1
|
Le Renard L, Strullu-Derrien C, Berbee M, Coiro M. A new leaf inhabiting ascomycete from the Jurassic (ca 170 Mya) of Yorkshire, UK, and insights into the appearance and diversification of filamentous Ascomycota. IMA Fungus 2024; 15:34. [PMID: 39501407 PMCID: PMC11536623 DOI: 10.1186/s43008-024-00162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/15/2024] [Indexed: 11/09/2024] Open
Abstract
Leaf-associated fungi, the fungi that depend on leaves to sporulate, have a rich Cenozoic record, however their earlier diversity is poorly characterized. Here we describe Harristroma eboracense gen. et sp. nov., a Middle Jurassic leaf-associated fungus colonizing the leaf cuticle of Nilssonia tenuicaulis (cycadophyte). To place our newly described species into a picture of the diversification of Mesozoic fungi, we reassess fossils with leaf-associated stromata in the context of fungal molecular phylogeny. Being melanized, with radiate stromata, and on leaves, H. eboracense and other fossils from the Jurassic and earlier periods are probably related to filamentous Ascomycota in the superclass Leotiomyceta. Characters needed for further resolution of leaf-associated fungal biology and classification, such as the presence of an ostiole for spore discharge and appressoria for entry into leaf tissue first appear in the Mesozoic fossil record. Among Early Cretaceous fossils, Spataporthe taylorii represents the oldest unambiguous evidence of perithecial Sordariomycetes while Protographum luttrellii and Bleximothyrium ostiolatum are the oldest Dothideomycetes thyriothecia. Environmental observations show that broad leaved gymnosperms (especially cycadophytes) growing in warm temperate wet forests might have been the first environment for the radiation of Leotiomyceta.
Collapse
Affiliation(s)
- Ludovic Le Renard
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christine Strullu-Derrien
- Science Group, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, 75005, Paris, France.
| | - Mary Berbee
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mario Coiro
- Department of Paleontology, University of Vienna, 1090, Vienna, Austria.
- Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, USA.
| |
Collapse
|
2
|
Zhou X, Habib K, Zeng W, Ren Y, Shen X, Kang J, Li Q. Addition of three new species of Xylariomycetidae fungi on bamboo from Southern China. MycoKeys 2024; 109:109-129. [PMID: 39391866 PMCID: PMC11464901 DOI: 10.3897/mycokeys.109.128020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
In our ongoing research on bambusicolous Xylariomycetidae fungi, three new microfungi taxa were collected and identified as members of the genera Amphibambusa, Arecophila, and Nigropunctata. Amphibambusaaureae sp. nov., Arecophilagaofengensis sp. nov., and Nigropunctataxiaohensis sp. nov. are introduced based on morphological comparisons and phylogenetic analyses using combined ITS, LSU, tub2, and tef1α loci. Comprehensive morphological descriptions, illustrations, and a phylogenetic tree showcasing the placement of these new taxa are provided. Additionally, keys to Amphibambusa and Nigropunctata are provided.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an, Guizhou, 561113, ChinaGuizhou Medical UniversityGui'anChina
| | - Kamran Habib
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an, Guizhou, 561113, ChinaGuizhou Medical UniversityGui'anChina
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui’an, Guizhou, 561113, ChinaKhushal Khan Khattak UniversityKarakPakistan
| | - Wenyu Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an, Guizhou, 561113, ChinaGuizhou Medical UniversityGui'anChina
| | - Yulin Ren
- Department of Botany, Khushal Khan Khattak University, Karak, KP, 27200 PakistanGuizhou Medical UniversityGui’anChina
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an, Guizhou, 561113, ChinaGuizhou Medical UniversityGui'anChina
| | - Jichuan Kang
- Engineering and Research Centre for Southwest Bio-Pharmaceutical, Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gui'an, Guizhou, 561113, ChinaGuizhou Medical UniversityGui'anChina
| |
Collapse
|
3
|
Zhu AH, Song ZK, Wang JF, Guan HW, Qu Z, Ma HX. Multi-Gene Phylogenetic Analyses Reveals Heteroxylaria Gen. Nov. and New Contributions to Xylariaceae (Ascomycota) from China. J Fungi (Basel) 2024; 10:645. [PMID: 39330405 PMCID: PMC11433153 DOI: 10.3390/jof10090645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
An in-depth study of the phylogenetic relationships of Xylaria species associated with nutshells of fruits and seeds within the genus Xylaria and related genera of Xylaceaecea was conducted in China. The multi-gene phylogenetic analyses were carried out based on ITS, RPB2, and TUB sequences of 100 species of 16 known genera in Xylariaceae around the world. Based on molecular phylogenetic analyses, morphological observations, and ecological habitats, a new genus, Heteroxylaria, is established to accommodate four new species, viz. H. cordiicola, H. juglandicola, H. meliicola, and H. terminaliicola, and four new combinations, viz. H. oxyacanthae, H. palmicola, H. reevesiae, and H. rohrensis. The genus is characterized by cylindrical stromata with conspicuous to inconspicuous perithecial mounds, surface black, having brown to dark brown ascospores with a germ slit, and it grows on nutshell of fruits. The combined ITS+RPB2+TUB sequence dataset of representative taxa in the Xylariaceae demonstrate that Heteroxylaria is grouped with Hypocreodendron but forms a monophyletic lineage. All novelties described herein are morphologically illustrated and compared to similar species and phylogeny is investigated to establish new genera and species.
