1
|
Engler-Chiurazzi E. B cells and the stressed brain: emerging evidence of neuroimmune interactions in the context of psychosocial stress and major depression. Front Cell Neurosci 2024; 18:1360242. [PMID: 38650657 PMCID: PMC11033448 DOI: 10.3389/fncel.2024.1360242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The immune system has emerged as a key regulator of central nervous system (CNS) function in health and in disease. Importantly, improved understanding of immune contributions to mood disorders has provided novel opportunities for the treatment of debilitating stress-related mental health conditions such as major depressive disorder (MDD). Yet, the impact to, and involvement of, B lymphocytes in the response to stress is not well-understood, leaving a fundamental gap in our knowledge underlying the immune theory of depression. Several emerging clinical and preclinical findings highlight pronounced consequences for B cells in stress and MDD and may indicate key roles for B cells in modulating mood. This review will describe the clinical and foundational observations implicating B cell-psychological stress interactions, discuss potential mechanisms by which B cells may impact brain function in the context of stress and mood disorders, describe research tools that support the investigation of their neurobiological impacts, and highlight remaining research questions. The goal here is for this discussion to illuminate both the scope and limitations of our current understanding regarding the role of B cells, stress, mood, and depression.
Collapse
Affiliation(s)
- Elizabeth Engler-Chiurazzi
- Department of Neurosurgery and Neurology, Clinical Neuroscience Research Center, Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
2
|
Bettinger JJ, Friedman BC. Opioids and Immunosuppression: Clinical Evidence, Mechanisms of Action, and Potential Therapies. Palliat Med Rep 2024; 5:70-80. [PMID: 38435086 PMCID: PMC10908329 DOI: 10.1089/pmr.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 03/05/2024] Open
Abstract
Background In addition to the more well-known adverse effects of opioids, such as constipation, mounting evidence supports underlying immunosuppressive effects as well. Methods In this study, we provide a narrative review of preclinical and clinical evidence of opioid suppression of the immune system as well as possible considerations for therapies. Results In vitro and animal studies have shown clear effects of opioids on inflammatory cytokine expression, immune cell activity, and pathogen susceptibility. Observational data in humans have so far supported preclinical findings, with multiple reports of increased rates of infections in various settings of opioid use. However, the extent to which this risk is due to the impact of opioids on the immune system compared with other risk factors associated with opioid use remains uncertain. Considering the data showing immunosuppression and increased risk of infection with opioid use, measures are needed to mitigate this risk in patients who require ongoing treatment with opioids. In preclinical studies, administration of opioid receptor antagonists blocked the immunomodulatory effects of opioids. Conclusions As selective antagonists of peripheral opioid receptors, peripherally acting mu-opioid receptor (MOR) antagonists may be able to protect against immune impairment while still allowing for opioid analgesia. Future research is warranted to further investigate the relationship between opioids and infection risk as well as the potential application of peripherally acting MOR antagonists to counteract these risks.
Collapse
Affiliation(s)
- Jeffrey J. Bettinger
- Pain Management, Saratoga Hospital Medical Group, Saratoga Springs, New York, USA
| | - Bruce C. Friedman
- JM Still Burn Center, Doctors Hospital of Augusta, Augusta, Georgia, USA
| |
Collapse
|
3
|
Gainullin M, Federico L, Røkke Osen J, Chaban V, Kared H, Alirezaylavasani A, Lund-Johansen F, Wildendahl G, Jacobsen JA, Sarwar Anjum H, Stratford R, Tennøe S, Malone B, Clancy T, Vaage JT, Henriksen K, Wüsthoff L, Munthe LA. People who use drugs show no increase in pre-existing T-cell cross-reactivity toward SARS-CoV-2 but develop a normal polyfunctional T-cell response after standard mRNA vaccination. Front Immunol 2024; 14:1235210. [PMID: 38299149 PMCID: PMC10827924 DOI: 10.3389/fimmu.2023.1235210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
People who use drugs (PWUD) are at a high risk of contracting and developing severe coronavirus disease 2019 (COVID-19) and other infectious diseases due to their lifestyle, comorbidities, and the detrimental effects of opioids on cellular immunity. However, there is limited research on vaccine responses in PWUD, particularly regarding the role that T cells play in the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show that before vaccination, PWUD did not exhibit an increased frequency of preexisting cross-reactive T cells to SARS-CoV-2 and that, despite the inhibitory effects that opioids have on T-cell immunity, standard vaccination can elicit robust polyfunctional CD4+ and CD8+ T-cell responses that were similar to those found in controls. Our findings indicate that vaccination stimulates an effective immune response in PWUD and highlight targeted vaccination as an essential public health instrument for the control of COVID-19 and other infectious diseases in this group of high-risk patients.
