to further investigate the role of the TERT C228T mutation in PPTC. We also tested another TERT mutation, TERT C250T, although this was not detected in PPTC patients. In this study, 48 patients with PPTC (41 with classic PPTC) were enrolled. DNA was extracted from PPTC tissues and TERT C228T mutation analysis was performed. Chi-squared analysis, Fisher's exact test, and a t-test were applied to test the significance of differences. The TERT C228T mutation presented in 13 (27.1%) of the 48 PPTC patients and 10 (24.4%) of the 41 classical PPTC patients. There were significant differences between PPTC patients with the TERT C228T mutation and those without in terms of modified radical neck dissection, multifocality, capsular invasion, extrathyroidal invasion, and American Joint Committee on Cancer (AJCC) tumor stage (P<0.05). In classical PPTC, there were additional significant differences in other clinic-pathological features, such as AJCC nodal stage (P=0.009) and American Thyroid Association (ATA) PPTC stage (P=0.021) between patients with and without the TERT C228T mutation. These findings indicate that the TERT C228T mutation is significantly correlated with certain aggressive clinic-pathological features of PPTC.
Collapse
|
22
|
Sisdelli L, Cordioli MICV, Vaisman F, Moraes L, Colozza-Gama GA, Alves PAG, Araújo ML, Alves MTS, Monte O, Longui CA, Cury AN, Carvalheira G, Cerutti JM. AGK-BRAF is associated with distant metastasis and younger age in pediatric papillary thyroid carcinoma. Pediatr Blood Cancer 2019; 66:e27707. [PMID: 30924609 DOI: 10.1002/pbc.27707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/24/2019] [Accepted: 02/23/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND The incidence of thyroid carcinoma has increased in most populations, including pediatric patients. The increase is almost exclusively due to an increase in the incidence of papillary thyroid carcinoma (PTC). Genetic alterations leading to mitogen-activated protein kinase (MAPK) pathway activation are highly prevalent in PTC, with BRAF V600E mutation being the most common event in adult PTC. Although a lower prevalence of BRAF V600E had been reported among pediatric patients, a higher prevalence of BRAF fusion has been identified in both radiation-exposed and sporadic pediatric PTC. However, little is known about the prognostic implications of BRAF fusions in pediatric PTC. PROCEDURE In this study, we investigated the prevalence of BRAF alterations (AGK-BRAF fusion and BRAF V600E mutation) in a large set of predominantly sporadic pediatric PTC cases and correlate with clinicopathological features. Somatic AGK-BRAF fusion was investigated by RT-PCR and confirmed by FISH break-apart. The BRAF V600E mutation was screened using Sanger sequencing. RESULTS AGK-BRAF fusion, found in 19% of pediatric PTC patients, was associated with distant metastasis and younger age. Conversely, the BRAF V600E, found in 15% of pediatric PTC patients, was correlated with older age and larger tumor size. CONCLUSION Collectively, our results advance knowledge concerning genetic bases of pediatric thyroid carcinoma, with potential implications for diagnosis, prognosis, and therapeutic approaches.
Collapse
Affiliation(s)
- Luiza Sisdelli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Cunha Vieira Cordioli
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Lais Moraes
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriel Avelar Colozza-Gama
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Osmar Monte
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Carlos Alberto Longui
- Department of Pediatrics, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Adriano Namo Cury
- Departmentof Medicine, Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Gianna Carvalheira
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Palaniappan R, Krishnamurthy A, Rajaraman SS, Kumar RK. Management outcomes of pediatric and adolescent papillary thyroid cancers with a brief review of literature. Indian J Cancer 2018; 55:105-110. [PMID: 30147104 DOI: 10.4103/ijc.ijc_486_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Papillary carcinoma of thyroid (PTC) is a rare disease in children and adolescents and contributes to about 1.5%-3% of all pediatric malignancies. To date, no randomized trial has ever been performed in the pediatric population and management of these patients has been extrapolated from adult practice. Materials and Methods Retrospective analysis of the patients treated for PTC in the age <21 years, between the years 1998-2013 at a tertiary cancer center from India. Results Sixty-seven patients were treated in the above said period with a male:female ratio of 1:1.6 and a median age of 18 years. Fifty-two (77.6%) patients clinically presented as a thyroid swelling with or without nodal swelling while 13 (19.4%) presented with isolated nodal swelling. Surgery was performed in 30 patients at a nononcological hospital and was subsequently referred to our center; more than half of them needed a completion surgery at our center. Pathologically, multifocal tumors were found in close to a quarter of the patients. Among the pathological variants, classical, follicular, and tall cell variants comprised 65.7%, 28.4%, and 5.9% of the cases, respectively. Nodal positivity was noted 71.6% of the cases of which 14.5% were N1a disease and the vast majority (85.5%) harboring N1b disease. The median follow-up period of the study cohort was 104 months during which there were 3 local, 6 nodal, and 2 systemic recurrences. The 5- and 10-year disease-free survival were found to be 85.9% and 81.4%, respectively. Univariate and multivariate analysis has shown no significant clinical and pathological feature defining the disease outcomes except for the T-stage. Logistic regression revealed extrathyroidal invasion and the age ≤ 15 years correlated with nodal positivity. Conclusion Being a rare malignancy, pediatric and adolescent PTCs tend to behave differently from adult PTC with a seemingly aggressive clinical presentation; however, they are associated with excellent survival outcomes.
