1
|
Zhang TY, Li ZQ, Zhao YD, Shen WJ, Chen MS, Gao HQ, Ge XM, Wang HQ, Li X, He JM. Ethylene-induced stomatal closure is mediated via MKK1/3-MPK3/6 cascade to EIN2 and EIN3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1324-1340. [PMID: 33605510 DOI: 10.1111/jipb.13083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Mitogen-activated protein kinases (MPKs) play essential roles in guard cell signaling, but whether MPK cascades participate in guard cell ethylene signaling and interact with hydrogen peroxide (H2 O2 ), nitric oxide (NO), and ethylene-signaling components remain unclear. Here, we report that ethylene activated MPK3 and MPK6 in the leaves of wild-type Arabidopsis thaliana as well as ethylene insensitive2 (ein2), ein3, nitrate reductase1 (nia1), and nia2 mutants, but this effect was impaired in ethylene response1 (etr1), nicotinamide adenine dinucleotide phosphate oxidase AtrbohF, mpk kinase1 (mkk1), and mkk3 mutants. By contrast, the constitutive triple response1 (ctr1) mutant had constitutively active MPK3 and MPK6. Yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MPK3 and MPK6 physically interacted with MKK1, MKK3, and the C-terminal region of EIN2 (EIN2 CEND). mkk1, mkk3, mpk3, and mpk6 mutants had typical levels of ethylene-induced H2 O2 generation but impaired ethylene-induced EIN2 CEND cleavage and nuclear translocation, EIN3 protein accumulation, NO production in guard cells, and stomatal closure. These results show that the MKK1/3-MPK3/6 cascade mediates ethylene-induced stomatal closure by functioning downstream of ETR1, CTR1, and H2 O2 to interact with EIN2, thereby promoting EIN3 accumulation and EIN3-dependent NO production in guard cells.
Collapse
Affiliation(s)
- Teng-Yue Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhong-Qi Li
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu-Dong Zhao
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Wen-Jie Shen
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meng-Shu Chen
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hai-Quan Gao
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao-Min Ge
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui-Qin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue Li
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Liu M, Liu XX, He XL, Liu LJ, Wu H, Tang CX, Zhang YS, Jin CW. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1242-1256. [PMID: 27775153 DOI: 10.1111/nph.14259] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis.
Collapse
Affiliation(s)
- Miao Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xing Xing Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Lin He
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Juan Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cai Xian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic., 3086, Australia
| | - Yong Song Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Peng D, Wang X, Li Z, Zhang Y, Peng Y, Li Y, He X, Zhang X, Ma X, Huang L, Yan Y. NO is involved in spermidine-induced drought tolerance in white clover via activation of antioxidant enzymes and genes. PROTOPLASMA 2016; 253:1243-54. [PMID: 26338203 DOI: 10.1007/s00709-015-0880-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/20/2015] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO), a key signaling molecule, can be induced by polyamines (PAs), which play an important role in improving drought tolerance in plants. This study was to further investigate the role of NO in spermidine (Spd)-induced drought tolerance associated with antioxidant defense in leaves of white clover (Trifolium repens) under drought stress induced by -0.3 MPa polyethylene glycol (PEG-6000) solution. A hydroponic growth method was used for cultivating plants in a controlled growth chamber for 30-33 days until the second leaves were fully expanded. Two relative independent experiments were carried out in our study. One is that exogenous application of Spd or an NO donor (sodium nitroprusside (SNP)) significantly improved drought tolerance in whole plants, as demonstrated by better phenotypic appearance, increased relative water content (RWC), and decreased electrolyte leakage (EL) and malondialdehyde (MDA) content in leaves as compared to untreated plants. For another detached leaf experiment, PEG induced an increase in the generation of NO in cells and significantly improved activities of nitrate reductase (NR) and nitric oxide synthase (NOS). These responses could be blocked by pre-treatment with a Spd biosynthetic inhibitor, dicyclohexyl amine (DCHA), and then reversed by application of exogenous Spd. Meanwhile, PEG induced up-regulation of activities and gene transcript levels of corresponding antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) to varying degrees, while these effects were partially blocked by pre-treatment with DCHA, the scavenger of NO, the inhibitors of NR or NOS. In addition, Spd-induced antioxidant enzyme activities and gene expression also could be effectively inhibited by an NO scavenger as well as inhibitors of NR and NOS. These findings suggest that both Spd and NO can enhance drought tolerance. Spd was involved in drought stress-activated NR and NOS pathways associated with NO release, which mediated antioxidant defense and thus contributed to drought tolerance in white clover.
