1
|
Zhu AH, Song ZK, Wang JF, Guan HW, Qu Z, Ma HX. Multi-Gene Phylogenetic Analyses Reveals Heteroxylaria Gen. Nov. and New Contributions to Xylariaceae (Ascomycota) from China. J Fungi (Basel) 2024; 10:645. [PMID: 39330405 PMCID: PMC11433153 DOI: 10.3390/jof10090645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
An in-depth study of the phylogenetic relationships of Xylaria species associated with nutshells of fruits and seeds within the genus Xylaria and related genera of Xylaceaecea was conducted in China. The multi-gene phylogenetic analyses were carried out based on ITS, RPB2, and TUB sequences of 100 species of 16 known genera in Xylariaceae around the world. Based on molecular phylogenetic analyses, morphological observations, and ecological habitats, a new genus, Heteroxylaria, is established to accommodate four new species, viz. H. cordiicola, H. juglandicola, H. meliicola, and H. terminaliicola, and four new combinations, viz. H. oxyacanthae, H. palmicola, H. reevesiae, and H. rohrensis. The genus is characterized by cylindrical stromata with conspicuous to inconspicuous perithecial mounds, surface black, having brown to dark brown ascospores with a germ slit, and it grows on nutshell of fruits. The combined ITS+RPB2+TUB sequence dataset of representative taxa in the Xylariaceae demonstrate that Heteroxylaria is grouped with Hypocreodendron but forms a monophyletic lineage. All novelties described herein are morphologically illustrated and compared to similar species and phylogeny is investigated to establish new genera and species.
Collapse
Affiliation(s)
- An-Hong Zhu
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zi-Kun Song
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Fang Wang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hao-Wen Guan
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Zhi Qu
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
| | - Hai-Xia Ma
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- Haikou Key Laboratory for Protection and Utilization of Edible and Medicinal Fungi, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Chongzuo Key Laboratory for Protection and Utilization of Edible and Medicinal Fungi, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Chongzuo 532100, China
| |
Collapse
|
2
|
Zeng W, Habib K, Zhou X, Ren Y, Shen X, Wang B, Kang Y, Kang J, Li Q. Morphology and multigene phylogeny reveal four new Xylaria (Xylariales, Xylariaceae) species from karst region in China. MycoKeys 2024; 108:169-196. [PMID: 39268505 PMCID: PMC11391122 DOI: 10.3897/mycokeys.108.130565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
This study presents the identification of four novel Xylaria species, discovered in the karst region of China. The discovery was facilitated by a rigorous analysis that encompassed both morpho-anatomical features and multi-locus phylogenetics utilizing sequences from the ITS, rpb2, and TUB2 loci. The newly identified species are designated as Xylariajichuanii sp. nov., X.nanningensis sp. nov., X.orientalis sp. nov., and X.taiyangheensis sp. nov. The distinction of these species from their known counterparts was verified through comparison of morphological features and phylogenetic analysis. The study further provides detailed morphological descriptions, illustrative representations, and a phylogenetic tree, all of which contribute to the taxonomic positioning of these novel species.
Collapse
Affiliation(s)
- Wenyu Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an New District, 561113, China
| | - Kamran Habib
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an New District, 561113, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui'an New District, 561113, China
| | - Xin Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an New District, 561113, China
| | - Yulin Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an New District, 561113, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an New District, 561113, China
| | - Bei Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an New District, 561113, China
- Department of Botany, Khushal Khan Khattak University, Karak, KP, Pakistan
| | - Yingqian Kang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an New District, 561113, China
| | - Jichuan Kang
- Shandong Qidu Pharmaceutical Co., Ltd, Zibo City, 255400, China
| | - Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an New District, 561113, China
| |
Collapse
|
3
|
Samarakoon MC, Lumyong S, Manawasinghe IS, Suwannarach N, Cheewangkoon R. Addition of Five Novel Fungal Flora to the Xylariomycetidae (Sordariomycetes, Ascomycota) in Northern Thailand. J Fungi (Basel) 2023; 9:1065. [PMID: 37998871 PMCID: PMC10672214 DOI: 10.3390/jof9111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
The deviation of conventional fungal niches is an important factor in the implications of hidden fungal diversity and global fungal numbers. The Xylariomycetidae (Sordariomycetes, Ascomycota), which is also referred to as xylarialean taxa, has a wide range of species that demonstrate a high degree of variation in their stromatic characteristics, showing either conspicuous or inconspicuous forms. In this study, samples were collected while focusing on temporal and spatial parameters and substrate characteristics. Based on internal transcribed spacer (ITS), 28S large subunit rDNA (LSU), RNA polymerase II second largest subunit (RPB2), and β-tubulin (TUB2) multigene phylogeny and morphology, five new species are introduced as Muscodor brunneascosporus, M. lamphunensis (Xylariaceae), Nigropunctata hydei, N. saccata (Incertae sedis), and Xenoanthostomella parvispora (Gyrotrichaceae). Plant substrates in the early stages of decay and attached to the host were feasible sample niches, with an emphasis on the collection of inconspicuous, hidden xylarialean species. The appearance of inconspicuous saprobic xylarialean forms during the rainy season may be linked to the change in nutritional mode, from endophytic mode during the dry season to saprobic in the wet. Therefore, it would be fascinating to concentrate future research on how seasonal fluctuations affect nutritional mode shifts, especially in northern Thailand, which would provide the optimal spatial characteristics. In order to establish a comprehensive linkage between endophytic and saprobic modes, it is imperative to have a substantial representation of endophytic isolate sequences resembling inconspicuous xylariaceous fungi within publicly accessible databases.