Collapse
Affiliation(s)
- Murat Gainullin
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NEC OncoImmunity AS, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Lorenzo Federico
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Julie Røkke Osen
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Viktoriia Chaban
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Hassen Kared
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Amin Alirezaylavasani
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | - John T. Vaage
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathleen Henriksen
- Agency for Social and Welfare Services, Oslo, Norway
- Student Health Services, University of Oslo, Oslo, Norway
| | - Linda Wüsthoff
- Unit for Clinical Research on Addictions, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Addiction Reasearch, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ludvig A. Munthe
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
James LM, Georgopoulos AP. Risk assessment of substance use disorders based on the human leukocyte antigen (HLA). Sci Rep 2023; 13:8545. [PMID: 37237010 DOI: 10.1038/s41598-023-35305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Substance use disorders (SUDs) are common and costly conditions that are partially attributable to genetic factors. In light of immune system influences on neural and behavioral aspects of addiction, the present study evaluated the influence of genes involved in the human immune response, human leukocyte antigen (HLA), on SUDs. We used an immunogenetic epidemiological approach to evaluate associations between the population frequencies of 127 HLA alleles and the population prevalences of six SUDs (alcohol, amphetamine, cannabis, cocaine, opioid, and "other" dependence) in 14 countries of Continental Western Europe to identify immunogenetic profiles of each SUD and evaluate their associations. The findings revealed two primary groupings of SUDs based on their immunogenetic profiles: one group comprised cannabis and cocaine, whereas the other group comprised alcohol, amphetamines, opioids, and "other" dependence. Since each individual possesses 12 HLA alleles, the population HLA-SUD scores were subsequently used to estimate individual risk for each SUD. Overall, the findings highlight similarities and differences in immunogenetic profiles of SUDs that may influence the prevalence and co-occurrence of problematic SUDs and may contribute to assessment of SUD risk of an individual on the basis of their HLA genetic makeup.
Collapse
Affiliation(s)
- Lisa M James
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center (11B), Department of Veterans Affairs Health Care System, Minneapolis VAHCS, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| |
Collapse
|
5
|
Scheff NN, Nilsen ML, Li J, Harris AL, Acharya R, Swartz A, Hsieh RW, Anderson JL, Ferris RL, Menk AV, Delgoffe GM, Zandberg DP. The effect of opioids on the efficacy of immunotherapy in recurrent/metastatic squamous cell carcinoma of the head and neck. Oral Oncol 2023; 140:106363. [PMID: 36963232 PMCID: PMC10450941 DOI: 10.1016/j.oraloncology.2023.106363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) causes severe pain and opioids, the mainstay of pain management, may have immunomodulatory effects. We evaluated the effect of opioids on immunotherapy efficacy in recurrent/metastatic (R/M) HNSCC patients. MATERIALS AND METHODS In a retrospective study of 66 R/M HNSCC patients from 2015 to 2020, opioid dosage, calculated as mean morphine milligram equivalent per day, was assessed on the day of anti-PD-1 monoclonal antibody (mAb) treatment and most recent prior visit. Intratumoral T cells were evaluated by single cell RNAseq and immunohistochemistry prior to treatment. Univariable and multivariable Cox proportional hazards and logistic regression models were used to estimate the association between opioid usage, progression-free survival (PFS), overall survival (OS), disease control rate. RESULTS Patients were 79% male, 35% oropharynx, 35% oral cavity, 40% locoregional recurrence, and 56% platinum failure. Higher opioid dosage by continuous variable was significantly associated with lower PFS (p = 0.016) and OS (p < 0.001). In multivariable analysis, including platinum failure status and PD-L1, higher opioids were associated with lower OS. Opioid usage by categorical variable was associated with significantly lower intratumoral CD8+ T cells. Opioid receptor, OPRM1, expression was identified in intratumoral and circulating T cells. CONCLUSIONS In our study cohort of anti-PD-1 mAb treatment in R/M HNSCC patients, higher opioids were associated with significantly lower PFS and OS and lower CD8+ T cells in the tumor microenvironment. To our knowledge, this is the first analysis in R/M HNSCC patients and further research into the clinical and biologic effect of opioids is warranted.
