1
|
Hamada T, Oyama H, Igarashi A, Kawaguchi Y, Lee M, Matsui H, Michihata N, Nakai Y, Fushimi K, Yasunaga H, Fujishiro M. Optimal age to discontinue long-term surveillance of intraductal papillary mucinous neoplasms: comparative cost-effectiveness of surveillance by age. Gut 2024; 73:955-965. [PMID: 38286589 DOI: 10.1136/gutjnl-2023-330329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE Current guidelines recommend long-term image-based surveillance for patients with low-risk intraductal papillary mucinous neoplasms (IPMNs). This simulation study aimed to examine the comparative cost-effectiveness of continued versus discontinued surveillance at different ages and define the optimal age to stop surveillance. DESIGN We constructed a Markov model with a lifetime horizon to simulate the clinical course of patients with IPMNs receiving imaging-based surveillance. We calculated incremental cost-effectiveness ratios (ICERs) for continued versus discontinued surveillance at different ages to stop surveillance, stratified by sex and IPMN types (branch-duct vs mixed-type). We determined the optimal age to stop surveillance as the lowest age at which the ICER exceeded the willingness-to-pay threshold of US$100 000 per quality-adjusted life year. To estimate model parameters, we used a clinical cohort of 3000 patients with IPMNs and a national database including 40 166 patients with pancreatic cancer receiving pancreatectomy as well as published data. RESULTS In male patients, the optimal age to stop surveillance was 76-78 years irrespective of the IPMN types, compared with 70, 73, 81, and 84 years for female patients with branch-duct IPMNs <20 mm, =20-29 mm, ≥30 mm and mixed-type IPMNs, respectively. The suggested ages became younger according to an increasing level of comorbidities. In cases with high comorbidity burden, the ICERs were above the willingness-to-pay threshold irrespective of sex and the size of branch-duct IPMNs. CONCLUSIONS The cost-effectiveness of long-term IPMN surveillance depended on sex, IPMN types, and comorbidity levels, suggesting the potential to personalise patient management from the health economic perspective.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Graduate School of Public Health, St Luke's International University, Tokyo, Japan
| | - Hiroki Oyama
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ataru Igarashi
- Graduate School of Public Health, St Luke's International University, Tokyo, Japan
- Unit of Public Health and Preventive Medicine, Yokohama City University School of Medicine, Kanagawa, Japan
- Department of Health Economics and Outcomes Research, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikuni Kawaguchi
- Graduate School of Public Health, St Luke's International University, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihye Lee
- Graduate School of Public Health, St Luke's International University, Tokyo, Japan
| | - Hiroki Matsui
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Nobuaki Michihata
- Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Mouillot P, Favrolt N, Khouri C, Grandvuillemin A, Chaumais MC, Schenesse D, Seferian A, Jais X, Savale L, Beltramo G, Sitbon O, Cracowski JL, Humbert M, Georges M, Bonniaud P, Montani D. Characteristics and outcomes of gemcitabine-associated pulmonary hypertension. ERJ Open Res 2024; 10:00654-2023. [PMID: 38770007 PMCID: PMC11103709 DOI: 10.1183/23120541.00654-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 05/22/2024] Open
Abstract
Background Despite its known cardiac and lung toxicities, the chemotherapy drug gemcitabine has only rarely been associated with pulmonary hypertension (PH), and the underlying mechanism remains unclear. The objective of the present study was to assess the association between gemcitabine and PH. Methods We identified incident cases of precapillary PH confirmed by right heart catheterisation in patients treated with gemcitabine from the French PH Registry between January 2007 and December 2022. The aetiology, clinical, functional, radiological and haemodynamic characteristics of PH were reviewed at baseline and during follow-up. A pharmacovigilance disproportionality analysis was conducted using the World Health Organization (WHO) pharmacovigilance database. Results We identified nine cases of pulmonary arterial hypertension, either induced (in eight patients) or exacerbated (in one patient) by gemcitabine. Patients exhibited severe precapillary PH, with a median mean pulmonary arterial pressure of 40 (range 26-47) mmHg, a cardiac index of 2.4 (1.6-3.9) L·min-1·m-2 and a pulmonary vascular resistance of 6.3 (3.1-12.6) Wood units. The median time from the initiation of gemcitabine to the onset of PH was 7 (4-50) months, with patients receiving a median of 16 (6-24) gemcitabine injections. Six patients showed clinical improvement upon discontinuation of gemcitabine. In the WHO pharmacovigilance database, we identified a significant signal with 109 cases reporting at least one adverse event related to PH with gemcitabine. Conclusion Both clinical cases and pharmacovigilance data substantiate a significant association between gemcitabine use and the onset or worsening of precapillary PH. The observed improvement following the discontinuation of treatment underscores the importance of PH screening in gemcitabine-exposed patients experiencing unexplained dyspnoea.
Collapse
Affiliation(s)
- Pierre Mouillot
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Nicolas Favrolt
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Charles Khouri
- Pharmacovigilance Unit, Grenoble Alpes University Hospital, Grenoble, France
- Clinical Pharmacology Department INSERM CIC1406, Grenoble Alpes University Hospital, Grenoble, France
- HP2 Laboratory, Inserm U1300, Grenoble Alpes University, Grenoble, France
| | | | - Marie-Camille Chaumais
- Faculty of Pharmacy, Université Paris-Saclay, Orsay, France
- Assistance Publique – Hôpitaux de Paris (AP-HP), Pharmacy Department, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
| | - Déborah Schenesse
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Andrei Seferian
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Xavier Jais
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Guillaume Beltramo
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Olivier Sitbon
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Jean-Luc Cracowski
- Pharmacovigilance Unit, Grenoble Alpes University Hospital, Grenoble, France
- HP2 Laboratory, Inserm U1300, Grenoble Alpes University, Grenoble, France
| | - Marc Humbert
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marjolaine Georges
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
| | - Philippe Bonniaud
- Department of Pneumology and Intensive Care, Reference Center for Rare Lung Diseases, François Mitterrand Hospital, Dijon, France
- Faculty of Medicine, INSERM 1231, University of Burgundy, Dijon, France
- P. Bonniaud and D. Montani contributed equally
| | - David Montani
- INSERM UMR_S 999 “Pulmonary Hypertension: Pathophysiology and Novel Therapies”, Hospital Marie Lannelongue, Le Plessis-Robinson, France
- Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
- AP-HP, Department of Pneumology and Intensive Care, Pulmonary Hypertension Reference Centre, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- P. Bonniaud and D. Montani contributed equally
| |
Collapse
|
3
|
Kastner A, Mendrina T, Babu T, Karmakar S, Poetsch I, Berger W, Keppler BK, Gibson D, Heffeter P, Kowol CR. Stepwise optimization of tumor-targeted dual-action platinum(iv)-gemcitabine prodrugs. Inorg Chem Front 2024; 11:534-548. [PMID: 38235273 PMCID: PMC10790623 DOI: 10.1039/d3qi02032k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
While platinum-based chemotherapeutic agents have established themselves as indispensable components of anticancer therapy, they are accompanied by a variety of side effects and the rapid occurrence of drug resistance. A promising strategy to address these challenges is the use of platinum(iv) prodrugs, which remain inert until they reach the tumor tissue, thereby mitigating detrimental effects on healthy cells. Typically, platinum drugs are part of combination therapy settings. Consequently, a very elegant strategy is the development of platinum(iv) prodrugs bearing a second, clinically relevant therapeutic in axial position. In the present study, we focused on gemcitabine as an approved antimetabolite, which is highly synergistic with platinum drugs. In addition, to increase plasma half-life and facilitate tumor-specific accumulation, an albumin-binding maleimide moiety was attached. Our investigations revealed that maleimide-cisplatin(iv)-gemcitabine complexes cannot carry sufficient amounts of gemcitabine to induce a significant effect in vivo. Consequently, we designed a carboplatin(iv) analog, that can be applied at much higher doses. Remarkably, this novel analog demonstrated impressive in vivo results, characterized by significant improvements in overall survival. Notably, these encouraging results could also be transferred to an in vivo xenograft model with acquired gemcitabine resistance, indicating the high potential of this approach.