Collapse
Affiliation(s)
- Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
| |
Collapse
|
4
|
Voglmayr H, Tello S, Jaklitsch WM, Friebes G, Baral HO, Fournier J. About spirals and pores: Xylariaceae with remarkable germ loci. PERSOONIA 2022; 49:58-98. [PMID: 38234381 PMCID: PMC10792227 DOI: 10.3767/persoonia.2022.49.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2024]
Abstract
Based on phylogenetic analyses of a multi-gene matrix of nuITS-LSU rDNA, RPB2 and TUB2 sequences and morphology, xylariaceous species with uni- to pauciperitheciate stromata and ascospores having a spirally coiling (helicoid) germ slit are revised and reclassified, including detailed descriptions and illustrations. The genus Helicogermslita is redefined and restricted to seven species with massive, erumpent, clypeus-like carbonaceous stromata, and Rosellinia somala is combined in Helicogermslita. Within the core Xylariaceae, the poorly known Leptomassaria simplex is shown to be closely related to Anthostoma insidiosum, for which the new genus Oligostoma is established, and Anthostoma rhenanum is demonstrated to be synonymous with O. insidiosum. The new genus Albicollum, characterised by immersed ascomata and a collar of white pseudostromatic tissues surrounding the ostioles, is established for Amphisphaeria canicollis, Anthostoma chionostomum, Sordaria (= Helicogermslita) fleischhakii and Anthostoma vincensii. Anthostoma ostropoides is synomymised with Albicollum canicolle, and Al. berberidicola, Al. longisporum and Al. novomexicanum are described as new species. Rosellinia (= Helicogermslita) gaudefroyi is transferred to the new genus Spiririma. Anthostoma amoenum and Euepixylon udum, both with a poroid germ locus, are shown to be only distantly related, and An. amoenum is reclassified within the asexual genus Digitodochium. Based on phylogeny, the genus Euepixylon is treated as a synonym of Nemania. A new species, Nemania ethancrensonii, which is closely related to the two formerly accepted Euepixylon species (E. sphaeriostomum, E. udum) but strongly deviates from the morphological concept of Euepixylon and Nemania, is described from the eastern USA. The genera Anthostomelloides, Clypeosphaeria, Digitodochium, Emarcaea, Induratia, Linosporopsis, Magnostiolata, Occultitheca and Spiririma are revealed to form a morphologically heterogeneous lineage in a basal position of Xylariaceae. Anthostoma vincensii, Quaternaria simplex and Rosellinia gaudefroyi are lectotypified, and Amphisphaeria canicollis, Anthostoma amoenum, An. rhenanum, An. vincensii, Quaternaria simplex, Rosellinia gaudefroyi and Valsa insidiosa are epitypified. Keys to uni- to pauciperitheciate xylariaceous genera with sigmoid to helicoid germ slits and to species of Albicollum are provided. Citation: Voglmayr H, Tello S, Jaklitsch WM, et al. 2022. About spirals and pores: Xylariaceae with remarkable germ loci. Persoonia 49: 58-98. https://doi.org/10.3767/persoonia.2022.49.02.
