1
|
Hastie A, Clarke T, Germain S, Ollinger T, Lese P, Gupta V. Immunogenicity and Safety of AS03-Adjuvanted H7N9 Influenza Vaccine in Adults (18-64 and ≥65 Years): A Phase 1/2, Randomized, Placebo-Controlled Trial. Influenza Other Respir Viruses 2024; 18:e70020. [PMID: 39702896 DOI: 10.1111/irv.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Influenza A/Hong Kong/125/2017 (H7N9) virus poses a pandemic risk owing to its evolving nature. This study evaluated the immunogenicity and safety of an AS03-adjuvanted H7N9 vaccine in adults (18-64 years [younger] and ≥65 years [older]). METHODS Participants (younger, n = 418; older, n = 420) were randomized to receive one of six adjuvanted vaccines (hemagglutinin [1.9 μg, 3.75 μg, and 7.5 μg] with AS03A or AS03B) or placebo. The co-primary objectives were to determine whether the adjuvanted vaccines elicit an immune response against the vaccine-homologous virus 21 days after the second vaccine dose and to evaluate the safety of the vaccines. RESULTS H7N9 AS03-adjuvanted vaccines at various doses showed a humoral immune response but failed to meet CBER immunogenicity criteria. However, a trend of increased immune responses was observed with the AS03A adjuvant versus the AS03B adjuvant, particularly in older adults. In both age groups, injection site pain and fatigue occurred more frequently with adjuvanted vaccines. No reported serious adverse events were vaccine-related. CONCLUSIONS This study did not achieve its primary objective at any dose level. The modest immune response to AS03-adjuvanted vaccines, consistent with other studies using similar antigens, highlights the need for continued research for H7N9 pandemic preparedness. TRIAL REGISTRATION NCT04789577 [ClinicalTrials.gov].
Collapse
|
2
|
Sui X, Feng P, Guo J, Chen X, Chen R, Zhang Y, He F, Deng F. Novel targets and their functions in the prognosis of uterine corpus endometrial cancer patients. J Appl Genet 2024; 65:757-772. [PMID: 38639843 DOI: 10.1007/s13353-024-00856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
Aberrant mRNA expression is implicated in uterine corpus endometrial carcinoma (UCEC) oncogenesis and progression. However, effective prognostic biomarkers for UCEC remain limited. We aimed to construct a reliable multi-gene risk model using gene expression profiles. Utilizing TCGA data (543 UCEC samples, 35 controls), we identified 1517 differentially acting genes. Weighted gene co-expression complex analysis (WGCCA), hub gene screening, and risk regression analysis (RRA) were employed to determine prognosis-related genes and construct the risk model. Nomograms visualized risk scores and receiver operator characteristic (ROC) curves assessed model performance. Seven novel prognosis-related hub genes (ANGPT1, ASB2, GAL, GDF7, ONECUT2, SV2B, TRPC6) were identified. The model's concordance index (C index) by multivariate Cox regression analysis was 0.79. ROC curves yielded AUCs of 0.811 (3-year) and 0.79 (5-year), demonstrating the model's efficacy in predicting UCEC survival. Our study proposes a promising seven-biomarker risk model for predicting UCEC prognosis, offering potential clinical utility.
Collapse
Affiliation(s)
- Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Penghui Feng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jie Guo
- Harbin Medical University Daqing Campus, No. 39 Xinyang RoadHeilongjiang Province, Daqing City, China
| | - Xingtong Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Yanmin Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China.
| | - Feng Deng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
4
|
Anand P, Filipenko P, Huaman J, Lyudmer M, Hossain M, Santamaria C, Huang K, Ogunwobi OO, Holford M. Selective Inhibition of Liver Cancer Cells Using Venom Peptide. Mar Drugs 2019; 17:E587. [PMID: 31627357 PMCID: PMC6835663 DOI: 10.3390/md17100587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Increasingly cancer is being viewed as a channelopathy because the passage of ions via ion channels and transporters mediate the regulation of tumor cell survival, death, and motility. As a result, a potential targeted therapy for cancer is to use venom peptides that are selective for ion channels and transporters overexpressed in tumor cells. Here we describe the selectivity and mechanism of action of terebrid snail venom peptide, Tv1, for treating the most common type of liver cancer, hepatocellular carcinoma (HCC). Tv1 inhibited the proliferation of murine HCC cells and significantly reduced tumor size in Tv1-treated syngeneic tumor-bearing mice. Tv1's mechanism of action involves binding to overexpressed transient receptor potential (TRP) channels leading to calcium dependent apoptosis resulting from down-regulation of cyclooxygenase-2 (COX-2). Our findings demonstrate the importance of modulating ion channels and the unique potential of venom peptides as tumor specific ligands in the quest for targeted cancer therapies.