Collapse
Affiliation(s)
- Alexander Kastner
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem) Waehringer Str. 42 1090 Vienna Austria
| | - Theresa Mendrina
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Tomer Babu
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Isabella Poetsch
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | - Walter Berger
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Bernhard K Keppler
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem 9112102 Jerusalem Israel
| | - Petra Heffeter
- Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| | - Christian R Kowol
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 1090 Vienna Austria
- Research Cluster "Translational Cancer Therapy Research" 1090 Vienna Austria
| |
Collapse
|
4
|
Ogunleye A, Piyawajanusorn C, Ghislat G, Ballester PJ. Large-Scale Machine Learning Analysis Reveals DNA Methylation and Gene Expression Response Signatures for Gemcitabine-Treated Pancreatic Cancer. HEALTH DATA SCIENCE 2024; 4:0108. [PMID: 38486621 PMCID: PMC10904073 DOI: 10.34133/hds.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/08/2023] [Indexed: 03/17/2024]
Abstract
Background: Gemcitabine is a first-line chemotherapy for pancreatic adenocarcinoma (PAAD), but many PAAD patients do not respond to gemcitabine-containing treatments. Being able to predict such nonresponders would hence permit the undelayed administration of more promising treatments while sparing gemcitabine life-threatening side effects for those patients. Unfortunately, the few predictors of PAAD patient response to this drug are weak, none of them exploiting yet the power of machine learning (ML). Methods: Here, we applied ML to predict the response of PAAD patients to gemcitabine from the molecular profiles of their tumors. More concretely, we collected diverse molecular profiles of PAAD patient tumors along with the corresponding clinical data (gemcitabine responses and clinical features) from the Genomic Data Commons resource. From systematically combining 8 tumor profiles with 16 classification algorithms, each of the resulting 128 ML models was evaluated by multiple 10-fold cross-validations. Results: Only 7 of these 128 models were predictive, which underlines the importance of carrying out such a large-scale analysis to avoid missing the most predictive models. These were here random forest using 4 selected mRNAs [0.44 Matthews correlation coefficient (MCC), 0.785 receiver operating characteristic-area under the curve (ROC-AUC)] and XGBoost combining 12 DNA methylation probes (0.32 MCC, 0.697 ROC-AUC). By contrast, the hENT1 marker obtained much worse random-level performance (practically 0 MCC, 0.5 ROC-AUC). Despite not being trained to predict prognosis (overall and progression-free survival), these ML models were also able to anticipate this patient outcome. Conclusions: We release these promising ML models so that they can be evaluated prospectively on other gemcitabine-treated PAAD patients.
Collapse
Affiliation(s)
- Adeolu Ogunleye
- Department of Organismal Biology,
Uppsala University, Uppsala, Sweden
| | | | - Ghita Ghislat
- Department of Life Sciences,
Imperial College London, London, UK
| | | |
Collapse
|
5
|
Asano H, Elhelaly AE, Hyodo F, Iwasaki R, Noda Y, Kato H, Ichihashi K, Tomita H, Murata M, Mori T, Matsuo M. Deuterium Magnetic Resonance Imaging Using Deuterated Water-Induced 2H-Tissue Labeling Allows Monitoring Cancer Treatment at Clinical Field Strength. Clin Cancer Res 2023; 29:5173-5182. [PMID: 37732903 PMCID: PMC10722130 DOI: 10.1158/1078-0432.ccr-23-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE An accurate and noninvasive assessment of tumor response following treatment other than traditional anatomical imaging techniques is essential. Deuterium magnetic resonance spectroscopic (MRS) imaging has been demonstrated as an alternative for cancer metabolic imaging by high-field MRI using deuterium-labeled molecules. The study aim was to use 2H tissue labeling and deuterium MRI at clinical field strength for tumor visualization and assessment of three anticancer therapies in pancreatic cancer model mice. EXPERIMENTAL DESIGN MIA PaCa-2 pancreatic carcinoma and C26 colorectal carcinoma models of BALB/c-nu mice was prepared, and repeated deuterium MRI was performed during the first 10 days of free drinking of 30% D2O to track 2H distribution in tissues. 2H accumulation in the tumor after irradiation, bevacizumab administration, or gemcitabine administration was also measured in MIA PaCa-2-bearing mice. Confirmatory proton MRI, ex vivo metabolic hyperpolarization 13C-MRS, and histopathology were performed. RESULTS The mouse's whole-body distribution of 2H was visible 1 day after drinking, and the signal intensity increased daily. Although the tumor size did not change 1 and 3 days after irradiation, the amount of 2H decreased significantly. The 2H image intensity of the tumor also significantly decreased after the administration of bevacizumab or gemcitabine. Metabolic hyperpolarization 13C-MRS, proton MRI, and 2H-NMR spectroscopy confirmed the efficacy of the anticancer treatments. CONCLUSIONS Deuterium MRI at 1.5T proved feasible to track 2H distribution throughout mouse tissues during D2O administration and revealed a higher 2H accumulation in the tumor xenografts. This research demonstrated a promising successful method for preliminary assessment of radiotherapy and chemotherapy of cancer.
Collapse
Affiliation(s)
- Hirofumi Asano
- Department of Radiology, Gifu University, Gifu, Japan
- Department of Radiological Technology, Central Japan International Medical Center, Gifu, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, Gifu University, Gifu, Japan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Fuminori Hyodo
- Department of Radiology, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Gifu, Japan
| | - Ryota Iwasaki
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Takashi Mori
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | | |
Collapse
|
6
|
Kuang S, Liu S, Wang S, Yang L, Zeng Y, Ming X. Folate-receptor-targeted co-self-assembly carrier-free gemcitabine nanoparticles loading indocyanine green for chemo-photothermal therapy. Front Bioeng Biotechnol 2023; 11:1266652. [PMID: 37811371 PMCID: PMC10557076 DOI: 10.3389/fbioe.2023.1266652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
The carrier-free chemo-photothermal therapy has become a promising strategy to improve anti-cancer therapeutic efficacy owing to the combination of chemotherapy and photothermal therapy, with improved chemotherapy drug pharmacodynamics and pharmacokinetics, high drug loading, and reduced toxicity. We designed a novel carrier-free targeting nanoparticles, co-self-assembled amphiphilic prodrugs 3',5'-dioleoyl gemcitabine (DOG), and tumor-targeted γ-octadecyl folate (MOFA), with encapsulated US Food and Drug Administration (FDA)-approved photosensitizer indocyanine green (ICG) for synergistic chemo-photothermal therapy. The DOG linking oleic acid to the sugar moiety of gemcitabine (GEM) showed better self-assembly ability among GEM amphiphilic prodrugs linking different fatty acids. The readily available and highly reproducible 3',5'-dioleoyl gemcitabine/γ-octadecyl folate/indocyanine green (DOG/MOFA/ICG) nanoparticles were prepared by reprecipitation and showed nano-scale structure with mono-dispersity, great encapsulation efficiency of ICG (approximately 74%), acid- and laser irradiation-triggered GEM release in vitro and sustained GEM release in vivo after intravenous administration as well as excellent temperature conversion (57.0°C) with near-infrared laser irradiation. The combinational DOG/MOFA/ICG nanoparticles with near-infrared laser irradiation showed better anti-tumor efficacy than individual chemotherapy or photothermal therapy, with very low hemolysis and inappreciable toxicity for L929 cells. This co-self-assembly of the ICG and the chemotherapy drug (GEM) provides a novel tactic for the rational design of multifunctional nanosystems for targeting drug delivery and theranostics.