Collapse
Affiliation(s)
- H Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - S Tello
- Paseo del Obispo 7, 23150 Valdepeñas de Jaén, Jaén, Spain
| | - W M Jaklitsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - G Friebes
- Universalmuseum Joanneum, Centre of Natural History, Botany & Mycology, Weinzöttlstraße 16, 8045 Graz, Austria
| | - H-O Baral
- Blaihofstraße 42, 72074 Tübingen, Germany
| | | |
Collapse
|
5
|
Pourmoghaddam MJ, Lambert C, Voglmayr H, Khodaparast SA, Krisai-Greilhuber I, Stadler M. Note on the genus Nemania (Xylariaceae) - first records and a new species of the genus from Iran. MycoKeys 2022; 93:81-105. [PMID: 36761911 PMCID: PMC9836441 DOI: 10.3897/mycokeys.93.94148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022] Open
Abstract
In a survey of xylarialean fungi in northern Iran, some specimens attributable to the genus Nemania were collected, cultured and sequenced. Morphological evidence and phylogenetic analyses of a combined ITS, LSU, RPB2 and TUB2 gene dataset confirmed the presence of Nemaniadiffusa and N.serpens in Iran for the first time. Furthermore, the new species N.hyrcana, which shows similarities to N.subaenea and its putative synonym N.plumbea, but significantly differs from the latter in its DNA sequences, was encountered. All species are illustrated, described and discussed. In the phylogenetic analyses, for the first time, the overlooked ex-type ITS sequences of the neotype of the generic type, N.serpens and that of the holotype of N.prava, were added to a multi-gene matrix of Nemania. This revealed that the two accessions of N.serpens (HAST 235 and CBS 679.86), for which multigene data are available in GenBank, are misidentified, while the Iranian accession of N.serpens has an almost identical ITS sequence to the neotype, confirming its morphological species identification. The two previously accepted species of Euepixylon, E.udum and E.sphaeriostomum, are embedded within Nemania and are revealed as close relatives of N.serpens, supporting the inclusion of Euepixylon in Nemania.
Collapse
Affiliation(s)
- Mohammad Javad Pourmoghaddam
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, IranUniversity of GuilanRashtIran
| | - Christopher Lambert
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment Microbial Drugs, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
- Department for Molecular Cell Biology, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment for Molecular Cell Biology, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, AustriaUniversity of ViennaWienAustria
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, IranUniversity of GuilanRashtIran
| | - Irmgard Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, AustriaUniversity of ViennaWienAustria
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment Microbial Drugs, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
6
|
Phylogenetic analysis of Engleromyces sinensis and identification of cytochalasin D from culture. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01739-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Pi YH, Long SH, Wu YP, Liu LL, Lin Y, Long QD, Kang JC, Kang YQ, Chang CR, Shen XC, Wijayawardene NN, Zhang X, Li QR. A taxonomic study of Nemania from China, with six new species. MycoKeys 2021; 83:39-67. [PMID: 34539206 PMCID: PMC8408098 DOI: 10.3897/mycokeys.83.69906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
During an investigation of Xylariaceae from 2019 to 2020, isolates representing eight Nemania (Xylariacese) species were collected from Yunnan, Guizhou and Hainan Provinces in China. Morphological and multi-gene phylogenetic analyses, based on combined ITS, α-actin, rpb2 and β-tubulin sequences, confirmed that six of them are new to science, viz. Nemaniacamelliae, N.changningensis, N.cyclobalanopsina, N.feicuiensis, N.lishuicola and N.rubi; one is a new record (N.caries) for China and one is a known species (N.diffusa). Morphological descriptions and illustrations of all species are detailed. In addition, the characteristics of Nemania are summarised and prevailing contradictions in generic concepts are discussed.