Collapse
Affiliation(s)
- An-Hong Zhu
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zi-Kun Song
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Fang Wang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hao-Wen Guan
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Zhi Qu
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
| | - Hai-Xia Ma
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (A.-H.Z.); (Z.-K.S.); (J.-F.W.); (H.-W.G.); (Z.Q.)
- Haikou Key Laboratory for Protection and Utilization of Edible and Medicinal Fungi, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, China
- Chongzuo Key Laboratory for Protection and Utilization of Edible and Medicinal Fungi, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Chongzuo 532100, China
| |
Collapse
|
4
|
Aiello D, Gusella G, Leonardi GR, Polizzi G, Voglmayr H. Bottlebrush and Myrtle twig canker caused by Neopestalotiopsis species: an emerging canker-causing group of fungi in Italy. MycoKeys 2024; 106:133-151. [PMID: 38948913 PMCID: PMC11214012 DOI: 10.3897/mycokeys.106.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 07/02/2024] Open
Abstract
Pestalotioid fungi were isolated in pure culture from symptomatic plants of Callistemonlaevis, C.viminalis, Lumaapiculata (marketed as "Myrtusluma"), Myrtuscommunissubsp.tarentina, and M.communisvar.microphylla (M.communis 'Microphylla'), showing twig canker, dieback and defoliation. The isolates were identified to species by ITS, tef1 and tub2 sequences, which revealed the presence of six species of Neopestalotiopsis (N.camelliae-oleiferae, N.hispanica, N.iberica, N.rosae, N.rosicola, and N.zakeelii) and one species of Pestalotiopsis (P.biciliata). While most species were isolated only once or twice, the majority of isolates belonged to N.rosae (13) and N.hispanica (8). Pathogenicity was investigated by pathogenicity tests on all hosts, which confirmed the pathogenicity of all Neopestalotiopsis species on at least some of the hosts tested, while P.biciliata did not cause any disease symptoms. Neopestalotiopsishispanica and N.rosae caused symptoms in all hosts of the present study, while the other Neopestalotiopsis species tested showed no symptoms on Lumaapiculata.
Collapse
Affiliation(s)
- Dalia Aiello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giorgio Gusella
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giuseppa Rosaria Leonardi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, ItalyUniversity of CataniaCataniaItaly
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, AustriaUniversity of ViennaViennaAustria
| |
Collapse
|
5
|
Sugita R, Yoshioka R, Tanaka K. Anthostomella-like fungi on bamboo: four new genera belonging to a new family Pallidoperidiaceae ( Xylariales). MYCOSCIENCE 2024; 65:28-46. [PMID: 39301436 PMCID: PMC11412755 DOI: 10.47371/mycosci.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 09/22/2024]
Abstract
This study investigates the phylogeny and taxonomy of Anthostomella-like fungi (Xylariales, Sordariomycetes) found in association with bamboo in Japan. Four new genera, Amphigermslita (including three new species, i.e., A. deformis, A. fusiformis, and A. pseudofusiformis), monotypic Crassipseudostroma (C. phyllostachydis) and Minuticlypeus (M. discosporus), and Pallidoperidium (two new species, P. exasperatum and P. paraexasperatum), and one known genus, Nigropunctata (one new species, N. complanata) are recognized and described. These five genera were found to constitute a distinct monophyletic lineage based on molecular phylogenetic analyses utilizing sequences of ITS and LSU nrDNA, rpb2, and tef1-α sequences. A new family, Pallidoperidiaceae, is proposed to accommodate these bambusicolous Anthostomella-like fungi. The identification of this lineage contributes to our understanding of the evolutionary relationships and classification of these bambusicolous fungi. It suggests that these five genera share a unique evolutionary history and possess shared morphological and ecological characteristics.
Collapse
Affiliation(s)
- Ryosuke Sugita
- a Faculty of Agriculture and Life Science, Hirosaki University
- b The United Graduate School of Agricultural Sciences, Iwate University
| | | | - Kazuaki Tanaka
- a Faculty of Agriculture and Life Science, Hirosaki University
| |
Collapse
|
6
|
Samarakoon MC, Lumyong S, Manawasinghe IS, Suwannarach N, Cheewangkoon R. Addition of Five Novel Fungal Flora to the Xylariomycetidae (Sordariomycetes, Ascomycota) in Northern Thailand. J Fungi (Basel) 2023; 9:1065. [PMID: 37998871 PMCID: PMC10672214 DOI: 10.3390/jof9111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
The deviation of conventional fungal niches is an important factor in the implications of hidden fungal diversity and global fungal numbers. The Xylariomycetidae (Sordariomycetes, Ascomycota), which is also referred to as xylarialean taxa, has a wide range of species that demonstrate a high degree of variation in their stromatic characteristics, showing either conspicuous or inconspicuous forms. In this study, samples were collected while focusing on temporal and spatial parameters and substrate characteristics. Based on internal transcribed spacer (ITS), 28S large subunit rDNA (LSU), RNA polymerase II second largest subunit (RPB2), and β-tubulin (TUB2) multigene phylogeny and morphology, five new species are introduced as Muscodor brunneascosporus, M. lamphunensis (Xylariaceae), Nigropunctata hydei, N. saccata (Incertae sedis), and Xenoanthostomella parvispora (Gyrotrichaceae). Plant substrates in the early stages of decay and attached to the host were feasible sample niches, with an emphasis on the collection of inconspicuous, hidden xylarialean species. The appearance of inconspicuous saprobic xylarialean forms during the rainy season may be linked to the change in nutritional mode, from endophytic mode during the dry season to saprobic in the wet. Therefore, it would be fascinating to concentrate future research on how seasonal fluctuations affect nutritional mode shifts, especially in northern Thailand, which would provide the optimal spatial characteristics. In order to establish a comprehensive linkage between endophytic and saprobic modes, it is imperative to have a substantial representation of endophytic isolate sequences resembling inconspicuous xylariaceous fungi within publicly accessible databases.