Collapse
Affiliation(s)
- Dandan Peng
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaojuan Wang
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhou Li
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yan Peng
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Yaping Li
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaoshuang He
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xinquan Zhang
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiao Ma
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Linkai Huang
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yanhong Yan
- Key Laboratory of Grassland Science, Faculty of Animal Science and Technology, Sichuan Agricultural University, Huiming Street 211, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
4
|
Agurla S, Raghavendra AS. Convergence and Divergence of Signaling Events in Guard Cells during Stomatal Closure by Plant Hormones or Microbial Elicitors. FRONTIERS IN PLANT SCIENCE 2016; 7:1332. [PMID: 27605934 PMCID: PMC4996035 DOI: 10.3389/fpls.2016.01332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/05/2016] [Indexed: 05/20/2023]
Abstract
Dynamic regulation of stomatal aperture is essential for plants to optimize water use and CO2 uptake. Stomatal opening or closure is accompanied by the modulation of guard cell turgor. Among the events leading to stomatal closure by plant hormones or microbial elicitors, three signaling components stand out as the major converging points. These are reactive oxygen species (ROS), cytosolic free Ca(2+), and ion channels. Once formed, the ROS and free Ca(2+) of guard cells regulate both downstream and upstream events. A major influence of ROS is to increase the levels of NO and cytosolic free Ca(2+) in guard cells. Although the rise in NO is an important event during stomatal closure, the available evidences do not support the description of NO as the point of convergence. The rise in ROS and NO would cause an increase of free Ca(2+) and modulate ion channels, through a network of events, in such a way that the guard cells lose K(+)/Cl(-)/anions. The efflux of these ions decreases the turgor of guard cells and leads to stomatal closure. Thus, ROS, NO, and cytosolic free Ca(2+) act as points of divergence. The other guard cell components, which are modulated during stomatal closure are G-proteins, cytosolic pH, phospholipids, and sphingolipids. However, the current information on the role of these components is not convincing so as to assign them as the points of convergence or divergence. The interrelationships and interactions of ROS, NO, cytosolic pH, and free Ca(2+) are quite complex and need further detailed examination. Our review is an attempt to critically assess the current status of information on guard cells, while emphasizing the convergence and divergence of signaling components during stomatal closure. The existing gaps in our knowledge are identified to stimulate further research.
Collapse
|
5
|
Huang AX, Wang YS, She XP, Mu J, Zhao JL. Copper amine oxidase-catalysed hydrogen peroxide involves production of nitric oxide in darkness-induced stomatal closure in broad bean. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:1057-1067. [PMID: 32480745 DOI: 10.1071/fp15172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/21/2015] [Indexed: 06/11/2023]
Abstract
Hydrogen peroxide is an important intermediate in darkness-induced stomatal closure. In the present work, we provide evidence that copper amine oxidase (CuAO) was involved in H2O2 production in darkness-induced stomatal closure in Vicia faba L. Darkness activated CuAO in intercellular washing fluid from leaves. Aminoguanidine (AG) and 2-bromoethylamine (BEA), which were both irreversible inhibitors of CuAO, significantly suppressed darkness-induced stomatal closure and H2O2 generation. The effects of AG and BEA were reversed only by H2O2 but not by other products of CuAO. These results indicate that CuAO participates in darkness-induced stomatal closure through its reaction product, H2O2. Furthermore, darkness-induced nitric oxide (NO) production and cytosolic alkalinisation were obviously inhibited by AG and BEA, and only H2O2, among the products of CuAO, could reverse the effects, implying that the CuAO-catalysed product H2O2 is required for NO production and cytosolic alkalinisation to a large extent in darkness-induced stomatal closure. In addition, butyric acid blocked but methylamine enhanced the ability of H2O2 to reverse the effect of BEA on NO production, suggesting that cytosolic alkalinisation is involved in CuAO-mediated NO generation in darkness-induced stomatal closure.
