1
|
Płachno BJ, Kapusta M, Stolarczyk P, Feldo M, Świątek P. Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps. Int J Mol Sci 2024; 25:6089. [PMID: 38892273 PMCID: PMC11173196 DOI: 10.3390/ijms25116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The genus Utricularia (bladderworts) species are carnivorous plants that prey on invertebrates using traps with a high-speed suction mechanism. The outer trap surface is lined by dome-shaped glands responsible for secreting water in active traps. In terminal cells of these glands, the outer wall is differentiated into several layers, and even cell wall ingrowths are covered by new cell wall layers. Due to changes in the cell wall, these glands are excellent models for studying the specialization of cell walls (microdomains). The main aim of this study was to check if different cell wall layers have a different composition. Antibodies against arabinogalactan proteins (AGPs) were used, including JIM8, JIM13, JIM14, MAC207, and JIM4. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. Differences in composition were found between the primary cell wall and the cell secondary wall in terminal gland cells. The outermost layer of the cell wall of the terminal cell, which was cuticularized, was devoid of AGPs (JIM8, JIM14). In contrast, the secondary cell wall in terminal cells was rich in AGPs. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of pedestal cells. Our research supports the hypothesis of water secretion by the external glands.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 16 Staszica St., 20-081 Lublin, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
2
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Malacarne G, Lagreze J, Rojas San Martin B, Malnoy M, Moretto M, Moser C, Dalla Costa L. Insights into the cell-wall dynamics in grapevine berries during ripening and in response to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:38. [PMID: 38605193 PMCID: PMC11009762 DOI: 10.1007/s11103-024-01437-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The cell wall (CW) is the dynamic structure of a plant cell, acting as a barrier against biotic and abiotic stresses. In grape berries, the modifications of pulp and skin CW during softening ensure flexibility during cell expansion and determine the final berry texture. In addition, the CW of grape berry skin is of fundamental importance for winemaking, controlling secondary metabolite extractability. Grapevine varieties with contrasting CW characteristics generally respond differently to biotic and abiotic stresses. In the context of climate change, it is important to investigate the CW dynamics occurring upon different stresses, to define new adaptation strategies. This review summarizes the molecular mechanisms underlying CW modifications during grapevine berry fruit ripening, plant-pathogen interaction, or in response to environmental stresses, also considering the most recently published transcriptomic data. Furthermore, perspectives of new biotechnological approaches aiming at modifying the CW properties based on other crops' examples are also presented.
Collapse
Affiliation(s)
- Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy.
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Barbara Rojas San Martin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
- Centre Agriculture Food Environment (C3A), University of Trento, San Michele all'Adige, 38098, Trento, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, 38098, Trento, Italy
| |
Collapse
|
4
|
Uy ALT, Yamamoto A, Matsuda M, Arae T, Hasunuma T, Demura T, Ohtani M. The Carbon Flow Shifts from Primary to Secondary Metabolism during Xylem Vessel Cell Differentiation in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 64:1563-1575. [PMID: 37875012 PMCID: PMC10734892 DOI: 10.1093/pcp/pcad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Xylem vessel cell differentiation is characterized by the deposition of a secondary cell wall (SCW) containing cellulose, hemicellulose and lignin. VASCULAR-RELATED NAC-DOMAIN7 (VND7), a plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor, is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). Previous metabolome analysis using the VND7-inducible system in tobacco BY-2 cells successfully revealed significant quantitative changes in primary metabolites during xylem vessel cell differentiation. However, the flow of primary metabolites is not yet well understood. Here, we performed a metabolomic analysis of VND7-inducible Arabidopsis T87 suspension cells. Capillary electrophoresis-time-of-flight mass spectrometry quantified 57 metabolites, and subsequent data analysis highlighted active changes in the levels of UDP-glucose and phenylalanine, which are building blocks of cellulose and lignin, respectively. In a metabolic flow analysis using stable carbon 13 (13C) isotope, the 13C-labeling ratio specifically increased in 3-phosphoglycerate after 12 h of VND7 induction, followed by an increase in shikimate after 24 h of induction, while the inflow of 13C into lactate from pyruvate was significantly inhibited, indicating an active shift of carbon flow from glycolysis to the shikimate pathway during xylem vessel cell differentiation. In support of this notion, most glycolytic genes involved in the downstream of glyceraldehyde 3-phosphate were downregulated following the induction of xylem vessel cell differentiation, whereas genes for the shikimate pathway and phenylalanine biosynthesis were upregulated. These findings provide evidence for the active shift of carbon flow from primary metabolic pathways to the SCW polymer biosynthetic pathway at specific points during xylem vessel cell differentiation.