Collapse
Affiliation(s)
- Nicole N Scheff
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Marci L Nilsen
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States; Department of Acute and Tertiary Care, University of Pittsburgh, School of Nursing, Pittsburgh, PA, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Jinhong Li
- Department of Biostatistics, University of Pittsburgh, School of Public Health, Pittsburgh, PA, United States
| | - Alexandria L Harris
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Rajesh Acharya
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Andrew Swartz
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ronan W Hsieh
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Jennifer L Anderson
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States
| | - Robert L Ferris
- Department of Otolaryngology - Head and Neck Surgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA, United States; Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ashley V Menk
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Greg M Delgoffe
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Dan P Zandberg
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States.
| |
Collapse
|
6
|
Sun Q, Li Z, Wang Z, Wang Q, Qin F, Pan H, Lin W, Mu X, Wang Y, Jiang Y, Ji J, Lu Z. Immunosuppression by opioids: Mechanisms of action on innate and adaptive immunity. Biochem Pharmacol 2023; 209:115417. [PMID: 36682388 DOI: 10.1016/j.bcp.2023.115417] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Opioids are excellent analgesics for the clinical treatment of various types of acute and chronic pain, particularly cancer-related pain. Nevertheless, it is well known that opioids have some nasty side effects, including immunosuppression, which is commonly overlooked. As a result, the incidence of opportunistic bacterial and viral infections increases in patients with long-term opioid use. Nowadays, there are no effective medications to alleviate opioid-induced immunosuppression. Understanding the underlying molecular mechanism of opioids in immunosuppression can enable researchers to devise effective therapeutic interventions. This review comprehensively summarized the exogenous opioids-induced immunosuppressive effects and their underlying mechanisms, the regulatory roles of endogenous opioids on the immune system, the potential link between opioid immunosuppressive effect and the function of the central nervous system (CNS), and the future perspectives in this field.
Collapse
Affiliation(s)
- Qinmei Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhonghao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zijing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qisheng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fenfen Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haotian Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixin Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinru Mu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxuan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhigang Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. J Neuroimmune Pharmacol 2022; 17:76-93. [PMID: 34993905 DOI: 10.1007/s11481-021-10046-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.