Collapse
Affiliation(s)
| | | | | | | | - Yingchun Zeng
- Study on the Structure-Specific Small Molecular Drug in Sichuan Province College Key Laboratory, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xin Ming
- Study on the Structure-Specific Small Molecular Drug in Sichuan Province College Key Laboratory, School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Fàbrega C, Clua A, Eritja R, Aviñó A. Oligonucleotides Carrying Nucleoside Antimetabolites as Potential Prodrugs. Curr Med Chem 2023; 30:1304-1319. [PMID: 34844535 PMCID: PMC11497139 DOI: 10.2174/0929867328666211129124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleoside and nucleobase antimetabolites are an important class of chemotherapeutic agents for the treatment of cancer as well as other diseases. INTRODUCTION In order to avoid undesirable side effects, several prodrug strategies have been developed. In the present review, we describe a relatively unknown strategy that consists of using oligonucleotides modified with nucleoside antimetabolites as prodrugs. METHODS The active nucleotides are generated by enzymatic degradation once incorporated into cells. This strategy has attracted large interest and is widely utilized at present due to the continuous developments made in therapeutic oligonucleotides and the recent advances in nanomaterials and nanomedicine. RESULTS A large research effort was made mainly in the improvement of the antiproliferative properties of nucleoside homopolymers, but recently, chemically modified aptamers, antisense oligonucleotides and/or siRNA carrying antiproliferative nucleotides have demonstrated a great potential due to the synergetic effect of both therapeutic entities. In addition, DNA nanostructures with interesting properties have been built to combine antimetabolites and enhancers of cellular uptake in the same scaffold. Finally, protein nanoparticles functionalized with receptor-binders and antiproliferative oligomers represent a new avenue for a more effective treatment in cancer therapy. CONCLUSION It is expected that oligonucleotides carrying nucleoside antimetabolites will be considered as potential drugs in the near future for biomedical applications.
Collapse
Affiliation(s)
- Carme Fàbrega
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Clua
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC), Spanish National Research Council (CSIC), Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, Spain
| |
Collapse
|
8
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
9
|
Zhou W, Deng Y, Zhang C, Liu Z, Zhang J, Zhou L, Shao L, Zhang C. Current status of therapeutic drug monitoring for methotrexate, imatinib, paclitaxel in China. Clin Biochem 2022; 104:44-50. [PMID: 35331753 DOI: 10.1016/j.clinbiochem.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accurate TDMs of plasma methotrexate, imatinib and paclitaxel assist in the development of optimal therapeutic regimes. This study aims to investigate the current status of methotrexate, imatinib and paclitaxel measurements in China and explore the suitable EQA materials for those drugs. METHODS 4 processed plasma samples including 2 levels of frozen pooled plasma samples and 2 levels of lyophilized pooled plasma samples were measured in different laboratories using different measurement systems. The inter-laboratory %CV and intra-measurement-system %CV of laboratories were calculated to assess the status of methotrexate, imatinib and paclitaxel measurements. The short-term stability and homogeneity of those processed samples were studied and compared. The relative differences (%) between the results of those two kinds of processed samples were also calculated to determine whether there were significant differences in their matrix effects for various measurement systems. RESULTS The mean inter-laboratory %CVs ranged from 12.8% to 15.3%, 14.7% to 19.6% and 56.8% to 81.6% for methotrexate, imatinib and paclitaxel, respectively. The intra-measurement %CV of homogeneous commercial measurement systems was better than other measurement systems. The lyophilized samples were more stable than frozen samples and there were no obvious differences in their matrix effects for most measurement systems. CONCLUSIONS The agreement among the results of methotrexate, imatinib, and especially paclitaxel from different laboratories was not satisfactory. Currently, the lyophilized samples were the more suitable EQA material for methotrexate, imatinib and paclitaxel than frozen samples.
Collapse
Affiliation(s)
- Weiyan Zhou
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Yuhang Deng
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Chao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Zhenni Liu
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Jiangtao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Li Zhou
- Beijing Health Bio Technology Co., Ltd, PR China
| | - Lijun Shao
- Beijing Health Bio Technology Co., Ltd, PR China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
10
|
Hsu FT, Tsai CL, Chiang IT, Lan KH, Yueh PF, Liang WY, Lin CS, Chao Y, Lan KL. Synergistic effect of Abraxane that combines human IL15 fused with an albumin-binding domain on murine models of pancreatic ductal adenocarcinoma. J Cell Mol Med 2022; 26:1955-1968. [PMID: 35174623 PMCID: PMC8980892 DOI: 10.1111/jcmm.17220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nab‐paclitaxel (Abraxane), which is a nanoparticle form of albumin‐bound paclitaxel, is one of the standard chemotherapies for pancreatic ductal adenocarcinoma (PDAC). This study determined the effect of Abraxane in combination with a fusion protein, hIL15‐ABD, on subcutaneous Panc02 and orthotopic KPC C57BL/6 murine PDAC models. Abraxane combined with hIL15‐ABD best suppressed tumour growth and produced a 40%–60% reduction in the tumour size for Panc02 and KPC, compared to the vehicle group. In the combination group, the active form of interferon‐γ (IFN‐γ)‐secreting CD8+ T cells and CD11b+CD86+ M1 macrophages in tumour infiltrating lymphocytes (TILs) were increased. In the tumour drainage lymph nodes (TDLNs) of the combination group, there was a 18% reduction in CD8+IFN‐γ+ T cells and a 0.47% reduction in CD4+CD25+FOXP3+ regulatory T cells, as opposed to 5.0% and 5.1% reductions, respectively, for the control group. Superior suppression of CD11b+GR‐1+ myeloid‐derived suppressor cells (MDSCs) and the induction of M1 macrophages in the spleen and bone marrow of mice were found in the combination group. Abraxane and hIL15‐ABD effectively suppressed NF‐κB‐mediated immune suppressive markers, including indoleamine 2,3‐dioxygenase (IDO), Foxp3 and VEGF. In conclusion, Abraxane combined with hIL15‐ABD stimulates the anticancer activity of effector cells, inhibits immunosuppressive cells within the tumour microenvironment (TME) of PDAC, and produces a greater inhibitory effect than individual monotherapies.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang Liang Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Tsang Chiang
- Medical administrative center, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Taiwan.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Keng-Hsueh Lan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Fu Yueh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Shuo Lin
- Department of Radiation Oncology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Ouyang G, Wu Y, Liu Z, Lu W, Li S, Hao S, Pan G. Efficacy and safety of gemcitabine-capecitabine combination therapy for pancreatic cancer: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e27870. [PMID: 35049189 PMCID: PMC9191365 DOI: 10.1097/md.0000000000027870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Recent randomized controlled trials revealed the combination of gemcitabine and capecitabine (GemCap) regime shows promising efficacy in pancreatic cancer patients. Here, we conducted a meta-analysis to compare the efficacy and safety of gemcitabine (Gem) with GemCap for pancreatic cancer. METHODS The database of MEDLINE (PubMed), EMBASE, Cochrane Central Controster of Controlled Trials, Web of Science was searched for relevant randomized controlled trials before 8 April, 2020. The outcomes were overall survival (OS), 12-month survival rate, progress free survival (PFS), partial response rate (PRR), objective response rate (ORR), and Grade 3/4 toxicities. RESULTS Five randomized controlled trials involving 1879 patients were included in this study. The results showed that GemCap significantly improves the OS (hazard ratio = 1.15, 95% CI: 1.037-1.276, P = .008), PFS (hazard ratio = 1.211, 95% CI 1.09-1.344, P = 0), PRR (relative risk (RR) = 0.649, 95% CI 0.488-0.862, P = .003), ORR (RR = 0.605, 95% CI 0.458-0.799, P = 0), and the overall toxicity (RR = 0.708, 95% CI 0.620-0.808, P = .000) compared to Gem alone. However, no significant difference was found in 12-month survival. CONCLUSIONS Despite a higher incidence of Grade 3/4 toxicity, GemCap was associated with better outcomes of OS, PFS, PRR, ORR, as compared with Gem, which is likely to become a promising therapy for pancreatic cancer.