Collapse
Affiliation(s)
- Prachi Anand
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
- American Museum of Natural History, Central Park West at 79th St, New York, NY 10024, USA.
- CUNY Graduate Center Chemistry, Biology, Biochemistry Programs, 365 5th Ave, New York, NY 10016, USA.
- Weill Cornell Medicine (Biochemistry Department), 1300 York Avenue, New York, NY 10065, USA.
| | - Petr Filipenko
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Jeannette Huaman
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY 10065, USA.
| | - Michael Lyudmer
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Marouf Hossain
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Carolina Santamaria
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Kelly Huang
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
| | - Olorunseun O Ogunwobi
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
- Department of Biological Sciences, Hunter College, 695 Park Avenue, New York, NY 10065, USA.
| | - Mandë Holford
- Department of Chemistry and Biochemistry, Hunter College, Belfer Research Building 413 East 69th Street, New York, NY 10021, USA.
- American Museum of Natural History, Central Park West at 79th St, New York, NY 10024, USA.
- CUNY Graduate Center Chemistry, Biology, Biochemistry Programs, 365 5th Ave, New York, NY 10016, USA.
- Weill Cornell Medicine (Biochemistry Department), 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
5
|
Zhao Y, Zhang L, Zhang Y, Meng B, Ying W, Qian X. Identification of hedgehog signaling as a potential oncogenic driver in an aggressive subclass of human hepatocellular carcinoma: A reanalysis of the TCGA cohort. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1481-1491. [PMID: 31313086 DOI: 10.1007/s11427-019-9560-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease and the second most common cause of cancer-related death worldwide. Marked developments in genomic technologies helped scientists to understand the heterogeneity of HCC and identified multiple HCC-related molecular subclasses. An integrative analysis of genomic datasets including 196 patients from The Cancer Genome Atlas (TCGA) group has recently reported a new HCC subclass, which contains three subgroups (iCluster1, iCluster2, and iCluster3). However, the transcriptional molecular characteristics underlying the iClusters have not been thoroughly investigated. Herein, we identified a more aggressive subset of HCC patients in the iCluster1, and re-clustered the TCGA samples into novel HCC subclasses referred to as aggressive (Ag), moderate-aggressive (M-Ag), and less-aggressive (L-Ag) subclasses. The Ag subclass had a greater predictive power than the TCGA iCluster1, and a higher level of alpha fetoprotein, microscopic vascular invasion, immune infiltration, isocitrate dehydrogenase 1/2 mutation status, and a worse survival than M-Ag and L-Ag subclasses. Global transcriptomic analysis showed that activation of hedgehog signaling in the Ag subclass may play key roles in tumor development of aggressive HCC. GLI1, a key transcriptional regulator of hedgehog signaling upregulated in the Ag subclass, was correlated with poor prognosis of HCC, and may be a potential prognostic biomarker and therapeutic target for Ag subclass HCC patients.
Collapse
Affiliation(s)
- Yang Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Li Zhang
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,School of Statistics, Faculty of Economics and Management, East China Normal University, Shanghai, 200241, China
| | - Yong Zhang
- Key Lab of Transplant Engineering and Immunology, West China-Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Meng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Xiaohong Qian
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100124, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
6
|
Liao QS, Du Q, Lou J, Xu JY, Xie R. Roles of Na +/Ca 2+ exchanger 1 in digestive system physiology and pathophysiology. World J Gastroenterol 2019; 25:287-299. [PMID: 30686898 PMCID: PMC6343099 DOI: 10.3748/wjg.v25.i3.287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023] Open
Abstract
The Na+/Ca2+ exchanger (NCX) protein family is a part of the cation/Ca2+ exchanger superfamily and participates in the regulation of cellular Ca2+ homeostasis. NCX1, the most important subtype in the NCX family, is expressed widely in various organs and tissues in mammals and plays an especially important role in the physiological and pathological processes of nerves and the cardiovascular system. In the past few years, the function of NCX1 in the digestive system has received increasing attention; NCX1 not only participates in the healing process of gastric ulcer and gastric mucosal injury but also mediates the development of digestive cancer, acute pancreatitis, and intestinal absorption. This review aims to explore the roles of NCX1 in digestive system physiology and pathophysiology in order to guide clinical treatments.
Collapse
Affiliation(s)
- Qiu-Shi Liao
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital to Zunyi Medical College, Zunyi 563000, Guizhou Province, China
| |
Collapse
|