Collapse
Affiliation(s)
- Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (N.S.)
| |
Collapse
|
7
|
Cedeño-Sanchez M, Schiefelbein R, Stadler M, Voglmayr H, Bensch K, Lambert C. Redisposition of apiosporous genera Induratia and Muscodor in the Xylariales, following the discovery of an authentic strain of Induratia apiospora. BOTANICAL STUDIES 2023; 64:8. [PMID: 37052736 PMCID: PMC10102272 DOI: 10.1186/s40529-023-00372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The genus Induratia is based on Induratia apiospora, a xylarialean pyrenomycete from New Zealand with clypeate uniperitheciate stromata, hyaline apiospores and a nodulisporium-like anamorph. However, because of the lack of DNA data from the generic type, its phylogenetic affinities have remained unresolved. Recently, two fungal species with teleomorphs strikingly similar to Induratia were discovered in Thailand. However, they did not produce an anamorph and were found to be phylogenetically close to the species classified within the hyphomycete genus Muscodor, which was described after Induratia. Therefore, in 2020 the species of Muscodor were transferred to Induratia, and a new family Induratiaceae was proposed. RESULTS We have encountered an unpublished ex-holotype strain of Induratia apiospora among the holdings of the ATCC collection, enabling detailed morphological and molecular phylogenetic investigations. We observed the characteristic nodulisporium-like anamorph described in the original publication. Phylogenetic analyses of multigene sequence data revealed a close relationship of Induratia apiospora to the Barrmaeliaceae, while a close relationship to the Induratia species formerly classified within Muscodor was rejected. CONCLUSIONS We here classify Induratia apiospora within the Barrmaeliaceae and consider Induratiaceae to be synonymous with the former. As the holotype specimen of Induratia apiospora is apparently lost, an isotype specimen from WSP is selected as lectotype. We also propose that the genus Muscodor is resurrected within the Xylariaceae, and formally transfer several Induratia species to Muscodor.
Collapse
Affiliation(s)
- Marjorie Cedeño-Sanchez
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Rahel Schiefelbein
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030, Vienna, Austria
- Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, BOKU-University of Natural Resources and Life Sciences, Franz- Schwackhöfer-Haus, Peter-Jordan-Straße 82/I, 1190, Vienna, Austria
| | - Konstanze Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Christopher Lambert
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany.
- Department of Cell Biology, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
8
|
Voglmayr H, Tello S, Jaklitsch WM, Friebes G, Baral HO, Fournier J. About spirals and pores: Xylariaceae with remarkable germ loci. PERSOONIA 2022; 49:58-98. [PMID: 38234381 PMCID: PMC10792227 DOI: 10.3767/persoonia.2022.49.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2024]
Abstract
Based on phylogenetic analyses of a multi-gene matrix of nuITS-LSU rDNA, RPB2 and TUB2 sequences and morphology, xylariaceous species with uni- to pauciperitheciate stromata and ascospores having a spirally coiling (helicoid) germ slit are revised and reclassified, including detailed descriptions and illustrations. The genus Helicogermslita is redefined and restricted to seven species with massive, erumpent, clypeus-like carbonaceous stromata, and Rosellinia somala is combined in Helicogermslita. Within the core Xylariaceae, the poorly known Leptomassaria simplex is shown to be closely related to Anthostoma insidiosum, for which the new genus Oligostoma is established, and Anthostoma rhenanum is demonstrated to be synonymous with O. insidiosum. The new genus Albicollum, characterised by immersed ascomata and a collar of white pseudostromatic tissues surrounding the ostioles, is established for Amphisphaeria canicollis, Anthostoma chionostomum, Sordaria (= Helicogermslita) fleischhakii and Anthostoma vincensii. Anthostoma ostropoides is synomymised with Albicollum canicolle, and Al. berberidicola, Al. longisporum and Al. novomexicanum are described as new species. Rosellinia (= Helicogermslita) gaudefroyi is transferred to the new genus Spiririma. Anthostoma amoenum and Euepixylon udum, both with a poroid germ locus, are shown to be only distantly related, and An. amoenum is reclassified within the asexual genus Digitodochium. Based on phylogeny, the genus Euepixylon is treated as a synonym of Nemania. A new species, Nemania ethancrensonii, which is closely related to the two formerly accepted Euepixylon species (E. sphaeriostomum, E. udum) but strongly deviates from the morphological concept of Euepixylon and Nemania, is described from the eastern USA. The genera Anthostomelloides, Clypeosphaeria, Digitodochium, Emarcaea, Induratia, Linosporopsis, Magnostiolata, Occultitheca and Spiririma are revealed to form a morphologically heterogeneous lineage in a basal position of Xylariaceae. Anthostoma vincensii, Quaternaria simplex and Rosellinia gaudefroyi are lectotypified, and Amphisphaeria canicollis, Anthostoma amoenum, An. rhenanum, An. vincensii, Quaternaria simplex, Rosellinia gaudefroyi and Valsa insidiosa are epitypified. Keys to uni- to pauciperitheciate xylariaceous genera with sigmoid to helicoid germ slits and to species of Albicollum are provided. Citation: Voglmayr H, Tello S, Jaklitsch WM, et al. 2022. About spirals and pores: Xylariaceae with remarkable germ loci. Persoonia 49: 58-98. https://doi.org/10.3767/persoonia.2022.49.02.