Collapse
Affiliation(s)
| | - Atsushi Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501 Japan
| | - Toshihiro Arae
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501 Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501 Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Misato Ohtani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192 Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-Cho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
5
|
Zhang Y, Zhang J, Zou S, Liu Z, Huang H, Feng C. Genome-wide analysis of the cellulose toolbox of Primulina eburnea, a calcium-rich vegetable. BMC PLANT BIOLOGY 2023; 23:259. [PMID: 37189063 DOI: 10.1186/s12870-023-04266-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Human-guided crop domestication has lasted for more than 10,000 years. In terms of the domestication and breeding of vegetables, cellulose content in edible tissues is one of the most important traits. Primulina eburnea is a recently developed calcium-rich vegetable with a high soluble and bioavailable calcium content in its leaves. However, the high cellulose content in the leaves hampers the taste, and no research has been reported on the genetic basis of cellulose biosynthesis in this calcium-rich vegetable. RESULTS We identified 36 cellulose biosynthesis-involved genes belonging to eight gene families in the P. eburnea genome. The cellulose accumulated decreasingly throughout leaf development. Nineteen genes were considered core genes in cellulose biosynthesis, which were highly expressed in buds but lowly expressed in mature leaves. In the nitrogen fertilization experiment, exogenous nitrogen decreased the cellulose content in the buds. The expressing pattern of 14 genes were consistent with phenotypic variation in the nitrogen fertilization experiment, and thus they were proposed as cellulose toolbox genes. CONCLUSIONS The present study provides a strong basis for the subsequent functional research of cellulose biosynthesis-involved genes in P. eburnea, and provides a reference for breeding and/or engineering this calcium-rich vegetable with decreased leaf cellulose content to improve the taste.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Science, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China
| | - Jie Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China
| | - Shuaiyu Zou
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China
| | - Ziwei Liu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China
| | - Hongwen Huang
- College of Life Science, Nanchang University, Nanchang, China.
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China.
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chen Feng
- College of Life Science, Nanchang University, Nanchang, China.
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China.
| |
Collapse
|
6
|
A receptor-like kinase controls the amplitude of secondary cell wall synthesis in rice. Curr Biol 2023; 33:498-506.e6. [PMID: 36638797 DOI: 10.1016/j.cub.2022.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023]
Abstract
Cell wall expansion is a key element in determining plant morphology and growth, and cell wall integrity changes are relayed to the cell to fine-tune growth responses. Here, we show that variations in the ectodomain of a cell wall-associated receptor-like kinase, WAK10, in temperate Oryza japonica accessions differentially amplify fluctuations in cell wall integrity to control rice stem height. Mutation in the WAK10 gene exhibited increased cell wall thickening in stem sclerenchyma and reduced cell expansion in the stem. Two WAK10 ectodomain variants bound pectic oligosaccharides with different affinities. The pectic oligosaccharide binding regulated WAK10 phosphorylation activity, the amplitude of secondary wall deposition, and ultimately, stem height. Rice population analyses revealed active enrichment of the short-stem WAK10 ectodomain alleles in japonica subspecies during domestication. Our study outlines not only a mechanism for how variations in ligand affinities of a receptor kinase control cell wall biosynthesis and plant growth, but it also provides breeding targets for new semi-dwarf rice cultivars.