Collapse
|
8
|
Prasetya RA, Metselaar-Albers M, Engels F. Concomitant use of analgesics and immune checkpoint inhibitors in non-small cell lung cancer: A pharmacodynamics perspective. Eur J Pharmacol 2021; 906:174284. [PMID: 34174268 DOI: 10.1016/j.ejphar.2021.174284] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
The invention of immunotherapy, such as immune checkpoint inhibitors (ICIs) for advanced-stage non-small cell lung cancer (NSCLC), has become a new standard of care for a defined group of NSCLC patients. However, the possible impacts of ICI interactions with analgesics for alleviating cancer-related pain are unclear and lack clinical evidence. Many studies have indicated that opioids detrimentally affect the immune system, possibly harming patients of ongoing immunotherapy. Opioids may repress the immune system in various ways, including impairing T cell function, upregulating immunosuppressor Treg cells, and interrupting intestinal microflora composition that disrupts the entire immune system. Furthermore, opioids can influence tumor progression and metastasis directly as opioid receptors are overexpressed in several types of NSCLC. In contrast, another analgesic acting on cyclooxygenase (COX) inhibition (i.e., NSAIDs) may be a candidate for adjuvant therapy since COX-2 is also expressed in the tumor cells of NSCLC patients. In addition, COX-2 is associated with tumor proliferation and metastasis. Therefore, both prospective and retrospective studies should confirm the advantages and disadvantages of the concurrent use of analgesics and ICIs in a clinical setting.
Collapse
Affiliation(s)
- Rahmad Aji Prasetya
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Clinical Pharmacy, Akademi Farmasi Surabaya, Surabaya, Indonesia.
| | - Marjolein Metselaar-Albers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
9
|
|
10
|
Postoperative opioids, endocrine changes, and immunosuppression. Pain Rep 2018; 3:e640. [PMID: 29756086 PMCID: PMC5902248 DOI: 10.1097/pr9.0000000000000640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022] Open
Abstract
Opioids are among most effective drugs for managing acute postoperative pain. This article discusses the potential effects of perioperative opioids on endocrine and immune function.
Collapse
|
11
|
Bryskin RB, Robie DK, Mansfield FM, Freid EB, Sukumvanich S. Introduction of a novel ultrasound-guided extrathoracic sub-paraspinal block for control of perioperative pain in Nuss procedure patients. J Pediatr Surg 2017; 52:484-491. [PMID: 27810148 DOI: 10.1016/j.jpedsurg.2016.09.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/23/2016] [Accepted: 09/20/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND A safe and effective method of multilevel thoracic pain control remains an elusive goal in patients undergoing the Nuss procedure. The aim of our study was to develop a nonopioid centered approach using a novel regional technique as part of a quality improvement initiative. METHODS The proposed ultrasound-guided technique positions multi-perforated soaker catheter deep to the paraspinal muscles from T2 to T11. The project was conducted in two phases. First, a cadaveric dissection was performed to establish the pathway of spread of local anesthetic in vivo. Second, a pilot double blind randomized control project was conducted to evaluate effectiveness of the technique in ten patients and to derive parameters necessary for the definitive future study. Outcomes were evaluated based on the narcotic requirement, pain scores and functional measures. RESULTS Placement of the catheters in two cadavers demonstrated reliable positioning in the subparaspinal tissue plane, and multilevel dye spread along the intercostal nerve path. In addition, a potential route of spread toward the paravertebral space along the canal accommodating dorsal ramus of the thoracic nerve was demonstrated. The pilot trial demonstrated a trend in decreased cumulative hydromorphone requirement in comparison to the control group at both 24h (0.19±0.09mg/kg vs. 0.13±0.08mg/kg p=0.72) and 48h (0.37±0.2mg/kg vs. 0.3±0.12mg/kg p=0.37). Functional performance ability was higher in the treatment group on both POD#1 (6.7±1.8 vs. 4.8±1 p=0.0495) and POD#2 (8.9±0.8 vs. 6.5±1.2 p=0.04). Pain scores were similar among the two groups (p=0.96). CONCLUSIONS We describe a new technique to treat multilevel thoracic pain following the Nuss procedure that is reproducible, safe, allows diminished opioid use and enhances functional recovery.