Collapse
Affiliation(s)
- H Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - S Tello
- Paseo del Obispo 7, 23150 Valdepeñas de Jaén, Jaén, Spain
| | - W M Jaklitsch
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - G Friebes
- Universalmuseum Joanneum, Centre of Natural History, Botany & Mycology, Weinzöttlstraße 16, 8045 Graz, Austria
| | - H-O Baral
- Blaihofstraße 42, 72074 Tübingen, Germany
| | | |
Collapse
|
9
|
Sugita R, Hirayama K, Shirouzu T, Tanaka K. Spirodecosporaceae fam. nov. ( Xylariales, Sordariomycetes) and two new species of Spirodecospora. Fungal Syst Evol 2022; 10:217-229. [PMID: 36741553 PMCID: PMC9875695 DOI: 10.3114/fuse.2022.10.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The genus Spirodecospora has been placed in Xylariaceae based on morphological similarities. Spirodecospora spp., found on bamboo in Japan, were taxonomically and phylogenetically studied using molecular data for first time. Molecular phylogenetic analyses were based on the DNA sequence data of three regions: the nuclear ribosomal internal transcribed spacer (ITS) region, the large subunit (LSU) of rDNA, and the second largest RNA polymerase II subunit (rpb2) gene. Results showed that Spirodecospora formed an independent lineage from other known families in Xylariales. The new family Spirodecosporaceae is introduced in this study to accommodate this lineage based on the phylogenetic evidence and morphological differences from the other known families. Spirodecospora is characterised by having deeply immersed ascomata with a cylindrical ostiolar neck, unitunicate, cylindrical asci with I+, wedge-shaped apical ring, and broadly ellipsoidal to fusoid, aseptate, brown, verruculose ascospores with spirally or almost straight linear ornamentation. Based on morphological observations and molecular phylogenetic analyses, S. melnikii and two new species of Spirodecospora, S. paramelnikii and S. paulospiralis, are described and illustrated. A key to the four accepted species of Spirodecospora is provided. Citation: Sugita R, Hirayama K, Shirouzu T, Tanaka K (2022). Spirodecosporaceae fam. nov. (Xylariales, Sordariomycetes) and two new species of Spirodecospora. Fungal Systematics and Evolution 10: 217-229. doi: 10.3114/fuse.2022.10.09.
Collapse
Affiliation(s)
- R. Sugita
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, 18-8 Ueda 3 chome, Morioka, Iwate 020-8550, Japan
| | - K. Hirayama
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center (AITC), 24 Fukutami, Botandaira, Kuroishi, Aomori 036-0332, Japan
| | - T. Shirouzu
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie, 514-8507, Japan
| | - K. Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| |
Collapse
|
10
|
Crous PW, Begoude BAD, Boers J, Braun U, Declercq B, Dijksterhuis J, Elliott TF, Garay-Rodriguez GA, Jurjević Ž, Kruse J, Linde CC, Loyd A, Mound L, Osieck ER, Rivera-Vargas LI, Quimbita AM, Rodas CA, Roux J, Schumacher RK, Starink-Willemse M, Thangavel R, Trappe JM, van Iperen AL, Van Steenwinkel C, Wells A, Wingfield MJ, Yilmaz N, Groenewald JZ. New and Interesting Fungi. 5. Fungal Syst Evol 2022; 10:19-90. [PMID: 36789279 PMCID: PMC9903348 DOI: 10.3114/fuse.2022.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
Nine new genera, 17 new species, nine new combinations, seven epitypes, three lectotypes, one neotype, and 14 interesting new host and / or geographical records are introduced in this study. New genera: Neobarrmaelia (based on Neobarrmaelia hyphaenes), Neobryochiton (based on Neobryochiton narthecii), Neocamarographium (based on Neocamarographium carpini), Nothocladosporium (based on Nothocladosporium syzygii), Nothopseudocercospora (based on Nothopseudocercospora dictamni), Paracamarographium (based on Paracamarographium koreanum), Pseudohormonema (based on Pseudohormonema sordidus), Quasiphoma (based on Quasiphoma hyphaenes), Rapidomyces (based on Rapidomyces narthecii). New species: Ascocorticium sorbicola (on leaves of Sorbus aucuparia, Belgium), Dactylaria retrophylli (on leaves of Retrophyllum rospigliosii, Colombia), Dactylellina miltoniae (on twigs of Miltonia clowesii, Colombia), Exophiala eucalyptigena (on dead leaves of Eucalyptus viminalis subsp. viminalis supporting Idolothrips spectrum, Australia), Idriellomyces syzygii (on leaves of Syzygium chordatum, South Africa), Microcera lichenicola (on Parmelia sulcata, Netherlands), Neobarrmaelia hyphaenes (on leaves of Hyphaene sp., South Africa), Neobryochiton narthecii (on dead leaves of Narthecium ossifragum, Netherlands), Niesslia pseudoexilis (on dead leaf of Quercus petraea, Serbia), Nothocladosporium syzygii (on leaves of Syzygium chordatum, South Africa), Nothotrimmatostroma corymbiae (on leaves of Corymbia henryi, South Africa), Phaeosphaeria hyphaenes (on leaves of Hyphaene sp., South Africa), Pseudohormonema sordidus (on a from human pacemaker, USA), Quasiphoma hyphaenes (on leaves of Hyphaene sp., South Africa), Rapidomyces narthecii (on dead leaves of Narthecium ossifragum, Netherlands), Reticulascus parahennebertii (on dead culm of Juncus inflexus, Netherlands), Scytalidium philadelphianum (from compressed air in a