Collapse
|
7
|
Nayeri S, Baghban Kohnehrouz B, Ahmadikhah A, Mahna N. CRISPR/Cas9-mediated P-CR domain-specific engineering of CESA4 heterodimerization capacity alters cell wall architecture and improves saccharification efficiency in poplar. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1197-1212. [PMID: 35266285 PMCID: PMC9129088 DOI: 10.1111/pbi.13803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 05/21/2023]
Abstract
Cellulose is the most abundant unique biopolymer in nature with widespread applications in bioenergy and high-value bioproducts. The large transmembrane-localized cellulose synthase (CESA) complexes (CSCs) play a pivotal role in the biosynthesis and orientation of the para-crystalline cellulose microfibrils during secondary cell wall (SCW) deposition. However, the hub CESA subunit with high potential homo/heterodimerization capacity and its functional effects on cell wall architecture, cellulose crystallinity, and saccharification efficiency remains unclear. Here, we reported the highly potent binding site containing four residues of Pro435, Trp436, Pro437, and Gly438 in the plant-conserved region (P-CR) of PalCESA4 subunit, which are involved in the CESA4-CESA8 heterodimerization. The CRISPR/Cas9-knockout mutagenesis in the predicted binding site results in physiological abnormalities, stunt growth, and deficient roots. The homozygous double substitution of W436Q and P437S and heterozygous double deletions of W436 and P437 residues potentially reduced CESA4-binding affinity resulting in normal roots, 1.5-2-fold higher plant growth and cell wall regeneration rates, 1.7-fold thinner cell wall, high hemicellulose content, 37%-67% decrease in cellulose content, high cellulose DP, 25%-37% decrease in cellulose crystallinity, and 50% increase in saccharification efficiency. The heterozygous deletion of W436 increases about 2-fold CESA4 homo/heterodimerization capacity led to the 50% decrease in plant growth and increase in cell walls thickness, cellulose content (33%), cellulose DP (20%), and CrI (8%). Our findings provide a strategy for introducing commercial CRISPR/Cas9-mediated bioengineered poplars with promising cellulose applications. We anticipate our results could create an engineering revolution in bioenergy and cellulose-based nanomaterial technologies.
Collapse
Affiliation(s)
- Shahnoush Nayeri
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | | | - Asadollah Ahmadikhah
- Department of Plant Sciences and BiotechnologyFaculty of Life Sciences and BiotechnologyShahid Beheshti UniversityTehranIran
| | - Nasser Mahna
- Department of Horticultural SciencesFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
8
|
Nething DB, Sukul A, Mishler‐Elmore JW, Held MA. Posttranscriptional regulation of cellulose synthase genes by small RNAs derived from cellulose synthase antisense transcripts. PLANT DIRECT 2021; 5:e347. [PMID: 34557619 PMCID: PMC8447916 DOI: 10.1002/pld3.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Transcriptional regulatory mechanisms governing plant cell wall biosynthesis are incomplete. Expression programs that activate wall biosynthesis are well understood, but mechanisms that control the attenuation of gene expression networks remain elusive. Previous work has shown that small RNAs (sRNAs) derived from the HvCESA6 (Hordeum vulgare, Hv) antisense transcripts are naturally produced and are capable of regulating aspects of wall biosynthesis. Here, we further test the hypothesis that CESA-derived sRNAs generated from CESA antisense transcripts are involved in the regulation of cellulose and broader cell wall biosynthesis. Antisense transcripts were detected for some but not all members of the CESA gene family in both barley and Brachypodium distachyon. Phylogenetic analysis indicates that antisense transcripts are detected for most primary cell wall CESA genes, suggesting a possible role in the transition from primary to secondary cell wall biosynthesis. Focusing on one antisense transcript, HvCESA1 shows dynamic expression throughout development, is correlated with corresponding sRNAs over the same period and is anticorrelated with HvCESA1 mRNA expression. To assess the broader impacts of CESA-derived sRNAs on the regulation of cell wall biosynthesis, transcript profiling was performed on barley tissues overexpressing CESA-derived sRNAs. Together, the data support the hypothesis that CESA antisense transcripts function through an RNA-induced silencing mechanism, to degrade cis transcripts, and may also trigger trans-acting silencing on related genes to alter the expression of cell wall gene networks.