Collapse
Affiliation(s)
- Ai-Xia Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yong-Shun Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xiao-Ping She
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Juan Mu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jin-Liang Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
6
|
Shi C, Qi C, Ren H, Huang A, Hei S, She X. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:280-301. [PMID: 25754244 DOI: 10.1111/tpj.12815] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/14/2015] [Accepted: 02/23/2015] [Indexed: 05/07/2023]
Abstract
Brassinosteroids (BRs) are essential for plant growth and development; however, whether and how they promote stomatal closure is not fully clear. In this study, we report that 24-epibrassinolide (EBR), a bioactive BR, induces stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering a signal transduction pathway including ethylene synthesis, the activation of Gα protein, and hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) production. EBR initiated a marked rise in ethylene, H(2)O(2) and NO levels, necessary for stomatal closure in the wild type. These effects were abolished in mutant bri1-301, and EBR failed to close the stomata of gpa1 mutants. Next, we found that both ethylene and Gα mediate the inductive effects of EBR on H(2)O(2) and NO production. EBR-triggered H(2)O(2) and NO accumulation were canceled in the etr1 and gpa1 mutants, but were strengthened in the eto1-1 mutant and the cGα line (constitutively overexpressing the G protein α-subunit AtGPA1). Exogenously applied H(2)O(2) or sodium nitroprusside (SNP) rescued the defects of etr1-3 and gpa1 or etr1 and gpa1 mutants in EBR-induced stomatal closure, whereas the stomata of eto1-1/AtrbohF and cGα/AtrbohF or eto1-1/nia1-2 and cGα/nia1-2 constructs had an analogous response to H(2)O(2) or SNP as those of AtrbohF or Nia1-2 mutants. Moreover, we provided evidence that Gα plays an important role in the responses of guard cells to ethylene. Gα activator CTX largely restored the lesion of the etr1-3 mutant, but ethylene precursor ACC failed to rescue the defects of gpa1 mutants in EBR-induced stomatal closure. Lastly, we demonstrated that Gα-activated H(2)O(2) production is required for NO synthesis. EBR failed to induce NO synthesis in mutant AtrbohF, but it led to H(2)O(2) production in mutant Nia1-2. Exogenously applied SNP rescued the defect of AtrbohF in EBR-induced stomatal closure, but H(2)O(2) did not reverse the lesion of EBR-induced stomatal closure in Nia1-2. Together, our results strongly suggest a signaling pathway in which EBR induces ethylene synthesis, thereby activating Gα, and then promotes AtrbohF-dependent H(2)O(2) production and subsequent Nia1-catalyzed NO accumulation, and finally closes stomata.
Collapse
Affiliation(s)
- Chenyu Shi
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; School of Chemistry and Bioengineering, Hechi University, Yizhou, 546300, China
| | | | | | | | | | | |
Collapse
|
7
|
Khan MIR, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan NA. Role of ethylene in responses of plants to nitrogen availability. FRONTIERS IN PLANT SCIENCE 2015; 6:927. [PMID: 26579172 PMCID: PMC4626634 DOI: 10.3389/fpls.2015.00927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest.