Collapse
|
12
|
Pijnappel EN, Wassenaar NPM, Gurney-Champion OJ, Klaassen R, van der Lee K, Pleunis-van Empel MCH, Richel DJ, Legdeur MC, Nederveen AJ, van Laarhoven HWM, Wilmink JW. Phase I/II Study of LDE225 in Combination with Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Cancer. Cancers (Basel) 2021; 13:4869. [PMID: 34638351 PMCID: PMC8507646 DOI: 10.3390/cancers13194869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Desmoplasia is a central feature of the tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC). LDE225 is a pharmacological Hedgehog signaling pathway inhibitor and is thought to specifically target tumor stroma. We investigated the combined use of LDE225 and chemotherapy to treat PDAC patients. METHODS This was a multi-center, phase I/II study for patients with metastatic PDAC establishing the maximum tolerated dose of LDE225 co-administered with gemcitabine and nab-paclitaxel (phase I) and evaluating the efficacy and safety of the treatment combination after prior FOLFIRINOX treatment (phase II). Tumor microenvironment assessment was performed with quantitative MRI using intra-voxel incoherent motion diffusion weighted MRI (IVIM-DWI) and dynamic contrast-enhanced (DCE) MRI. RESULTS The MTD of LDE225 was 200 mg once daily co-administered with gemcitabine 1000 mg/m2 and nab-paclitaxel 125 mg/m2. In phase II, six therapy-related grade 4 adverse events (AE) and three grade 5 were observed. In 24 patients, the target lesion response was evaluable. Three patients had partial response (13%), 14 patients showed stable disease (58%), and 7 patients had progressive disease (29%). Median overall survival (OS) was 6 months (IQR 3.9-8.1). Blood plasma fraction (DCE) and diffusion coefficient (IVIM-DWI) significantly increased during treatment. Baseline perfusion fraction could predict OS (>222 days) with 80% sensitivity and 85% specificity. CONCLUSION LDE225 in combination with gemcitabine and nab-paclitaxel was well-tolerated in patients with metastatic PDAC and has promising efficacy after prior treatment with FOLFIRINOX. Quantitative MRI suggested that LDE225 causes increased tumor diffusion and works particularly well in patients with poor baseline tumor perfusion.
Collapse
Affiliation(s)
- Esther N. Pijnappel
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Nienke P. M. Wassenaar
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Oliver J. Gurney-Champion
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Remy Klaassen
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Koen van der Lee
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | | | - Dick J. Richel
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Marie C. Legdeur
- Department of Medical Oncology, Medisch Spectrum Twente, Twente, 7512 Enschede, The Netherlands; (M.C.H.P.-v.E.); (M.C.L.)
| | - Aart J. Nederveen
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Hanneke W. M. van Laarhoven
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Johanna W. Wilmink
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| |
Collapse
|
13
|
Gediz Erturk A, Sahin A, Bati Ay E, Pelit E, Bagdatli E, Kulu I, Gul M, Mesci S, Eryilmaz S, Oba Ilter S, Yildirim T. A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Molecules 2021; 26:3526. [PMID: 34207756 PMCID: PMC8228528 DOI: 10.3390/molecules26123526] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, humanity has faced an important global threat. Many studies have been published on the origin, structure, and mechanism of action of the SARS-CoV-2 virus and the treatment of its disease. The priority of scientists all over the world has been to direct their time to research this subject. In this review, we highlight chemical studies and therapeutic approaches to overcome COVID-19 with seven different sections. These sections are the structure and mechanism of action of SARS-CoV-2, immunotherapy and vaccine, computer-aided drug design, repurposing therapeutics for COVID-19, synthesis of new molecular structures against COVID-19, food safety/security and functional food components, and potential natural products against COVID-19. In this work, we aimed to screen all the newly synthesized compounds, repurposing chemicals covering antiviral, anti-inflammatory, antibacterial, antiparasitic, anticancer, antipsychotic, and antihistamine compounds against COVID-19. We also highlight computer-aided approaches to develop an anti-COVID-19 molecule. We explain that some phytochemicals and dietary supplements have been identified as antiviral bioproducts, which have almost been successfully tested against COVID-19. In addition, we present immunotherapy types, targets, immunotherapy and inflammation/mutations of the virus, immune response, and vaccine issues.
Collapse
Affiliation(s)
- Aliye Gediz Erturk
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Arzu Sahin
- Department of Basic Medical Sciences—Physiology, Faculty of Medicine, Uşak University, 1-EylulUşak 64000, Turkey;
| | - Ebru Bati Ay
- Department of Plant and Animal Production, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Emel Pelit
- Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University, Kırklareli 39000, Turkey;
| | - Emine Bagdatli
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Irem Kulu
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli 41400, Turkey;
| | - Melek Gul
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey
| | - Seda Mesci
- Scientific Technical Application and Research Center, Hitit University, Çorum 19030, Turkey;
| | - Serpil Eryilmaz
- Department of Physics, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| | - Sirin Oba Ilter
- Food Processing Department, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Tuba Yildirim
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| |
Collapse
|
14
|
Peng L, Zhuang L, Lin K, Yao Y, Zhang Y, Arumugam T, Fujii T, Jiang H, Sun L, Jin Z, Li Z, Logsdon C, Ji B, Huang H. Downregulation of GSTM2 enhances gemcitabine chemosensitivity of pancreatic cancer in vitro and in vivo. Pancreatology 2021; 21:115-123. [PMID: 33341341 DOI: 10.1016/j.pan.2020.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 01/09/2023]
Abstract
Glutathione-S-transferases (GSTs) not only show cytoprotective role and their involvement in the development of anticancer drug resistance, but also transmit signals that control cell proliferation and apoptosis. However, the role of GST isoforms in chemotherapy resistance remains elusive in pancreatic cancer. Here, we demonstrated that gemcitabine treatment increased the GSTM2 expression in pancreatic cancer cell lines. Knockdown of GSTM2 by siRNA elevated apoptosis and decreased viability of pancreatic cancer cells treated with gemcitabine. Moreover, in vivo experiments further showed that shRNA induced GSTM2 downregulation enhanced drug sensitivity of gemcitabine in orthotopic pancreatic tumor mice. We also found that GSTM2 levels were lower in tumor tissues than in non-tumor tissues and higher GSTM2 expression was significantly associated with longer overall survival. In conclusion, our findings indicate that GSTM2 expression is essential for the survival of pancreatic cancer cells undergoing gemcitabine treatment and leads to chemo resistance. Downregulation of GSTM2 in pancreatic cancer may benefit gemcitabine treatment. GSTM2 expression in patients also shows significant correlation with overall survival. Thus, our study suggests that GSTM2 is a potential target for chemotherapy optimization and prognostic biomarker of pancreatic cancer.