Collapse
Affiliation(s)
| | - Abhijit Sukul
- Department of Chemistry and BiochemistryOhio UniversityAthensOHUSA
| | | | - Michael A. Held
- Department of Chemistry and BiochemistryOhio UniversityAthensOHUSA
- Molecular and Cellular Biology ProgramOhio UniversityAthensOHUSA
| |
Collapse
|
9
|
Li Z, Zhang C, Zhang Y, Zeng W, Cesarino I. Coffee cell walls—composition, influence on cup quality and opportunities for coffee improvements. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The coffee beverage is the second most consumed drink worldwide after water. In coffee beans, cell wall storage polysaccharides (CWSPs) represent around 50 per cent of the seed dry mass, mainly consisting of galactomannans and arabinogalactans. These highly abundant structural components largely influence the organoleptic properties of the coffee beverage, mainly due to the complex changes they undergo during the roasting process. From a nutritional point of view, coffee CWSPs are soluble dietary fibers shown to provide numerous health benefits in reducing the risk of human diseases. Due to their influence on coffee quality and their health-promoting benefits, CWSPs have been attracting significant research attention. The importance of cell walls to the coffee industry is not restricted to beans used for beverage production, as several coffee by-products also present high concentrations of cell wall components. These by-products include cherry husks, cherry pulps, parchment skin, silver skin, and spent coffee grounds, which are currently used or have the potential to be utilized either as food ingredients or additives, or for the generation of downstream products such as enzymes, pharmaceuticals, and bioethanol. In addition to their functions during plant development, cell walls also play a role in the plant’s resistance to stresses. Here, we review several aspects of coffee cell walls, including chemical composition, biosynthesis, their function in coffee’s responses to stresses, and their influence on coffee quality. We also propose some potential cell wall–related biotechnological strategies envisaged for coffee improvements.
Collapse
Affiliation(s)
| | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Transcriptomic Analysis of Seasonal Gene Expression and Regulation during Xylem Development in “Shanxin” Hybrid Poplar (Populus davidiana × Populus bolleana). FORESTS 2021. [DOI: 10.3390/f12040451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Xylem development is a key process for wood formation in woody plants. To study the molecular regulatory mechanisms related to xylem development in hybrid poplar P. davidiana × P. bolleana, transcriptome analyses were conducted on developing xylem at six different growth stages within a single growing season. Xylem development and differentially expressed genes in the six time points were selected for a regulatory analysis. Xylem development was observed in stem sections at different growth stages, which showed that xylem development extended from the middle of April to early August and included cell expansion and secondary cell wall biosynthesis. An RNA-seq analysis of six samples with three replicates was performed. After transcriptome assembly and annotation, the differentially expressed genes (DEGs) were identified, and a Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and expression analysis of the DEGs were performed on each sample. On average, we obtained >20 million clean reads per sample, which were assembled into 84,733 nonredundant transcripts, of which there were 17,603 unigenes with lengths >1 kb. There were 14,890 genes that were differentially expressed among the six stages. The upregulated DEGs were enriched in GO terms related to cell wall biosynthesis between S1 vs. S2 or S3 vs. S4 and, in GO terms, related to phytohormones in the S1 vs. S2 or S4 vs. S5 comparisons. The downregulated DEGs were enriched in GO terms related to cell wall biosynthesis between S4 vs. S5 or S5 vs. S6 and, in GO terms, related to hormones between S1 vs. S2 or S2 vs. S3. The KEGG pathways in the DEGs related to “phenylpropanoid biosynthesis”, “plant hormone signal transduction” and “starch and sucrose metabolism” were significantly enriched among the different stages. The DEGs related to cell expansion, polysaccharide metabolism and synthesis, lignin synthesis, transcription factors and hormones were identified. The identification of genes involved in the regulation of xylem development will increase our understanding of the molecular regulation of wood formation in trees and, also, offers potential targets for genetic manipulation to improve the properties of wood.