Collapse
Affiliation(s)
- M. I. R. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Mehar Fatma
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Asim Masood
- Department of Botany, Aligarh Muslim UniversityAligarh, India
| | | | - Noushina Iqbal
- Department of Botany, Jamia Hamdard University New Delhi, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilan, Italy
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim UniversityAligarh, India
- *Correspondence: Nafees A. Khan,
| |
Collapse
|
8
|
Ge XM, Zhu Y, He JM. Cytosolic alkalisation and nitric oxide production in UVB-induced stomatal closure in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:803-811. [PMID: 32481034 DOI: 10.1071/fp13222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/27/2014] [Indexed: 06/11/2023]
Abstract
The role and the interrelationship of cytosolic alkalisation and nitric oxide (NO) in UVB-induced stomatal closure were investigated in Arabidopsis thaliana (L.) Heynh. by stomatal bioassay and laser-scanning confocal microscopy. In response to 0.5Wm-2 UVB radiation, the rise of NO levels in guard cells occurred after cytosolic alkalisation but preceded stomatal closure. UVB-induced NO production and stomatal closure were both inhibited by NO scavengers, nitrate reductase (NR) inhibitors and a Nia2-5/Nia1-2 mutation, and also by butyrate. Methylamine induced NO generation and stomatal closure in the wild-type but not in the Nia2-5/Nia1-2 mutant or wild-type plants pretreated with NO scavengers or NR inhibitors while enhancing the cytosolic pH in guard cells under light. NO generation in wild-type guard cells was largely induced after 60min of UVB radiation. The defect in UVB-induced NO generation in Nia2-5/Nia1-2 guard cells did not affect the changes of guard cell pH before 60min of UVB radiation, but prevented the UVB-induced cytosolic alkalisation after 60min of radiation. Meanwhile, exogenous NO caused a marked rise of cytosolic pH in guard cells. Together, our results show that cytosolic alkalisation and NR-dependent NO production coordinately function in UVB signalling in A. thaliana guard cells.
Collapse
Affiliation(s)
- Xiao-Min Ge
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yan Zhu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
9
|
Zhu Y, Ge XM, Wu MM, Li X, He JM. The role and interactions of cytosolic alkalization and hydrogen peroxide in ultraviolet B-induced stomatal closure in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:84-90. [PMID: 24388518 DOI: 10.1016/j.plantsci.2013.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 06/03/2023]
Abstract
Cytosolic alkalization has been shown to function as a key player in multiple stimuli-induced stomatal closure, but its role and relationship with hydrogen peroxide (H2O2) in ultraviolet B (UV-B)-induced stomatal closure remains unknown. In this paper, by stomatal bioassay and laser-scanning confocal microscopy, we observed that 0.5 W m(-2) UV-B induced cytosolic alkalization and H2O2 production in guard cells while inducing stomatal closure in Arabidopsis (Arabidopsis thaliana). Butyrate (a weak acid) reduced the cytosolic pH/H2O2 production and prevented stomatal closure by UV-B. Methylamine (a weak base) induced H2O2 production and stomatal closure while enhancing the cytosolic alkalization in guard cells under light alone. The rise in cytosolic pH of wild-type guard cells on exposure to UV-B was evident at 15 min and substantial at 45 min while H2O2 production started to largely increase after 60 min. The failure of UV-B-induced H2O2 production in AtrbohD/F guard cells did not affect the changes of guard cell pH during the first 60 min of UV-B radiation, but largely suppressed cytosolic alkalization after 60 min of UV-B radiation. These results indicate that cytosolic alkalization mediates UV-B-induced stomatal closure via activating H2O2 production and that H2O2 production can feedback-enhance cytosolic alkalization in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Yan Zhu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xiao-Min Ge
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Mi-Mi Wu
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xuan Li
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
10
|
Gayatri G, Agurla S, Raghavendra AS. Nitric oxide in guard cells as an important secondary messenger during stomatal closure. FRONTIERS IN PLANT SCIENCE 2013; 4:425. [PMID: 24194741 PMCID: PMC3810675 DOI: 10.3389/fpls.2013.00425] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/08/2013] [Indexed: 05/19/2023]
Abstract