Collapse
Affiliation(s)
- Yin Hui Pi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China Guizhou University Guiyang China
| | - Si Han Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - You Peng Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Li Li Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Yan Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Qing De Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Ji Chuan Kang
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou 550025, China Qujing Normal University Qujing China
| | - Ying Qian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou and Guizhou Talent Base for Microbiology and Human Health, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China Guizhou Medical University Guiyang China
| | - Chu Rui Chang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Xiang Chun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China Guizhou University Guiyang China
| | - Nalin N Wijayawardene
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China.,Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Guizhou University Guiyang China.,Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka Qujing Normal University Qujing China
| | - Xu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China
| | - Qi Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China Guizhou Medical University Guiyang China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, China Guizhou University Guiyang China
| |
Collapse
|
8
|
Phylogenetic and Chemotaxonomic Studies Confirm the Affinities of Stromatoneurospora phoenix to the Coprophilous Xylariaceae. J Fungi (Basel) 2020; 6:jof6030144. [PMID: 32842463 PMCID: PMC7558325 DOI: 10.3390/jof6030144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023] Open
Abstract
The genus Stromatoneurospora was erected in 1973 by Jong and Davis to accommodate the pyrophilic pyrenomycete Sphaeria phoenix and has traditionally been placed in the family Xylariaceae based on morphological features. However, no living culture of this genus has so far been available in the public domain. Molecular data were restricted to an internal transcribed spacer (ITS) sequence that only confirmed the familial position, and was generated from a strain that is not deposited in a public culture collection. We have recently collected fresh material and were able to culture this fungus from Thailand. The secondary metabolites of this strains were analysed after fermentation in multiple media. The the prominent components of these fermentation were purified, using preparative chromatography. Aside from two new eremophilane sesquiterpenoids named phoenixilanes A–B (1–2), four other components that are known from species of the xylariaceous genera Xylaria and Poronia were identified by spectral methods (nuclear magnetic resonance spectroscopy and high resolution mass spectrometry). Notably, (−)-(R)-6-hydroxy-3-methyl-4-dihydroisocoumarin-5-carboxylic acid (6) has not been reported as a natural product before. Moreover, DNA sequences of Stromatoneurospora phoenix clustered with members of the genera Poronia and Podosordaria in a multi-locus molecular phylogeny. These results confirmed that the genus belongs to the same evolutionary lineage as the coprophilic Xylariaceae. The results also suggest that this lineage has evolved independently from the plant-inhabiting saprotrophs and endophytes that are closely related to the genus Xylaria. These findings are discussed in relation to some theories about the endophytic vs. the pyrophilic/coprophilic fungal life style.
Collapse
|
9
|
Samarakoon MC, Thongbai B, Hyde KD, Brönstrup M, Beutling U, Lambert C, Miller AN, Liu JK(J, Promputtha I, Stadler M. Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00443-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Voglmayr H, Beenken L. Linosporopsis, a new leaf-inhabiting scolecosporous genus in Xylariaceae. Mycol Prog 2020; 19:205-222. [PMID: 32104168 PMCID: PMC7008769 DOI: 10.1007/s11557-020-01559-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/02/2022]
Abstract
Based on molecular phylogenetic and morphological evidence, the new genus Linosporopsis (Xylariales) is established for several species previously classified within Linospora (Diaporthales). Fresh collections of Linospora ischnotheca from dead overwintered leaves of Fagus sylvatica and of L. ochracea from dead overwintered leaves of Malus domestica, Pyrus communis, and Sorbus intermedia were isolated in pure culture, and molecular phylogenetic analyses of a multi-locus matrix of partial nuITS-LSU rDNA, RPB2 and TUB2 sequences as well as morphological investigations revealed that both species are unrelated to the diaporthalean genus Linospora, but belong to Xylariaceae sensu stricto. The new combinations Linosporopsis ischnotheca and L. ochracea are proposed, the species are described and illustrated, and their basionyms lecto- and epitypified. Linospora faginea is synonymized with L. ischnotheca. Based on similar morphology and ecology, Linospora carpini and Linospora magnagutiana from dead leaves of Carpinus betulus and Sorbus torminalis, respectively, are also combined in Linosporopsis. The four accepted species of Linosporopsis are illustrated, a key to species is provided and their ecology is discussed.