Collapse
|
11
|
Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules 2021; 26:molecules26020254. [PMID: 33419100 PMCID: PMC7825460 DOI: 10.3390/molecules26020254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/02/2023] Open
Abstract
Lignocellulosic crops are attractive bioresources for energy and chemicals production within a sustainable, carbon circular society. Miscanthus is one of the perennial grasses that exhibits great potential as a dedicated feedstock for conversion to biobased products in integrated biorefineries. The current biorefinery strategies are primarily focused on polysaccharide valorization and require severe pretreatments to overcome the lignin barrier. The need for such pretreatments represents an economic burden and impacts the overall sustainability of the biorefinery. Hence, increasing its efficiency has been a topic of great interest. Inversely, though pretreatment will remain an essential step, there is room to reduce its severity by optimizing the biomass composition rendering it more exploitable. Extensive studies have examined the miscanthus cell wall structures in great detail, and pinpointed those components that affect biomass digestibility under various pretreatments. Although lignin content has been identified as the most important factor limiting cell wall deconstruction, the effect of polysaccharides and interaction between the different constituents play an important role as well. The natural variation that is available within different miscanthus species and increased understanding of biosynthetic cell wall pathways have specified the potential to create novel accessions with improved digestibility through breeding or genetic modification. This review discusses the contribution of the main cell wall components on biomass degradation in relation to hydrothermal, dilute acid and alkaline pretreatments. Furthermore, traits worth advancing through breeding will be discussed in light of past, present and future breeding efforts.
Collapse
|
12
|
Brown K, Takawira LT, O'Neill MM, Mizrachi E, Myburg AA, Hussey SG. Identification and functional evaluation of accessible chromatin associated with wood formation in Eucalyptus grandis. THE NEW PHYTOLOGIST 2019; 223:1937-1951. [PMID: 31063599 DOI: 10.1111/nph.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/29/2019] [Indexed: 05/03/2023]
Abstract
Accessible chromatin changes dynamically during development and harbours functional regulatory regions which are poorly understood in the context of wood development. We explored the importance of accessible chromatin in Eucalyptus grandis in immature xylem generally, and MYB transcription factor-mediated transcriptional programmes specifically. We identified biologically reproducible DNase I Hypersensitive Sites (DHSs) and assessed their functional significance in immature xylem through their associations with gene expression, epigenomic data and DNA sequence conservation. We identified in vitro DNA binding sites for six secondary cell wall-associated Eucalyptus MYB (EgrMYB) transcription factors using DAP-seq, reconstructed protein-DNA networks of predicted targets based on binding sites within or outside DHSs and assessed biological enrichment of these networks with published datasets. 25 319 identified immature xylem DHSs were associated with increased transcription and significantly enriched for various epigenetic signatures (H3K4me3, H3K27me3, RNA pol II), conserved noncoding sequences and depleted single nucleotide variants. Predicted networks built from EgrMYB binding sites located in accessible chromatin were significantly enriched for systems biology datasets relevant to wood formation, whereas those occurring in inaccessible chromatin were not. Our study demonstrates that DHSs in E. grandis immature xylem, most of which are intergenic, are of functional significance to gene regulation in this tissue.