Collapse
Affiliation(s)
- Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lu Zhuang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kun Lin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yao Yao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Zhang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Thiruvengadam Arumugam
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Takahiko Fujii
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Liqi Sun
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Craig Logsdon
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
15
|
Dang A, Chidirala S, Veeranki P, Vallish BN. A Critical Overview of Systematic Reviews of Chemotherapy for Advanced and Locally Advanced Pancreatic Cancer using both AMSTAR2 and ROBIS as Quality Assessment Tools. Rev Recent Clin Trials 2020; 16:180-192. [PMID: 32875987 DOI: 10.2174/1574887115666200902111510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND We performed a critical overview of published systematic reviews (SRs) of chemotherapy for advanced and locally advanced pancreatic cancer, and evaluated their quality using AMSTAR2 and ROBIS tools. MATERIALS AND METHODS PubMed and Cochrane Central Library were searched for SRs on 13th June 2020. SRs with meta-analysis which included only randomized controlled trials and that had assessed chemotherapy as one of the treatment arms were included. The outcome measures, which were looked into, were progression-free survival (PFS), overall survival (OS), and adverse events (AEs) of grade 3 or above. Two reviewers independently assessed all the SRs with both ROBIS and AMSTAR2. RESULTS Out of the 1,879 identified records, 26 SRs were included for the overview. Most SRs had concluded that gemcitabine-based combination regimes, prolonged OS and PFS, but increased the incidence of grade 3-4 toxicities when compared to gemcitabine monotherapy, but survival benefits were not consistent when gemcitabine was combined with molecular targeted agents. As per ROBIS, 24/26 SRs had 'high' risk of bias, with only 1/26 SR having 'low' risk of bias. As per AMSTAR2, 25/26 SRs had 'critically low', and 1/26 SR had 'low' confidence in the results. The study which scored 'low risk of bias' in ROBIS scored 'low confidence in results' in AMSTAR2. The inter- rater reliability for scoring the overall confidence in the SRs with AMSTAR2 and the overall domain in ROBIS was substantial; ROBIS: kappa=0.785, SEM=0.207, p<0.001; AMSTAR2: kappa= 0.649, SEM=0.323, p<0.001. CONCLUSION Gemcitabine-based combination regimens can prolong OS and PFS but also worsen AEs when compared to gemcitabine monotherapy. The included SRs have an overall low methodological quality and high risk of bias as per AMSTAR2 and ROBIS respectively.
Collapse
Affiliation(s)
- Amit Dang
- MarksMan Healthcare Communications and KYT Adhere, Hyderabad, Telangana - 500032, India
| | - Surendar Chidirala
- MarksMan Healthcare Communications and KYT Adhere, Hyderabad, Telangana - 500032, India
| | - Prashanth Veeranki
- MarksMan Healthcare Communications and KYT Adhere, Hyderabad, Telangana - 500032, India
| | - B N Vallish
- MarksMan Healthcare Communications and KYT Adhere, Hyderabad, Telangana - 500032, India
| |
Collapse
|
16
|
Shi Y, Wang Y, Qian J, Yan X, Han Y, Yao N, Ma J. MGMT expression affects the gemcitabine resistance of pancreatic cancer cells. Life Sci 2020; 259:118148. [PMID: 32721465 DOI: 10.1016/j.lfs.2020.118148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/30/2023]
Abstract
Pancreatic cancer is a malignant cancer with poor prognosis. This study aimed to explore how O6-methylguanine-DNA methyltransferase (MGMT) affects the gemcitabine resistance of pancreatic cancer cells by the regulatory role of SHH/GLI signaling pathway. MGMT inhibition induced by lomeguatrib (LM) suppressed the proliferation, invasion, migration and autophagy, promoted the apoptosis of PanC-1/GEM cells and up-regulated the GEM inhibition rates for PanC-1/GEM cells. Moreover, MGMT inhibition increased the expression of Caspase-3 and Bax and decreased the expression of Bcl-2, Beclin1 and Atg5 in PanC-1/GEM cells. PVT1 silencing could also produce the similar effects of MGMT inhibition induced by LM on PanC-1/GEM cells. And, PVT1 silencing could inhibit the SHH/GLI signaling pathway in PanC-1/GEM cells by regulating the MGMT expression. miR-409 was demonstrated to be a potential target of PVT1 and SHH was demonstrated to be a potential target of miR-409. Furthermore, GLI overexpression could reverse the effects of PVT1 silencing. In the xenograft model of pancreatic cancer, nude mice were treated with GEM. MGMT inhibition suppressed the tumor growth and autophagy and promoted the apoptosis in tumor tissues. And, PVT1 silencing could inhibit the SHH/GLI signaling pathway in tumor tissues. In conclusion, MGMT inhibition could suppress the proliferation, invasion, migration and autophagy and promote the apoptosis of PanC-1/GEM cells in vitro and in vivo. PVT1 silencing may affect the PanC-1/GEM cells through changing the MGMT expression by inhibiting the SHH/GLI signaling pathway.
Collapse
Affiliation(s)
- Yu Shi
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yan Wang
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jing Qian
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaodi Yan
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yong Han
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ninghua Yao
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jianbo Ma
- Department of Radiotherapy, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
17
|
Macht M, Becit B, Zahn D. On the Role of Silica Carrier Curvature for the Unloading of Small Drug Molecules: A Molecular Dynamics Simulation Study. J Pharm Sci 2020; 109:2018-2023. [PMID: 32173324 DOI: 10.1016/j.xphs.2020.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 11/28/2022]
Abstract
We present atomic scale models of differently shaped silica surfaces loaded by gemcitabine and ibuprofene molecules. Despite the dissimilar nature of the drug molecules, their association to silica carriers shows quite similar characteristics. We identify a well-defined contact layer that is stabilized by silica-molecule salt-bridges/hydrogen bonding in parallel to interactions among the drug molecules. Additional loading of the carriers leads to rough films with dynamically evolving asperities rather than layer-by-layer ordering. To elucidate the role of differently shaped silica surfaces, we compared planar slab models and spherical nanoparticles as 2 limiting cases. Despite the strong difference in the curvature of the silica surfaces, our molecular dynamics simulations show only small changes of the unloading characteristics. This suggests that the design of different pore shapes in mesoporous silica-based drug carriers mainly affects the migration kinetics rather than the energetics of drug loading and release.