factory, USA). New combinations: Neobarrmaelia serenoae, Nothopseudocercospora dictamni, Dothiora viticola, Floricola sulcata, Neocamarographium carpini, Paracamarographium koreanum, Rhexocercosporidium bellocense, Russula lilacina. Epitypes: Elsinoe corni (on leaves of Cornus florida, USA), Leptopeltis litigiosa (on dead leaf fronds of Pteridium aquilinum, Netherlands), Nothopseudocercospora dictamni (on living leaves of Dictamnus albus, Russia), Ramularia arvensis (on leaves of Potentilla reptans, Netherlands), Rhexocercosporidium bellocense (on leaves of Verbascum sp., Germany), Rhopographus filicinus (on dead leaf fronds of Pteridium aquilinum, Netherlands), Septoria robiniae (on leaves of Robinia pseudoacacia, Belgium). Lectotypes: Leptopeltis litigiosa (on Pteridium aquilinum, France), Rhopographus filicinus (on dead leaf fronds of Pteridium aquilinum, Netherlands), Septoria robiniae (on leaves of Robinia pseudoacacia, Belgium). Neotype: Camarographium stephensii (on dead leaf fronds of Pteridium aquilinum, Netherlands). Citation: Crous PW, Begoude BAD, Boers J, Braun U, Declercq B, Dijksterhuis J, Elliott TF, Garay-Rodriguez GA, Jurjević Ž, Kruse J, Linde CC, Loyd A, Mound L, Osieck ER, Rivera-Vargas LI, Quimbita AM, Rodas CA, Roux J, Schumacher RK, Starink-Willemse M, Thangavel R, Trappe JM, van Iperen AL, Van Steenwinkel C, Wells A, Wingfield MJ, Yilmaz N, Groenewald JZ (2022) New and Interesting Fungi. 5. Fungal Systematics and Evolution 10: 19-90. doi: 10.3114/fuse.2022.10.02.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - B A D Begoude
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Institute for Agricultural Research for Development (IRAD), Yaounde, Cameroon
| | - J Boers
- Poststraat 50-104, 6701 AZ, Wageningen, Netherlands
| | - U Braun
- Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany
| | - B Declercq
- Molenbergstraat 1, B-9190 Stekene, Belgium
| | - J Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T F Elliott
- Ecosystem Management, University of New England, Armidale, NSW 2351, Australia
| | - G A Garay-Rodriguez
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - J Kruse
- Pfalzmuseum für Naturkunde - POLLICHIA-Museum, Hermann-Schäfer-Str. 17, 67098 Bad Dürkheim, Germany
| | - C C Linde
- Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2600, Australia
| | - A Loyd
- Bartlett Tree Experts, 13768 Hamilton Rd, Charlotte, NC 28278, USA
| | - L Mound
- Australian National Insect Collection, CSIRO, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, Netherlands Forestry Health Protection Programme Smurfit Kappa - Colombia Calle 15#18-109 Yumbo, Colombia
| | - L I Rivera-Vargas
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - A M Quimbita
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - C A Rodas
- Forestry Health Protection Programme Smurfit Kappa - Colombia Calle 15#18-109 Yumbo, Colombia
| | - J Roux
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | | | - M Starink-Willemse
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - R Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - J M Trappe
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5752, USA
- U.S. Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 Jefferson Way, Corvallis, Oregon 97331-8550, USA
| | - A L van Iperen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | - A Wells
- Australian National Insect Collection, CSIRO, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - N Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
11
|
Pourmoghaddam MJ, Lambert C, Voglmayr H, Khodaparast SA, Krisai-Greilhuber I, Stadler M. Note on the genus Nemania (Xylariaceae) - first records and a new species of the genus from Iran. MycoKeys 2022; 93:81-105. [PMID: 36761911 PMCID: PMC9836441 DOI: 10.3897/mycokeys.93.94148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022] Open
Abstract
In a survey of xylarialean fungi in northern Iran, some specimens attributable to the genus Nemania were collected, cultured and sequenced. Morphological evidence and phylogenetic analyses of a combined ITS, LSU, RPB2 and TUB2 gene dataset confirmed the presence of Nemaniadiffusa and N.serpens in Iran for the first time. Furthermore, the new species N.hyrcana, which shows similarities to N.subaenea and its putative synonym N.plumbea, but significantly differs from the latter in its DNA sequences, was encountered. All species are illustrated, described and discussed. In the phylogenetic analyses, for the first time, the overlooked ex-type ITS sequences of the neotype of the generic type, N.serpens and that of the holotype of N.prava, were added to a multi-gene matrix of Nemania. This revealed that the two accessions of N.serpens (HAST 235 and CBS 679.86), for which multigene data are available in GenBank, are misidentified, while the Iranian accession of N.serpens has an almost identical ITS sequence to the neotype, confirming its morphological species identification. The two previously accepted species of Euepixylon, E.udum and E.sphaeriostomum, are embedded within Nemania and are revealed as close relatives of N.serpens, supporting the inclusion of Euepixylon in Nemania.