Collapse
Affiliation(s)
- Katrien Brown
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Lazarus T Takawira
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Marja M O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| | - Steven G Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X28, Pretoria, 0002, South Africa
| |
Collapse
|
13
|
Ployet R, Veneziano Labate MT, Regiani Cataldi T, Christina M, Morel M, San Clemente H, Denis M, Favreau B, Tomazello Filho M, Laclau JP, Labate CA, Chaix G, Grima-Pettenati J, Mounet F. A systems biology view of wood formation in Eucalyptus grandis trees submitted to different potassium and water regimes. THE NEW PHYTOLOGIST 2019; 223:766-782. [PMID: 30887522 DOI: 10.1111/nph.15802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/28/2019] [Indexed: 05/02/2023]
Abstract
Wood production in fast-growing Eucalyptus grandis trees is highly dependent on both potassium (K) fertilization and water availability but the molecular processes underlying wood formation in response to the combined effects of these two limiting factors remain unknown. E. grandis trees were submitted to four combinations of K-fertilization and water supply. Weighted gene co-expression network analysis and MixOmics-based co-regulation networks were used to integrate xylem transcriptome, metabolome and complex wood traits. Functional characterization of a candidate gene was performed in transgenic E. grandis hairy roots. This integrated network-based approach enabled us to identify meaningful biological processes and regulators impacted by K-fertilization and/or water limitation. It revealed that modules of co-regulated genes and metabolites strongly correlated to wood complex traits are in the heart of a complex trade-off between biomass production and stress responses. Nested in these modules, potential new cell-wall regulators were identified, as further confirmed by the functional characterization of EgMYB137. These findings provide new insights into the regulatory mechanisms of wood formation under stressful conditions, pointing out both known and new regulators co-opted by K-fertilization and/or water limitation that may potentially promote adaptive wood traits.
Collapse
Affiliation(s)
- Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Mônica T Veneziano Labate
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Thais Regiani Cataldi
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Mathias Christina
- CIRAD, UMR ECO&SOLS, F-34398, Montpellier, France
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Marie Morel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Marie Denis
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Bénédicte Favreau
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Mario Tomazello Filho
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Jean-Paul Laclau
- CIRAD, UMR ECO&SOLS, F-34398, Montpellier, France
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Carlos Alberto Labate
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Gilles Chaix
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| |
Collapse
|
14
|
Guo X, Runavot JL, Bourot S, Meulewaeter F, Hernandez-Gomez M, Holland C, Harholt J, Willats WGT, Mravec J, Knox P, Ulvskov P. Metabolism of polysaccharides in dynamic middle lamellae during cotton fibre development. PLANTA 2019; 249:1565-1581. [PMID: 30737556 DOI: 10.1007/s00425-019-03107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Evidence is presented that cotton fibre adhesion and middle lamella formation are preceded by cutin dilution and accompanied by rhamnogalacturonan-I metabolism. Cotton fibres are single cell structures that early in development adhere to one another via the cotton fibre middle lamella (CFML) to form a tissue-like structure. The CFML is disassembled around the time of initial secondary wall deposition, leading to fibre detachment. Observations of CFML in the light microscope have suggested that the development of the middle lamella is accompanied by substantial cell-wall metabolism, but it has remained an open question as to which processes mediate adherence and which lead to detachment. The mechanism of adherence and detachment were investigated here using glyco-microarrays probed with monoclonal antibodies, transcript profiling, and observations of fibre auto-digestion. The results suggest that adherence is brought about by cutin dilution, while the presence of relevant enzyme activities and the dynamics of rhamnogalacturonan-I side-chain accumulation and disappearance suggest that both attachment and detachment are accompanied by rhamnogalacturonan-I metabolism.