Collapse
Affiliation(s)
- Moritz Macht
- Lehrstuhl für Theoretische Chemie, Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Bahanur Becit
- Lehrstuhl für Theoretische Chemie, Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Dirk Zahn
- Lehrstuhl für Theoretische Chemie, Computer Chemie Centrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany.
| |
Collapse
|
18
|
|
19
|
Natarajan A, Thangarajan R, Kesavan S. Repurposing Drugs by In Silico Methods to Target BCR Kinase Domain in Chronic Myeloid Leukemia. Asian Pac J Cancer Prev 2019; 20:3399-3406. [PMID: 31759365 PMCID: PMC7063026 DOI: 10.31557/apjcp.2019.20.11.3399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Targeted therapy in the form of highly selective tyrosine kinase inhibitors (TKIs) has transformed the treatment of chronic myeloid leukemia (CML). However, mutations in the kinase domain contribute to drug resistance against TKIs which compromises the treatment response. Our aim is to explore regions outside the BCR-ABL oncoprotein to identify potential therapeutic targets to curb drug resistance by targeting growth factor receptor-bound protein-2 (Grb-2) which binds to BCR-ABL at the phosphorylated tyrosine (Y177) thereby activating the Ras and PI3K/AKT signaling pathway. METHODS We have used in silico methods to repurpose drugs for identifying their potential to inhibit the binding of Grb-2 with Y177 by occupying the active binding site of the BCR domain. RESULTS Differentially expressed genes from GEO dataset were found to be associated with hematopoietic cell lineage, NK cell-mediated cytotoxicity, NF-κB and chemokine signaling, cytokine-cytokine receptor interaction, histidine metabolism and transcriptional misregulation in cancer. The fold recognition method of SPARKS-X tool was used to model the BCR domain (Z-score = 8.21). Connectivity Map generated a drug list based on the gene expression profile, which were docked with BCR. Schrodinger XP glide docking identified Diphosphopyridine nucleotide, Hesperidin, Butirosin, Ovoflavin, and Nor-dihydroguaiaretic acid to show strong interaction in close proximity to the active binding pocket containing Y177 of the target protein and was further validated using iGEMDOCK and Parallelized Open Babel and AutoDock suite Pipeline (POAP). CONCLUSION Our study not only extends our current knowledge about repurposing drugs for newer indications but also provides a route towards combinatorial therapy with standard drugs used for CML treatment. However, the efficacy of these repurposed drugs needs to be further investigated using in vitro and in vivo studies.<br />.
Collapse
Affiliation(s)
- Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, India
| | | | - Sabitha Kesavan
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, India
| |
Collapse
|
20
|
Gemcitabine Combined with the mTOR Inhibitor Temsirolimus in Patients with Locally Advanced or Metastatic Pancreatic Cancer. A Hellenic Cooperative Oncology Group Phase I/II Study. Target Oncol 2019; 13:715-724. [PMID: 30488350 DOI: 10.1007/s11523-018-0605-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The prognosis of patients with advanced pancreatic cancer is dismal, and there is a need for novel and effective treatments. OBJECTIVES Tο determine the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs) of a novel gemcitabine (G) and temsirolimus (T) combination (phase I) and estimate the 6-month progression-free survival (PFS) in patients treated with the T + G combination (phase II). PATIENTS AND METHODS Eligible patients with histologically confirmed inoperable or metastatic pancreatic carcinoma (MPC) were entered into the trial. G was given bi-weekly and T weekly in a 4-week cycle. The first dose level was set at G 800 mg/m2 and T 10 mg. G was escalated in increments of 200 mg/m2 and T in increments of 5 mg until DLT was reached, and the recommended dose was used for the phase II part. RESULTS Thirty patients were enrolled in the phase I component at the pre-planned six dose levels; one bilirubin DLT of grade III occurred at the first dose level. The MTD was established as the approved doses of both drugs. Fifty-five patients were entered into the phase II component. Median relative dose intensities administered in the first cycle were 0.75 for T and 0.99 for G. Grade 3-4 hematological toxicities were recorded in 87.3% of patients. The most common non-hematological adverse events were metabolic disorders (81.8%) followed by gastrointestinal disorders (63.6%). Median PFS was 2.69 months (95% CI 1.74-4.95) and median OS was 4.95 months (95% CI 3.54-6.85), while the 6-month PFS rate was 30.9%. CONCLUSIONS Combination of G and T is feasible in patients with locally advanced or MPC with manageable side effects, but lacks clinical efficacy. The study was registered in the Australian New Zealand Clinical Trials Registry (ACTRN12611000643976).
Collapse
|
21
|
Ray P, Nair G, Ghosh A, Banerjee S, Golovko MY, Banerjee SK, Reindl KM, Mallik S, Quadir M. Microenvironment-sensing, nanocarrier-mediated delivery of combination chemotherapy for pancreatic cancer. J Cell Commun Signal 2019; 13:407-420. [PMID: 30915617 PMCID: PMC6732147 DOI: 10.1007/s12079-019-00514-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Limited effectiveness of Raf and MEK inhibitors has impelled the interest to use the inhibitors of Extra-cellular Receptor Kinase (ERK) pathway in combination with Gemcitabine (GEM) in pancreatic cancer. However, off-target abundance of ERK receptors, challenging physico-chemical properties, and dose-limiting toxicity of the inhibitor has presented critical challenges towards fabricating this combination amenable for clinical translation. Herein we report a pharmaceutical nanoformulation of GEM and an ERK inhibitor (SCH 772984) co-stabilized within a pH-sensing nanocarrier (NC, with a hydrodynamic diameter of 161 ± 5.0 nm). The NCs were modularly derived from a triblock, self-assembling copolymer, and were chemically conjugated with GEM and encapsulated with SCH772984 at a loading content of 20.2% and 18.3%, respectively. Through pH-mediated unfolding of the individual blocks of the copolymer, the NCs were able to control the release of encapsulated drugs, traffic through cellular membranes, engage target receptors, suppress proliferation of pancreatic cancer cells, and accumulate at disease sites. Collectively our studies showed the feasibility of co-delivery of a combination chemotherapy consisting of GEM and an ERK inhibitor from a NC platform, which can sense and respond to tumor microenvironment of pancreatic cancer setting.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Gauthami Nair
- Cellular and Molecular Biology Program, Department of Biology, North Dakota State University, Fargo, ND, 58108, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Katie M Reindl
- Cellular and Molecular Biology Program, Department of Biology, North Dakota State University, Fargo, ND, 58108, USA
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
22
|