The modulation of guard cell function is the basis of stomatal closure, essential for optimizing water use and CO2 uptake by leaves. Nitric oxide (NO) in guard cells plays a very important role as a secondary messenger during stomatal closure induced by effectors, including hormones. For example, exposure to abscisic acid (ABA) triggers a marked increase in NO of guard cells, well before stomatal closure. In guard cells of multiple species, like Arabidopsis, Vicia and pea, exposure to ABA or methyl jasmonate or even microbial elicitors (e.g., chitosan) induces production of NO as well as reactive oxygen species (ROS). The role of NO in stomatal closure has been confirmed by using NO donors (e.g., SNP) and NO scavengers (like cPTIO) and inhibitors of NOS (L-NAME) or NR (tungstate). Two enzymes: a L-NAME-sensitive, nitric oxide synthase (NOS)-like enzyme and a tungstate-sensitive nitrate reductase (NR), can mediate ABA-induced NO rise in guard cells. However, the existence of true NOS in plant tissues and its role in guard cell NO-production are still a matter of intense debate. Guard cell signal transduction leading to stomatal closure involves the participation of several components, besides NO, such as cytosolic pH, ROS, free Ca(2+), and phospholipids. Use of fluorescent dyes has revealed that the rise in NO of guard cells occurs after the increase in cytoplasmic pH and ROS. The rise in NO causes an elevation in cytosolic free Ca(2+) and promotes the efflux of cations as well as anions from guard cells. Stomatal guard cells have become a model system to study the signaling cascade mechanisms in plants, particularly with NO as a dominant component. The interrelationships and interactions of NO with cytosolic pH, ROS, and free Ca(2+) are quite complex and need further detailed examination. While assessing critically the available literature, the present review projects possible areas of further work related to NO-action in stomatal guard cells.
Collapse
Affiliation(s)
| | | | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of HyderabadHyderabad, India
| |
Collapse
|
11
|
Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:398. [PMID: 24130567 PMCID: PMC3793198 DOI: 10.3389/fpls.2013.00398] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the endogenous levels of NO. In addition, studies conducted during the induction of diverse plant responses have demonstrated that NO may also affect biosynthesis, catabolism/conjugation, transport, perception, and/or transduction of different phytohormones, such as auxins, gibberellins, cytokinins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids. Although still not completely elucidated, the mechanisms underlying the interaction between NO and plant hormones have recently been investigated in a number of species and plant responses. This review specifically focuses on the current knowledge of the mechanisms implicated in NO-phytohormone interactions during the regulation of developmental and metabolic plant events. The modifications triggered by NO on the transcription of genes encoding biosynthetic/degradative enzymes as well as proteins involved in the transport and signal transduction of distinct plant hormones will be contextualized during the control of developmental, metabolic, and defense responses in plants. Moreover, the direct post-translational modification of phytohormone biosynthetic enzymes and receptors through S-nitrosylation will also be discussed as a key mechanism for regulating plant physiological responses. Finally, some future perspectives toward a more complete understanding of NO-phytohormone interactions will also be presented and discussed.
Collapse
Affiliation(s)
- Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao PauloSao Paulo, Brazil
| |
Collapse
|
12
|
Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L. Nitric oxide as a key component in hormone-regulated processes. PLANT CELL REPORTS 2013; 32:853-66. [PMID: 23584547 DOI: 10.1007/s00299-013-1434-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a small gaseous molecule, with a free radical nature that allows it to participate in a wide spectrum of biologically important reactions. NO is an endogenous product in plants, where different biosynthetic pathways have been proposed. First known in animals as a signaling molecule in cardiovascular and nervous systems, it has turned up to be an essential component for a wide variety of hormone-regulated processes in plants. Adaptation of plants to a changing environment involves a panoply of processes, which include the control of CO2 fixation and water loss through stomatal closure, rearrangements of root architecture as well as growth restriction. The regulation of these processes requires the concerted action of several phytohormones, as well as the participation of the ubiquitous molecule NO. This review analyzes the role of NO in relation to the signaling pathways involved in stomatal movement, plant growth and senescence, in the frame of its interaction with abscisic acid, auxins, gibberellins, and ethylene.