Collapse
Affiliation(s)
- Mohammad Javad Pourmoghaddam
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, IranUniversity of GuilanRashtIran
| | - Christopher Lambert
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment Microbial Drugs, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
- Department for Molecular Cell Biology, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment for Molecular Cell Biology, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, AustriaUniversity of ViennaWienAustria
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, IranUniversity of GuilanRashtIran
| | - Irmgard Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, AustriaUniversity of ViennaWienAustria
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz-Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, GermanyDepartment Microbial Drugs, Helmholtz-Centre for Infection Research GmbHBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
12
|
Neopestalotiopsis siciliana sp. nov. and N. rosae Causing Stem Lesion and Dieback on Avocado Plants in Italy. J Fungi (Basel) 2022; 8:jof8060562. [PMID: 35736045 PMCID: PMC9225166 DOI: 10.3390/jof8060562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Avocado (Persea americana) represents an important emerging tropical crop in Italy, especially in the southern regions. In this study, young plants of avocado showing symptoms of stem and wood lesion, and dieback, were investigated. Isolations from symptomatic tissues consistently yielded colonies of Neopestalotiopsis-like species. The characterization of representative isolates was based on the observation of morphological characters, the effect of temperature on mycelial growth rate, and on the sequencing of three different gene regions, specifically ITS, TEF1, and TUB2. Phylogenetic analyses were conducted based on maximum parsimony and maximum likelihood approaches. The results showed the presence of two species, viz. Neopestalotiopsis rosae and N. siciliana, the latter of which is here described as a new species. Pathogenicity tests were conducted using the mycelial plug technique on young potted avocado trees for both Neopestalotiopsis species. The results showed that both species were pathogenic to avocado. This study represents the first report of these two species affecting avocado and results in the description of a new species within the genus Neopestalotiopsis. Based on phylogeny, Pestalotiopsis coffeae-arabicae is combined in Neopestalotiopsis.
Collapse
|
13
|
Li QR, Zhang X, Lin Y, Samarakoon MC, Hyde KD, Shen XC, Liao WQ, Karunarathna A, Long SH, Kang YQ, Kang JC. Morpho-molecular characterisation of Arecophila, with A. australis and A. clypeata sp. nov. and A. miscanthi comb. nov. MycoKeys 2022; 88:123-149. [PMID: 35585934 PMCID: PMC9021158 DOI: 10.3897/mycokeys.88.79475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
Three arecophila-like fungal samples were collected on dead culms of gramineous plants in China. Morphological studies of our new collections and the herbarium specimen of Arecophila gulubiicola (generic type) were conducted and the morphological affinity of our new collections with Arecophila was confirmed. Maximum likelihood and Bayesian analyses using combined ITS, LSU, rpb2 and β-tubulin data from our collections revealed the phylogeny of Cainiaceae. The monospecific genus Alishanica (type species Al. miscanthi), which had been accepted in Cainiaceae, is revisited and synonymised under Arecophila. Based on morphology and phylogeny, Arecophila australis sp. nov. and A. clypeata sp. nov. are introduced as new species, while A. miscanthi is a new record for China. All the new collections are illustrated and described.
Collapse
|
14
|
Senanayake IC, Pem D, Rathnayaka AR, Wijesinghe SN, Tibpromma S, Wanasinghe DN, Phookamsak R, Kularathnage ND, Gomdola D, Harishchandra D, Dissanayake LS, Xiang MM, Ekanayaka AH, McKenzie EHC, Hyde KD, Zhang HX, Xie N. Predicting global numbers of teleomorphic ascomycetes. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractSexual reproduction is the basic way to form high genetic diversity and it is beneficial in evolution and speciation of fungi. The global diversity of teleomorphic species in Ascomycota has not been estimated. This paper estimates the species number for sexual ascomycetes based on five different estimation approaches, viz. by numbers of described fungi, by fungus:substrate ratio, by ecological distribution, by meta-DNA barcoding or culture-independent studies and by previous estimates of species in Ascomycota. The assumptions were made with the currently most accepted, “2.2–3.8 million” species estimate and results of previous studies concluding that 90% of the described ascomycetes reproduce sexually. The Catalogue of Life, Species Fungorum and published research were used for data procurement. The average value of teleomorphic species in Ascomycota from all methods is 1.86 million, ranging from 1.37 to 2.56 million. However, only around 83,000 teleomorphic species have been described in Ascomycota and deposited in data repositories. The ratio between described teleomorphic ascomycetes to predicted teleomorphic ascomycetes is 1:22. Therefore, where are the undiscovered teleomorphic ascomycetes? The undescribed species are no doubt to be found in biodiversity hot spots, poorly-studied areas and species complexes. Other poorly studied niches include extremophiles, lichenicolous fungi, human pathogens, marine fungi, and fungicolous fungi. Undescribed species are present in unexamined collections in specimen repositories or incompletely described earlier species. Nomenclatural issues, such as the use of separate names for teleomorph and anamorphs, synonyms, conspecific names, illegitimate and invalid names also affect the number of described species. Interspecies introgression results in new species, while species numbers are reduced by extinctions.