Ray P, Ferraro M, Haag R, Quadir M. Dendritic Polyglycerol-Derived Nano-Architectures as Delivery Platforms of Gemcitabine for Pancreatic Cancer. Macromol Biosci 2019; 19:e1900073. [PMID: 31183964 DOI: 10.1002/mabi.201900073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Dendritic polyglycerol-co-polycaprolactone (PG-co-PCL)-derived block copolymers are synthesized and explored as nanoscale drug delivery platforms for a chemotherapeutic agent, gemcitabine (GEM), which is the cornerstone of therapy for pancreatic ductal adenocarcinoma (PDAC). Current treatment strategies with GEM result in suboptimal therapeutic outcome owing to microenvironmental resistance and rapid metabolic degradation of GEM. To address these challenges, physicochemical and cell-biological properties of both covalently conjugated and non-covalently stabilized variants of GEM-containing PG-co-PCL architectures have been evaluated. Self-assembly behavior, drug loading and release capacity, cytotoxicity, and cellular uptake properties of these constructs in monolayer and in spheroid cultures of PDAC cells are investigated. To realize the covalently conjugated carrier systems, GEM, in conjunction with a tertiary amine, is attached to the polycarbonate block grafted from the PG-co-PCL core. It is observed that pH-dependent ionization properties of these amine side-chains direct the formation of self-assembly of block copolymers in the form of nanoparticles. For non-covalent encapsulation, a facile "solvent-shifting" technique is adopted. Fabrication techniques are found to control colloidal and cellular properties of GEM-loaded nanoconstructs. The feasibility and potential of these newly developed architectures for designing carrier systems for GEM to achieve augmented prognosis for pancreatic cancer are reported.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, 1735 Research Park Drive, Fargo, ND, 58108-6050, USA
| | - Magda Ferraro
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, 1735 Research Park Drive, Fargo, ND, 58108-6050, USA
| |
Collapse
|
23
|
Wu L, Li J, Fu C, Kühn B, Wang X. Chemotherapy response of pancreatic cancer by diffusion-weighted imaging (DWI) and intravoxel incoherent motion DWI (IVIM-DWI) in an orthotopic mouse model. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:501-509. [DOI: 10.1007/s10334-019-00745-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/19/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
|
24
|
Bahmani B, Uehara M, Ordikhani F, Li X, Jiang L, Banouni N, Ichimura T, Kasinath V, Eskandari SK, Annabi N, Bromberg JS, Shultz LD, Greiner DL, Abdi R. Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery. EBioMedicine 2018; 38:79-88. [PMID: 30497977 PMCID: PMC6306381 DOI: 10.1016/j.ebiom.2018.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nanomedicine offers an excellent opportunity to tackle treatment-refractory malignancies by enhancing the delivery of therapeutics to the tumor site. High endothelial venules (HEVs) are found primarily in lymph nodes or formed de novo in peripheral tissues during inflammatory responses. They express peripheral node addressin (PNAd), which is recognized by the monoclonal antibody MECA79. METHODS Here, we demonstrated that HEVs form de novo in human pancreatic ductal adenocarcinoma (PDAC). We engineered MECA79 coated nanoparticles (MECA79-NPs) that recognize these ectopic HEVs in PDAC. FINDINGS The trafficking of MECA79-NPs following intravenous delivery to human PDAC implanted in a humanized mouse model was more robust than non-conjugated NPs. Treatment with MECA79-Taxol-NPs augmented the delivery of Paclitaxel (Taxol) to the tumor site and significantly reduced the tumor size. This effect was associated with a higher apoptosis rate of PDAC cells and reduced vascularization within the tumor. INTERPRETATION Targeting the HEVs of PDAC using MECA79-NPs could lay the ground for the localized delivery of a wide variety of drugs including chemotherapeutic agents. FUND: National Institutes of Health (NIH) grants: T32-EB016652 (B·B.), NIH Cancer Core Grant CA034196 (L.D.S.), National Institute of Allergy and Infectious Diseases grants R01-AI126596 and R01-HL141815 (R.A.).
Collapse
Affiliation(s)
- Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siawosh K Eskandari
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, CA 90095, USA
| | - Jonathan S Bromberg
- Department of Surgery and Microbiology and Immunobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Dale L Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Serri C, Quagliariello V, Iaffaioli RV, Fusco S, Botti G, Mayol L, Biondi M. Combination therapy for the treatment of pancreatic cancer through hyaluronic acid‐decorated nanoparticles loaded with quercetin and gemcitabine: A preliminary in vitro study. J Cell Physiol 2018; 234:4959-4969. [DOI: 10.1002/jcp.27297] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Carla Serri
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
| | - Vincenzo Quagliariello
- Department of Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Rosario Vincenzo Iaffaioli
- Department of Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Sabato Fusco
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| | - Gerardo Botti
- Scientific Director, Istituto Nazionale per lo Studio e la Cura dei Tumori Fondazione Pascale, IRCCS Napoli Italia
| | - Laura Mayol
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| | - Marco Biondi
- Dipartimento di Farmacia Università di Napoli Federico II Napoli Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università di Napoli Federico II Napoli Italy
| |
Collapse
|
26
|
Ramos-Peñafiel C, Olarte-Carrillo I, Cerón-Maldonado R, Rozen-Fuller E, Kassack-Ipiña JJ, Meléndez-Mier G, Collazo-Jaloma J, Martínez-Tovar A. Effect of metformin on the survival of patients with ALL who express high levels of the ABCB1 drug resistance gene. J Transl Med 2018; 16:245. [PMID: 30176891 PMCID: PMC6122769 DOI: 10.1186/s12967-018-1620-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/25/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In acute lymphoblastic leukemia (ALL), high ABCB1 gene expression has been associated with treatment resistance, which affects patient prognosis. Many preclinical reports and retrospective population studies have shown an anti-cancer effect of metformin. Therefore, the objective of this study was to assess the effect of metformin on the treatment regimen in patients with ALL who exhibited high levels of ABCB1 gene expression and to determine its impact on overall survival. METHODS A total of 102 patients with ALL were recruited; one group (n = 26) received metformin, and the other received chemotherapy (n = 76). Measurement of ABCB1 transcript expression was performed using qRT-PCR prior to treatment initiation. Survival analysis was performed using Kaplan-Meier curves. The impact of both the type of treatment and the level of expression on the response (remission or relapse) was analyzed by calculating the odds ratio. RESULTS The survival of patients with high ABCB1 expression was lower than those with low or absent ABCB1 gene expression (p = 0.030). In the individual analysis, we identified a benefit to adding metformin in the group of patients with high ABCB1 gene expression (p = 0.025). In the metformin user group, the drug acted as a protective factor against both therapeutic failure (odds ratio [OR] 0.07, 95% confidence interval [CI] 0.0037-1.53) and early relapse (OR 0.05, 95% CI 0.0028-1.153). CONCLUSION The combined use of metformin with chemotherapy is effective in patients with elevated levels of ABCB1 gene expression. Trial registration NCT 03118128: NCT.
Collapse
Affiliation(s)
- Christian Ramos-Peñafiel
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Irma Olarte-Carrillo
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Rafael Cerón-Maldonado
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Etta Rozen-Fuller
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Juan Julio Kassack-Ipiña
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Guillermo Meléndez-Mier
- Dirección de Investigación, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Juan Collazo-Jaloma
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México
| | - Adolfo Martínez-Tovar
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México. .,Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, México.