Collapse
Affiliation(s)
- Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE) CC327, Universidad Nacional de La Plata-CONICET, Diagonal 113 y calle 61 N°495, CP 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
13
|
Hou Z, Wang L, Liu J, Hou L, Liu X. Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:277-89. [PMID: 23134300 DOI: 10.1111/jipb.12004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hydrogen sulfide (H2 S) is a newly-discovered signaling molecule in plants and has caused increasing attention in recent years, but its function in stomatal movement is unclear. In plants, H2 S is synthesized via cysteine degradation catalyzed by D-/L-cysteine desulfhydrase (D-/L-CDes). AtD-/L-CDes::GUS transgenic Arabidopsis thaliana (L.) Heynh. plants were generated and used to investigate gene expression patterns, and results showed that AtD-/L-CDes can be expressed in guard cells. We also determined the subcellular localization of AtD-/L-CDes using transgenic plants of AtD-/L-CDes::GFP, and the results showed that AtD-CDes and AtL-CDes are located in the chloroplast and in the cytoplasm, respectively. The transcript levels of AtD-CDes and AtL-CDes were affected by the chemicals that cause stomatal closure. Among these factors, ACC, a precursor of ethylene, has the most significant effect, which indicates that the H2 S generated from D-/L-CDes may play an important role in ethylene-induced stomatal closure. Meanwhile, H2 S synthetic inhibitors significantly inhibited ethylene-induced stomatal closure in Arabidopsis. Ethylene treatment caused an increase of H2 S production and of AtD-/L-CDes activity in Arabidopsis leaves. AtD-/L-CDes over-expressing plants exhibited enhanced induction of stomatal closure compared to the wild-type after ethylene treatment; however, the effect was not observed in the Atd-cdes and Atl-cdes mutants. In conclusion, our results suggest that the D-/L-CDes-generated H2 S is involved in the regulation of ethylene-induced stomatal closure in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhihui Hou
- College of Life Sciences, Qingdao Agricultural University, University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao 266109, China
| | | | | | | | | |
Collapse
|
14
|
Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4819-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
He JM, Zhang Z, Wang RB, Chen YP. UV-B-induced stomatal closure occurs via ethylene-dependent NO generation in Vicia faba. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:293-302. [PMID: 32480885 DOI: 10.1071/fp10219] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/08/2011] [Indexed: 06/11/2023]
Abstract
The role of ethylene and the relationship between ethylene and nitric oxide (NO) in ultraviolet B (UV-B)-induced stomatal closure were investigated in Vicia faba L. (broad bean) plants by epidermal strip bioassay, laser-scanning confocal microscopy and assay of ethylene production. In response to UV-B radiation, the rise of NO level in guard cells was after ethylene evolution peak, but preceded stomatal closure. Both UV-B-induced NO generation in guard cells and subsequent stomatal closure were substantially inhibited not only by NO scavenger and nitrate reductase (NR) inhibitors, but also by interfering with ethylene synthesis or perception. Although exogenous NO could reverse the inhibitive effect of interfering with ethylene synthesis or perception on UV-B-induced stomatal closure, the inhibitive effect of NO scavenger and NR inhibitors on UV-B-induced stomatal closure could not be rescued by exogenous ethylene. Taken together, our results clearly show that ethylene participates in the UV-B-induced stomatal closure and acts upstream of the NR source of NO generation in V. faba.
Collapse
Affiliation(s)
- Jun-Min He
- School of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, People's Republic of China
| | - Zhan Zhang
- School of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, People's Republic of China
| | - Rui-Bin Wang
- School of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, People's Republic of China
| | - Yi-Ping Chen
- Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, People's Republic of China
| |
Collapse
|