Collapse
Affiliation(s)
- Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Jean-Luc Runavot
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Stéphane Bourot
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Frank Meulewaeter
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Mercedes Hernandez-Gomez
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Claire Holland
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark.
| |
Collapse
|
15
|
Different glyceollin synthesis-related metabolic content and gene expressions in soybean callus suspension cultures and cotyledon tissues induced by alginate oligosaccharides. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Watanabe Y, Schneider R, Barkwill S, Gonzales-Vigil E, Hill JL, Samuels AL, Persson S, Mansfield SD. Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation. Proc Natl Acad Sci U S A 2018; 115:E6366-E6374. [PMID: 29871949 PMCID: PMC6142216 DOI: 10.1073/pnas.1802113115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In plants, plasma membrane-embedded CELLULOSE SYNTHASE (CESA) enzyme complexes deposit cellulose polymers into the developing cell wall. Cellulose synthesis requires two different sets of CESA complexes that are active during cell expansion and secondary cell wall thickening, respectively. Hence, developing xylem cells, which first undergo cell expansion and subsequently deposit thick secondary walls, need to completely reorganize their CESA complexes from primary wall- to secondary wall-specific CESAs. Using live-cell imaging, we analyzed the principles underlying this remodeling. At the onset of secondary wall synthesis, the primary wall CESAs ceased to be delivered to the plasma membrane and were gradually removed from both the plasma membrane and the Golgi. For a brief transition period, both primary wall- and secondary wall-specific CESAs coexisted in banded domains of the plasma membrane where secondary wall synthesis is concentrated. During this transition, primary and secondary wall CESAs displayed discrete dynamic behaviors and sensitivities to the inhibitor isoxaben. As secondary wall-specific CESAs were delivered and inserted into the plasma membrane, the primary wall CESAs became concentrated in prevacuolar compartments and lytic vacuoles. This adjustment in localization between the two CESAs was accompanied by concurrent decreased primary wall CESA and increased secondary wall CESA protein abundance. Our data reveal distinct and dynamic subcellular trafficking patterns that underpin the remodeling of the cellulose biosynthetic machinery, resulting in the removal and degradation of the primary wall CESA complex with concurrent production and recycling of the secondary wall CESAs.
Collapse
Affiliation(s)
- Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rene Schneider
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Sarah Barkwill
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eliana Gonzales-Vigil
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph L Hill
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville VIC 3010, Australia;
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
17
|
Speicher TL, Li PZ, Wallace IS. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. PLANTS (BASEL, SWITZERLAND) 2018; 7:E52. [PMID: 29966291 PMCID: PMC6161211 DOI: 10.3390/plants7030052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase A (CESA) proteins, which are responsible for synthesizing cellulose, and additional accessory proteins. Moreover, CESA-like (CSL) proteins are proposed to synthesize other essential non-cellulosic polysaccharides that comprise plant cell walls. The deposition of cell-wall polysaccharides is dynamically regulated in response to a variety of developmental and environmental stimuli, and post-translational phosphorylation has been proposed as one mechanism to mediate this dynamic regulation. In this review, we discuss CSC composition, the dynamics of CSCs in vivo, critical studies that highlight the post-translational control of CESAs and CSLs, and the receptor kinases implicated in plant cell-wall biosynthesis. Furthermore, we highlight the emerging importance of post-translational phosphorylation-based regulation of CSCs on the basis of current knowledge in the field.
Collapse
Affiliation(s)
- Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Ziqiang Li
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
18
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
19
|
Barnes WJ, Anderson CT. Release, Recycle, Rebuild: Cell-Wall Remodeling, Autodegradation, and Sugar Salvage for New Wall Biosynthesis during Plant Development. MOLECULAR PLANT 2018; 11:31-46. [PMID: 28859907 DOI: 10.1016/j.molp.2017.08.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 05/20/2023]
Abstract
Plant cell walls contain elaborate polysaccharide networks and regulate plant growth, development, mechanics, cell-cell communication and adhesion, and defense. Despite conferring rigidity to support plant structures, the cell wall is a dynamic extracellular matrix that is modified, reorganized, and degraded to tightly control its properties during growth and development. Far from being a terminal carbon sink, many wall polymers can be degraded and recycled by plant cells, either via direct re-incorporation by transglycosylation or via internalization and metabolic salvage of wall-derived sugars to produce new precursors for wall synthesis. However, the physiological and metabolic contributions of wall recycling to plant growth and development are largely undefined. In this review, we discuss long-standing and recent evidence supporting the occurrence of cell-wall recycling in plants, make predictions regarding the developmental processes to which wall recycling might contribute, and identify outstanding questions and emerging experimental tools that might be used to address these questions and enhance our understanding of this poorly characterized aspect of wall dynamics and metabolism.