Collapse
Affiliation(s)
| | - Arvind Krishnamurthy
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - S Swaminathan Rajaraman
- Department of Epidemiology and Biostatistics and Nuclear Medicine, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| | - R Krishna Kumar
- Department of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
| |
Collapse
|
24
|
Jia J, An Z, Ming Y, Guo Y, Li W, Li X, Liang Y, Guo D, Tai J, Chen G, Jin Y, Liu Z, Ni X, Shi T. PedAM: a database for Pediatric Disease Annotation and Medicine. Nucleic Acids Res 2018; 46:D977-D983. [PMID: 29126123 PMCID: PMC5753298 DOI: 10.1093/nar/gkx1049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/04/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
There is a significant number of children around the world suffering from the consequence of the misdiagnosis and ineffective treatment for various diseases. To facilitate the precision medicine in pediatrics, a database namely the Pediatric Disease Annotations & Medicines (PedAM) has been built to standardize and classify pediatric diseases. The PedAM integrates both biomedical resources and clinical data from Electronic Medical Records to support the development of computational tools, by which enables robust data analysis and integration. It also uses disease-manifestation (D-M) integrated from existing biomedical ontologies as prior knowledge to automatically recognize text-mined, D-M-specific syntactic patterns from 774 514 full-text articles and 8 848 796 abstracts in MEDLINE. Additionally, disease connections based on phenotypes or genes can be visualized on the web page of PedAM. Currently, the PedAM contains standardized 8528 pediatric disease terms (4542 unique disease concepts and 3986 synonyms) with eight annotation fields for each disease, including definition synonyms, gene, symptom, cross-reference (Xref), human phenotypes and its corresponding phenotypes in the mouse. The database PedAM is freely accessible at http://www.unimd.org/pedam/.
Collapse
Affiliation(s)
- Jinmeng Jia
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhongxin An
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Ming
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, The Ministry of Education Key Laboratory of Major Diseases in Children, Center for Medical Genetics, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xin Li
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yunxiang Liang
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dongming Guo
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jun Tai
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Geng Chen
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Zhimei Liu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, the Ministry of Education Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xin Ni
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
25
|
Rusinek D, Chmielik E, Krajewska J, Jarzab M, Oczko-Wojciechowska M, Czarniecka A, Jarzab B. Current Advances in Thyroid Cancer Management. Are We Ready for the Epidemic Rise of Diagnoses? Int J Mol Sci 2017; 18:E1817. [PMID: 28829399 PMCID: PMC5578203 DOI: 10.3390/ijms18081817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023] Open
Abstract
A rising incidence of thyroid cancers (TCs) mainly small tumors, observed during recent years, lead to many controversies regarding treatment strategies. TCs represent a distinct molecular background and clinical outcome. Although in most cases TCs are characterized by a good prognosis, there are some aggressive forms, which do not respond to standard treatment. There are still some questions, which have to be resolved to avoid dangerous simplifications in the clinical management. In this article, we focused on the current advantages in preoperative molecular diagnostic tests and histopathological examination including noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). We discussed the controversies regarding the extent of thyroid surgery and adjuvant radioiodine therapy, as well as new treatment modalities for radioiodine-refractory differentiated thyroid cancer (RR-DTC). Considering medullary thyroid cancer (MTC), we analyzed a clinical management based on histopathology and RET (ret proto-oncogene) mutation genotype, disease follow-up with a special attention to serum calcitonin doubling time as an important prognostic marker, and targeted therapy applied in advanced MTC. In addition, we provided some data regarding anaplastic thyroid cancer (ATC), a highly lethal neoplasm, which lead to death in nearly 100% of patients due to the lack of effective treatment options.
Collapse
Affiliation(s)
- Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Institute-Cancer Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie Memorial Institute-Cancer Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Jolanta Krajewska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Institute-Cancer Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Michal Jarzab
- 3rd Department of Radiotherapy and Chemotherapy, Breast Unit, Maria Sklodowska-Curie Memorial Institute-Cancer Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Malgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Institute-Cancer Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Agnieszka Czarniecka
- Department of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Institute-Cancer Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Institute-Cancer Center, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|