Collapse
Affiliation(s)
- Hermann Voglmayr
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Franz Schwackhöfer Haus, Peter-Jordan-Straße 82/I, 1190 Vienna, Austria
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Ludwig Beenken
- Eidgenössische Forschungsanstalt WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
11
|
Natonodosa speciosa gen. et sp. nov. and rediscovery of Poroisariopsis inornata: neotropical anamorphic fungi in Xylariales. Mycol Prog 2020. [DOI: 10.1007/s11557-019-01537-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Relationships between endophytic and pathogenic strains of Inonotus (Basidiomycota) and Daldinia (Ascomycota) from urban trees. Mycol Prog 2019. [DOI: 10.1007/s11557-019-01514-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
|
14
|
Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Thilini Chethana KW, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He MQ, Hongsanan S, Huang SK, Jayasiri SC, Jayawardena RS, Karunarathna A, Konta S, Kušan I, Lee H, Li J, Lin CG, Liu NG, Lu YZ, Luo ZL, Manawasinghe IS, Mapook A, Perera RH, Phookamsak R, Phukhamsakda C, Siedlecki I, Soares AM, Tennakoon DS, Tian Q, Tibpromma S, Wanasinghe DN, Xiao YP, Yang J, Zeng XY, Abdel-Aziz FA, Li WJ, Senanayake IC, Shang QJ, Daranagama DA, de Silva NI, Thambugala KM, Abdel-Wahab MA, Bahkali AH, Berbee ML, Boonmee S, Bhat DJ, Bulgakov TS, Buyck B, Camporesi E, Castañeda-Ruiz RF, Chomnunti P, Doilom M, Dovana F, Gibertoni TB, Jadan M, Jeewon R, Jones EBG, Kang JC, Karunarathna SC, Lim YW, Liu JK, Liu ZY, Plautz HL, Lumyong S, Maharachchikumbura SSN, Matočec N, McKenzie EHC, Mešić A, Miller D, Pawłowska J, Pereira OL, Promputtha I, Romero AI, Ryvarden L, Su HY, Suetrong S, Tkalčec Z, Vizzini A, Wen TC, Wisitrassameewong K, Wrzosek M, Xu JC, Zhao Q, Zhao RL, Mortimer PE. Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. FUNGAL DIVERS 2017. [DOI: 10.1007/s13225-017-0391-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Luangsa-ard JJ, Srikitikulchai P, Peršoh D, Stadler M. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1311-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Réblová M, Miller AN, Rossman AY, Seifert KA, Crous PW, Hawksworth DL, Abdel-Wahab MA, Cannon PF, Daranagama DA, De Beer ZW, Huang SK, Hyde KD, Jayawardena R, Jaklitsch W, Jones EBG, Ju YM, Judith C, Maharachchikumbura SSN, Pang KL, Petrini LE, Raja HA, Romero AI, Shearer C, Senanayake IC, Voglmayr H, Weir BS, Wijayawarden NN. Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 2016; 7:131-53. [PMID: 27433444 PMCID: PMC4941682 DOI: 10.5598/imafungus.2016.07.01.08] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022] Open
Abstract
With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection. Recommendations are made for which of the competing generic names should be used based on criteria such as priority, number of potential names changes, and frequency of use. Some recommendations for well-known genera include Arthrinium over Apiospora, Colletotrichum over Glomerella, Menispora over Zignoëlla, Microdochium over Monographella, Nigrospora over Khuskia, and Plectosphaerella over Plectosporium. All competing generic names are listed in a table of recommended names along with the required action. If priority is not accorded to sexually typified generic names after 2017, only four names would require formal protection: Chaetosphaerella over Oedemium, Diatrype over Libertella, Microdochium over Monographella, and Phaeoacremonium over Romellia and Togninia. Concerning species in the recommended genera, one replacement name (Xylaria benjaminii nom. nov.) is introduced, and the following new combinations are made: Arthrinium sinense, Chloridium caesium, C. chloroconium, C. gonytrichii, Corollospora marina, C. parvula, C. ramulosa, Juncigena fruticosae, Melanospora simplex, Seimatosporium massarina, Sporoschisma daemonoropis, S. taitense, Torpedospora mangrovei, Xylaria penicilliopsis, and X. termiticola combs. nov.
Collapse
Affiliation(s)
- Martina Réblová
- Department of Taxonomy, Institute of Botany of the Academy of Sciences of the Czech Republic, Prùhonice 252 43, Czech Republic
| | - Andrew N. Miller
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA
| | - Amy Y. Rossman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Keith A. Seifert
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada
| | - Pedro W. Crous
- CBS-KNAW Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - David L. Hawksworth
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal s/n, Madrid 28040, Spain
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Paul F. Cannon
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK
| | - Dinushani A. Daranagama
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Z. Wilhelm De Beer
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa
| | - Shi-Ke Huang
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvvishika Jayawardena
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Walter Jaklitsch
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115 29, Taiwan
| | - Caroline Judith
- Department of Mycology, Institute of Ecology, Evolution and Diversity, Goethe-University, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Sajeewa S. N. Maharachchikumbura
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 8, 123 Al Khoud, Oman
| | - Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan (ROC)
| | | | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, 457 Sullivan Science Building, University of North Carolina, Greensboro, NC 27402-6170, USA
| | - Andrea I Romero
- Instituto de Micología y Botánica, UBA-CONICET, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Piso 4°, Lab 6, Av. Int. Güiraldes 2620. Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Carol Shearer
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820, USA
| | - Indunil C. Senanayake
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Hermann Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Bevan S. Weir
- Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand
| | - Nalin N. Wijayawarden
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|