Collapse
Affiliation(s)
- Robert B Bryskin
- Department of Anesthesiology, Nemours Children's Clinic, Jacksonville, FL, USA,.
| | - Daniel K Robie
- Department of Surgery, Nemours Children's Clinic, Jacksonville, FL, USA.
| | | | - Eugene B Freid
- Department of Anesthesiology, Nemours Children's Clinic, Jacksonville, FL, USA,.
| | | |
Collapse
|
12
|
Morgan LZ, Rollins B, Sequeira A, Byerley W, DeLisi LE, Schatzberg AF, Barchas JD, Myers RM, Watson SJ, Akil H, Bunney WE, Vawter MP. Quantitative Trait Locus and Brain Expression of HLA-DPA1 Offers Evidence of Shared Immune Alterations in Psychiatric Disorders. MICROARRAYS 2016; 5. [PMID: 26998349 PMCID: PMC4795482 DOI: 10.3390/microarrays5010006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genome-wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC) were highly significant following genome-wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1) in brain from individual subjects with schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. Exon microarrays were performed in anterior cingulate cortex (ACC) in BD compared to controls, and both HLA-DPA1 and CD74 were decreased in expression in BD. The expression of HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by exon microarrays. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL) that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL) by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future tests in a larger cohort are needed to determine the significance of this eQTL association with schizophrenia. Our findings support the long-held hypothesis that alterations in immune function are associated with the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Ling Z. Morgan
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697; (L.Z.M.); (B.R.); (A.S.)
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697; (L.Z.M.); (B.R.); (A.S.)
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
| | - Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697; (L.Z.M.); (B.R.); (A.S.)
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
| | - William Byerley
- Department of Psychiatry, University of California, San Francisco, CA 94103, USA;
| | - Lynn E. DeLisi
- VA Boston Healthcare System, Brockton, MA 02301, USA;
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA;
| | - Jack D. Barchas
- Department of Psychiatry, Cornell University of California, Ithaca, NJ 10065, USA;
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA;
| | - Stanley J. Watson
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.W.); (H.A.)
| | - Huda Akil
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; (S.J.W.); (H.A.)
| | - William E. Bunney
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697; (L.Z.M.); (B.R.); (A.S.)
- Department of Psychiatry & Human Behavior, University of California, Irvine, CA 92697, USA;
- Correspondence: ; Tel.: + 949-824-9014; Fax: + 949-824-1787
| |
Collapse
|
13
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Roy S, Ninkovic J, Banerjee S, Charboneau RG, Das S, Dutta R, Kirchner VA, Koodie L, Ma J, Meng J, Barke RA. Opioid drug abuse and modulation of immune function: consequences in the susceptibility to opportunistic infections. J Neuroimmune Pharmacol 2011; 6:442-65. [PMID: 21789507 PMCID: PMC3601186 DOI: 10.1007/s11481-011-9292-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 06/27/2011] [Indexed: 12/13/2022]
Abstract
Infection rate among intravenous drug users (IDU) is higher than the general public, and is the major cause of morbidity and hospitalization in the IDU population. Epidemiologic studies provide data on increased prevalence of opportunistic bacterial infections such as TB and pneumonia, and viral infections such as HIV-1 and hepatitis in the IDU population. An important component in the intravenous drug abuse population and in patients receiving medically indicated chronic opioid treatment is opioid withdrawal. Data on bacterial virulence in the context of opioid withdrawal suggest that mice undergoing withdrawal had shortened survival and increased bacterial load in response to Salmonella infection. As the body of evidence in support of opioid dependency and its immunosuppressive effects is growing, it is imperative to understand the mechanisms by which opioids exert these effects and identify the populations at risk that would benefit the most from the interventions to counteract opioid immunosuppressive effects. Thus, it is important to refine the existing animal model to closely match human conditions and to cross-validate these findings through carefully controlled human studies. Better understanding of the mechanisms will facilitate the search for new therapeutic modalities to counteract adverse effects including increased infection rates. This review will summarize the effects of morphine on innate and adaptive immunity, identify the role of the mu opioid receptor in these functions and the signal transduction activated in the process. The role of opioid withdrawal in immunosuppression and the clinical relevance of these findings will also be discussed.