| |
Collapse
|
27
|
Son J, Reidl TW, Kim KH, Wink DJ, Anderson LL. Generation and Rearrangement of
N
,
O
‐Dialkenylhydroxylamines for the Synthesis of 2‐Aminotetrahydrofurans. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jongwoo Son
- Department of Chemistry University of Illinois at Chicago 845 W Taylor Street Chicago IL USA
| | - Tyler W. Reidl
- Department of Chemistry University of Illinois at Chicago 845 W Taylor Street Chicago IL USA
| | - Ki Hwan Kim
- Department of Chemistry University of Illinois at Chicago 845 W Taylor Street Chicago IL USA
| | - Donald J. Wink
- Department of Chemistry University of Illinois at Chicago 845 W Taylor Street Chicago IL USA
| | - Laura L. Anderson
- Department of Chemistry University of Illinois at Chicago 845 W Taylor Street Chicago IL USA
| |
Collapse
|
28
|
Son J, Reidl TW, Kim KH, Wink DJ, Anderson LL. Generation and Rearrangement of N,O-Dialkenylhydroxylamines for the Synthesis of 2-Aminotetrahydrofurans. Angew Chem Int Ed Engl 2018; 57:6597-6600. [PMID: 29603566 DOI: 10.1002/anie.201800908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Indexed: 01/01/2023]
Abstract
A new diastereoselective route to 2-aminotetrahydrofurans has been developed from N,O-dialkenylhydroxylamines. These intermediates undergo a spontaneous C-C bond-forming [3,3]-sigmatropic rearrangement followed by a C-O bond-forming cyclization. A copper-catalyzed N-alkenylation of an N-Boc-hydroxylamine with alkenyl iodides, and a base-promoted addition of the resulting N-hydroxyenamines to an electron-deficient allene, provide modular access to these novel rearrangement precursors. The scope of this de novo synthesis of simple nucleoside analogues has been explored to reveal trends in diastereoselectivity and reactivity. In addition, a base-promoted ring-opening and Mannich reaction has been discovered to covert 2-aminotetrahydrofurans to cyclopentyl β-aminoacid derivatives or cyclopentenones.
Collapse
Affiliation(s)
- Jongwoo Son
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
| | - Tyler W Reidl
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
| | - Ki Hwan Kim
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
| | - Donald J Wink
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
| | - Laura L Anderson
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL, USA
| |
Collapse
|
29
|
Jin J, Teng C, Li T. Combination therapy versus gemcitabine monotherapy in the treatment of elderly pancreatic cancer: a meta-analysis of randomized controlled trials. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:475-480. [PMID: 29563772 PMCID: PMC5846317 DOI: 10.2147/dddt.s156766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose We aimed to compare the efficacy of combination therapy versus gemcitabine monotherapy in the treatment of elderly pancreatic cancer (PC) by using a meta-analysis. Materials and methods Databases were searched to identify relevant clinical trials. Hazard ratios (HRs) were used to estimate overall survival (OS) and progression-free survival (PFS). Statistical analyses were conducted by using Comprehensive Meta Analysis software (version 2.0). Results =0.009) in comparison with gemcitabine alone. No publication bias was detected by Begg's and Egger's tests for OS. Conclusion The findings of this study suggest that combined chemotherapy, but not for gemcitabine plus targeted agents, could be recommended for elderly PC patients due to its survival benefits. Further studies are still needed to assess the treatment tolerance of combination chemotherapy in these patient populations.
Collapse
Affiliation(s)
- Jiamin Jin
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chunbo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Tao Li
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
30
|
Ghosh S, Das T, D Sarma H, Dash A. The potential of radiolabeled chemotherapeutics in tumor diagnosis: Preliminary investigations with 68 Ga-gemcitabine. Drug Dev Res 2018; 79:111-118. [PMID: 29380405 DOI: 10.1002/ddr.21423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 11/11/2022]
Abstract
Preclinical Research & Development Gemcitabine, a nucleoside analog, is a well-known chemotherapeutic drug that is used either alone or with other agents to treat a wide variety of cancers. The aim of the present work was to evaluate the potential of 68 Ga-labeled gemcitabine for its application in positron emission tomography (PET) imaging of tumorous lesions. Gemcitabine was coupled with p-NCS-benzyl-DOTA in order to facilitate radiolabeling with 68 Ga. The gemcitabine-p-NCS-benzyl-DOTA was radiolabeled with 68 Ga, obtained from a 68 Ge/68 Ga radionuclide generator. The radiolabeled product was characterized by high performance liquid chromatography (HPLC) and its tumor specificity was evaluated by biodistribution studies in Swiss mice bearing fibrosarcoma tumors. Preliminary bioevaluation study showed good tumor uptake within 1 hr post-administration [2.5% Injected Activity (IA) per g of tumor] with rapid renal clearance (>90% IA) and a high tumor to muscle ratio. 68 Ga-gemcitabine may have potential as a PET agent for tumor imaging.
Collapse
Affiliation(s)
- Subhajit Ghosh
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haladhar D Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
31
|
Zhou B, Hong Z, Zheng H, Chen M, Shi L, Zhao C, Qian H. Pectolinarigenin Suppresses Pancreatic Cancer Cell Growth by Inhibiting STAT3 Signaling. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is among the leading causes of cancer-related deaths with extremely poor prognosis. Thus, novel and effective therapies need to be developed to improve the poor survival rates of patients with advanced pancreatic cancer. Pectolinarigenin, a flavonoids compound, has been shown to possess numerous biologic activities such as anti-inflammation and anti-cancer. However, the function and mechanism of pectolinarigenin in pancreatic cancer are still not well understood. We evaluated the antitumor effects of pectolinarigenin, an active component of a medicinal plant. Pectolinarigenin exerted a strong antitumor effect in pancreatic cancer cell lines. Colony formation assay and wound healing assay indicated that pectolinarigenin inhibited cell viability and cell migration. Treatment with pectolinarigenin induced apoptosis and decreased phosphorylation of STAT3. Pectolinarigenin modulates the STAT3 signaling module, thereby inducing cytotoxicity in pancreatic cancer cells. This result verifies the potential use of pectolinarigenin as a new therapeutic agent for the treatment pancreatic cancer.
Collapse
Affiliation(s)
- Bin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University Medical College, Suzhou, Jiangsu 215006, China
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhong Hong
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hailun Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Min Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lingyi Shi
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Pinghu, Zhejiang 314200, China
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University Medical College, Suzhou, Jiangsu 215006, China
| |
Collapse
|
32
|
Dalla Pozza E, Manfredi M, Brandi J, Buzzi A, Conte E, Pacchiana R, Cecconi D, Marengo E, Donadelli M. Trichostatin A alters cytoskeleton and energy metabolism of pancreatic adenocarcinoma cells: An in depth proteomic study. J Cell Biochem 2017; 119:2696-2707. [PMID: 29095525 DOI: 10.1002/jcb.26436] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/18/2017] [Indexed: 01/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal of all human cancers with a high mortality rate. Resistance to conventional treatments and chemotherapeutics is a typical feature of PDAC. To investigate the causes of drug resistance it is essential to deeply investigate the mechanism of action of chemotherapeutics. In this study, we performed an in depth shotgun proteomic approach using the label-free proteomic SWATH-MS analysis to investigate novel insights of the mechanism of action of the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) in PDAC cells. This proteomic analysis in PaCa44 cells and data elaboration of TSA-regulated proteins by bioinformatics showed an overall up-regulation of cytokeratins and other proteins related to the cytoskeleton organization, keratinization, and apoptotic cell death. On the contrary, a large amount of the down-regulated proteins by TSA treatment belongs to the cellular energetic metabolism and to the machinery of protein synthesis, such as ribosomal proteins, determining synergistic cell growth inhibition by the combined treatment of TSA and the glycolytic inhibitor 2-deoxy-d-glucose in a panel of PDAC cell lines. Data are available via ProteomeXchange with identifier PXD007801.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy.,ISALIT S.r.l., Spin-off of University of Piemonte Orientale, Novara, Italy
| | - Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona, Italy
| | - Arianna Buzzi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Eleonora Conte
- ISALIT S.r.l., Spin-off of University of Piemonte Orientale, Novara, Italy
| | - Raffaella Pacchiana
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Massimo Donadelli
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|