Collapse
Affiliation(s)
- William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
20
|
Zhang J, Cheng X, Jin Q, Su X, Li M, Yan C, Jiao X, Li D, Lin Y, Cai Y. Comparison of the transcriptomic analysis between two Chinese white pear (Pyrus bretschneideri Rehd.) genotypes of different stone cells contents. PLoS One 2017; 12:e0187114. [PMID: 29088238 PMCID: PMC5663431 DOI: 10.1371/journal.pone.0187114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Stone cell content is thought to be one of the key determinants for fruit quality in pears. However, the molecular mechanism of stone cell development remains poorly understood. In this study, we found that the stone cell clusters (SCCs) distribution and area in ‘Dangshan Su’ (with abundant stone cells) were higher as compared to ‘Lianglizaosu’ (low stone cell content bud sport of ‘Dangshan Su’) based on the histochemical staining, and the correlations of lignin content with stone cell content and SCC area was significant. The fruits of ‘Dangshan Su’ and ‘Lianglizaosu’ at three different developmental stages (23 and 55 days after flowering and mature) were sampled for comparative transcriptome analysis to explore the metabolic pathways associated with stone cell development. A total of 42444 unigenes were obtained from two varieties, among which 7203 differentially expressed genes (DEGs) were identified by comparison of the six transcriptomes. Specifically, many DEGs associated with lignin biosynthesis were identified, including coumaroylquinate 3-monooxygenase (C3H), shikimate O-hydroxycinnamoyltransferase (HCT), ferulate 5-hydroxylase (F5H), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD), as well as genes related to carbon metabolism, such as sorbitol dehydrogenase-like (SDH-like) and ATP-dependent 6-phosphofructokinase (ATP-PFK). At the peak of the stone cell content (55 days after flowering), the expression level of these genes in ‘Dangshan Su’ was significantly increased compared with ‘Lianglizaosu’, indicating that these genes were closely related to stone cell development. We validated the transcriptional levels of 33 DEGs using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The results were consistent with the transcriptome analysis, indicating the reliability of transcriptome data. In addition, subcellular localization analysis of three DEGs in lignin synthesis (PbC3H, PbF5H and PbPOD) revealed that these proteins are mainly distributed in the cell membrane and cytoplasm. These results provide new insights into the molecular mechanism of stone cell formation.
Collapse
Affiliation(s)
- Jinyun Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Qing Jin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xueqiang Su
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Manli Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Chongchong Yan
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xiaoyu Jiao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Daihui Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, China
- * E-mail:
| |
Collapse
|
21
|
Fang X, Sun J, Leng B, Sheng G, Huang J, Qi X, Chen X, Li L. A brief view of international conference on plant cell wall biology 2017. Sci Bull (Beijing) 2017; 62:1357-1358. [PMID: 36659369 DOI: 10.1016/j.scib.2017.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xin Fang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Juncong Sun
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bing Leng
- Chinese Society for Plant Biology, Shanghai 200031, China
| | - Guoan Sheng
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jirong Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaoquan Qi
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaoya Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Chinese Society for Plant Biology, Shanghai 200031, China.
| | - Laigeng Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
22
|
Li K, Du Y, Miao Y. Future challenges in understanding ROS in plant responses to abiotic stress. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1343-1344. [PMID: 27933592 DOI: 10.1007/s11427-016-0362-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China
| | - Yuli Du
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China.
| |
Collapse
|
23
|
|