Collapse
|
15
|
Sugita R, Tanaka K. Thyridium revised: Synonymisation of Phialemoniopsis under Thyridium and establishment of a new order, Thyridiales. MycoKeys 2022; 86:147-176. [PMID: 35145340 PMCID: PMC8825628 DOI: 10.3897/mycokeys.86.78989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/23/2022] Open
Abstract
The genus Thyridium, previously known as a saprobic or hemibiotrophic ascomycete on various plants, was revised taxonomically and phylogenetically. Sequences of the following six regions, that is, the nuclear ribosomal internal transcribed spacer (ITS) region, the large subunit (LSU) of rDNA, the second largest RNA polymerase II subunit (rpb2) gene, translation elongation factor 1-alpha (tef1) gene, the actin (act) gene, and the beta-tubulin (tub2) gene, were generated for molecular phylogenetic analyses of species of this genus. Phialemoniopsis, a genus encompassing medically important species, is synonymised with Thyridium based on molecular evidence and morphological similarities in their asexual characters. The generic concept for Thyridium is expanded to include species possessing both coelomycetous and hyphomycetous complex asexual morphs. In addition to type species of Thyridium, T.vestitum, nine species were accepted in Thyridium upon morphological comparison and molecular phylogenetic analyses in this study. All seven species of Phialemoniopsis were treated as members of the genus Thyridium and new combinations were proposed. A bambusicolous fungus, Pleosporapunctulata, was transferred to Thyridium, and an epitype is designated for this species. A new species, T.flavostromatum, was described from Phyllostachyspubescens. The family Phialemoniopsidaceae, proposed as a familial placement for Phialemoniopsis, was regarded as a synonym of Thyridiaceae. A new order, Thyridiales, was established to accommodate Thyridiaceae; it forms a well-supported, monophyletic clade in Sordariomycetes.
Collapse
|
16
|
Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, Moore LP, Eastman KE, Scott K, Konkel Z, Mondo SJ, Kuo A, Hayes RD, Haridas S, Andreopoulos B, Riley R, LaButti K, Pangilinan J, Lipzen A, Amirebrahimi M, Yan J, Adam C, Keymanesh K, Ng V, Louie K, Northen T, Drula E, Henrissat B, Hsieh HM, Youens-Clark K, Lutzoni F, Miadlikowska J, Eastwood DC, Hamelin RC, Grigoriev IV, U'Ren JM. Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. THE NEW PHYTOLOGIST 2022; 233:1317-1330. [PMID: 34797921 DOI: 10.1111/nph.17873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.
Collapse
Affiliation(s)
- Mario E E Franco
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jennifer H Wisecaver
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven Ahrendt
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lillian P Moore
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Katharine E Eastman
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kelsey Scott
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephen J Mondo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Richard D Hayes
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sajeet Haridas
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bill Andreopoulos
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Riley
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Juying Yan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine Adam
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katherine Louie
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent Northen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRAE, Marseille, 13288, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, DK-2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Huei-Mei Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ken Youens-Clark
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Igor V Grigoriev
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jana M U'Ren
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
17
|
Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-021-00495-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, Phukhamsakda C, Mapook A, Hyde KD. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2021; 111:1-335. [PMID: 34899100 PMCID: PMC8648402 DOI: 10.1007/s13225-021-00489-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sajini K. U. Chandrasiri
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Gareth E. B. Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Walter Rossi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Marco Leonardi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Shiwali Rana
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepak K. Maurya
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepika Choudhary
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
| | - Shuang-Hui He
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Hong-Bo Jiang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - María P. Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - M. Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Izabela L. Kałucka
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS Surrey UK
| | - Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, 10300 Bangkok, Thailand
| | - Tarynn B. Potter
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Agriculture and Fisheries, Dutton Park, QLD 4102 Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Primary Industries and Regional Development, Bentley Delivery Centre, Locked Bag 4, Bentley, WA 6983 Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, No 2596 South Lekai Rd, Lianchi District, Baoding, 071001 Hebei China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, 866 Yuhangtang Rd, Xihu District, Hangzhou, 310058 Zhejiang China
| | - Upendra Singh
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Rajendra P. Bhatt
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, Richmond, TW9 3DS Surrey UK
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, North-24-Parganas, Barasat, West Bengal PIN- 700126 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - V. Venkateswara Sarma
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
| | - M. Niranjan
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh 791112 India
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nikhil Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Sneha Lad
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan People’s Republic of China
| | - Darbe J. Bhat
- Azad Housing Society, No. 128/1-J, Goa Velha, Curca, Goa India
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hong-Wei Shen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Jing-Yi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 People’s Republic of China
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O. Box: 811, Vientiane Capital, Lao People’s Democratic Republic
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Janith V. S. Aluthmuhandiram