Collapse
Affiliation(s)
- Sabita Roy
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chang MC, Fan SZ, Hsiao PN, Cheng WF, Sun WZ. Influence of morphine on host immunity. ACTA ACUST UNITED AC 2011; 49:105-8. [PMID: 21982172 DOI: 10.1016/j.aat.2011.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/09/2011] [Accepted: 08/12/2011] [Indexed: 12/24/2022]
Abstract
Morphine is a widely used drug for analgesia and substance abuse. It has been accepted as a safe medication with great analgesic efficacy. Previous studies have reported that morphine is highly associated with the risk of immunosuppressive effects. Although the observed clinical effects suggest that morphine has the immunomodulatory capabilities, the mechanism of its action is still unclear. Here we review morphine on the bench to improve our understanding of the drug on the host immunity at the bedside. Studies of the effects of morphine on the innate and adaptive immune systems as well as immune responses are also discussed.
Collapse
Affiliation(s)
- Ming-Cheng Chang
- Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
16
|
Malik S, Khalique H, Buch S, Seth P. A growth factor attenuates HIV-1 Tat and morphine induced damage to human neurons: implication in HIV/AIDS-drug abuse cases. PLoS One 2011; 6:e18116. [PMID: 21483469 PMCID: PMC3063804 DOI: 10.1371/journal.pone.0018116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/25/2011] [Indexed: 01/03/2023] Open
Abstract
The neuropathological abnormalities of human immunodeficiency virus (HIV)-1 patients abusing illicit drugs suggest extensive interactions between the two agents, thereby leading to increased rate of progression to neurodegeneration. The role of HIV-1 transactivating protein, Tat has been elucidated in mediating neuronal damage via apoptosis, a hallmark of HIV-associated dementia (HAD), however the underlying mechanisms involved in enhanced neurodegeneration by illicit drugs remain elusive. In this study, we demonstrated that morphine enhances HIV-Tat induced toxicity in human neurons and neuroblastoma cells. Enhanced toxicity by Tat and morphine was accompanied by increased numbers of TUNEL positive apoptotic neurons, elevated caspase-3 levels and decreased ratio of anti- and pro-apoptotic proteins, Bcl2/Bax. Tat and morphine together elicited high levels of reactive oxygen species that were NADPH dependent. Significant alterations in mitochondrial membrane homeostasis were also observed with co-exposure of these agents. Extensive studies of mitogen activated protein kinase (MAPK) signaling pathways revealed the involvement of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase-1/2 (ERK1/2) pathways in enhanced toxicity of Tat and morphine. In addition to this, we found that pre-treatment of cells with platelet derived growth factor (PDGF-BB) protected neurons from HIV-Tat and morphine induced damage. PDGF-BB alleviated ROS production, maintained mitochondrial membrane potential, decreased caspase-3 activation and hence protected the cells from undergoing apoptosis. PDGF-BB mediated protection against Tat and morphine involved the phosphatidylinositol–3 kinase (PI3K) pathway, as specific inhibitor of PI3K abrogated the protection conferred by PDGF-BB. This study demonstrates the mechanism of enhanced toxicity in human neurons subjected to co-exposure of HIV protein Tat and morphine, thus implying its importance in HIV positive drug abusers, where damage to the brain is reported to be more severe than non-drug abusers. We have also showed for the first time that PDGF-BB can protect against simultaneous exposure of Tat and morphine, strengthening its role as a neuroprotective agent that could be considered for therapeutic intervention.
Collapse
Affiliation(s)
- Shaily Malik
- Cellular and Molecular Neuroscience, National Brain Research Center, Manesar, Gurgaon, Haryana, India
| | - Hena Khalique
- Cellular and Molecular Neuroscience, National Brain Research Center, Manesar, Gurgaon, Haryana, India
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pankaj Seth
- Cellular and Molecular Neuroscience, National Brain Research Center, Manesar, Gurgaon, Haryana, India
- * E-mail:
| |
Collapse
|