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management On Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Alireza Javadi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, 19395 Tehran, Iran
| | | | - Muhammad Usman
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Abdul Nasir Khalid
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Asha J. Dissanayake
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Isaac Garrido-Benavent
- Department of Botany and Geology (Fac. CC. Biológicas) & Institut Cavanilles de Biodiversitat I Biologia Evolutiva (ICBIBE), Universitat de València, C/ Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Lilla Bóna
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726 Hungary
| | | | - Bratek Zoltán
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology of Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Thermo Fisher Diagnostics, Specialty Diagnostics Group, Landsmeer, The Netherlands
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Esmaeil Shams
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Dehghanizadeh
- Department of Agricultural Biotechnology, College of Agriculture Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Martin Kemler
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dominik Begerow
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan district, 550001 Guiyang, People’s Republic of China
| | | | - Tohir Bozorov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Republic of Uzbekistan, Yukori-Yuz, Kubray Ds, Tashkent, Uzbekistan 111226
| | - Tutigul Kholmuradova
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Aziz Abdurazakov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, 12 University Street, Andijan, Uzbekistan 170100
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 People’s Republic of China
| |
Collapse
|
19
|
Miller A, Réblová M. Phylogenetic placement of Iodosphaeriaceae ( Xylariales, Ascomycota), designation of an epitype for the type species of Iodosphaeria, I. phyllophila, and description of I. foliicola sp. nov.. Fungal Syst Evol 2021; 8:49-64. [PMID: 35005572 PMCID: PMC8687054 DOI: 10.3114/fuse.2021.08.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 01/25/2023] Open
Abstract
The Iodosphaeriaceae is represented by the single genus, Iodosphaeria, which is composed of nine species with superficial, black, globose ascomata covered with long, flexuous, brown hairs projecting from the ascomata in a stellate fashion, unitunicate asci with an amyloid apical ring or ring lacking and ellipsoidal, ellipsoidal-fusiform or allantoid, hyaline, aseptate ascospores. Members of Iodosphaeria are infrequently found worldwide as saprobes on various hosts and a wide range of substrates. Only three species have been sequenced and included in phylogenetic analyses, but the type species, I. phyllophila, lacks sequence data. In order to stabilize the placement of the genus and family, an epitype for the type species was designated after obtaining ITS sequence data and conducting maximum likelihood and Bayesian phylogenetic analyses. Iodosphaeria foliicola occurring on overwintered Alnus sp. leaves is described as new. Five species in the genus form a well-supported monophyletic group, sister to the Pseudosporidesmiaceae in the Xylariales. Selenosporella-like and/or ceratosporium-like synasexual morphs were experimentally verified or found associated with ascomata of seven of the nine accepted species in the genus. Taxa included and excluded from Iodosphaeria are discussed.
Collapse
Affiliation(s)
- A.N. Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - M. Réblová
- Czech Academy of Sciences, Institute of Botany, 252 43 Průhonice, Czech Republic
| |
Collapse
|
20
|
Phylogenetic analysis of Engleromyces sinensis and identification of cytochalasin D from culture. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01739-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Li Q, Gong X, Zhang X, Pi Y, Long S, Wu Y, Shen X, Kang Y, Kang J. Phylogeny of Graphostromatacea with two new species (Biscogniauxia glaucae sp. nov. and Graphostroma guizhouensis sp. nov.) and new record of Camillea broomeana isolated in China. Arch Microbiol 2021; 203:6119-6129. [PMID: 34550408 DOI: 10.1007/s00203-021-02574-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
In the process of studying the diversity of Xylariales in China, three species owning characteristics of Graphostromataceae were observed in China. Morphology of the described species with illustrations and their phylogeny based on regions of internal transcribed spacers (ITS), the second-largest subunit of the RNA polymerase II (RPB2), β-tubulin (TUB2) and α-actin (ACT) are provided. Two new species and one new record from China are identified. Morphologically, Biscogniauxia glaucae sp. nov. differs from B. atropunctata var. maritima, B. citriformis var. macrospora, B. fuscella and B. mediterranea by its stromata with raised margins, clear outlines, punctate ostioles openings and ascospores which are equilateral with broadly rounded ends, a straight spore-length germ slit on the more concave side, lacking appendages and sheathes. Graphostroma guizhouensis is identified as a new species based on the multi-gene phylogenetic tree. Camillea broomeana with scanning electron microscope description of ascospores is illustrated as a new record from China. Cryptostroma is proposed in Graphostromataceae based on molecular data. Vivantia is accepted in Graphostromataceae based on its morphological characteristics and Nodulisporiurn anamorphs which are similar to those of Biscogniauxia.
Collapse
Affiliation(s)
- Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, Guizhou, China.,The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Xiaofeng Gong
- Guizhou Science and Technology Information Center, Guiyang, 550002, People's Republic of China
| | - Xu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China
| | - Yinhui Pi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China
| | - Sihan Long
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China
| | - Youpeng Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, China.,The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, Guizhou, China
| | - Yingqian Kang
- Departments of Microbiology, Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Jichuan Kang
- The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
22
|
Tennakoon DS, Kuo CH, Maharachchikumbura SSN, Thambugala KM, Gentekaki E, Phillips AJL, Bhat DJ, Wanasinghe DN, de Silva NI, Promputtha I, Hyde KD. Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00474-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Konta S, Hyde KD, Eungwanichayapant PD, Karunarathna SC, Samarakoon MC, Xu J, Dauner LAP, Aluthwattha ST, Lumyong S, Tibpromma S. Multigene Phylogeny Reveals Haploanthostomella elaeidis gen. et sp. nov. and Familial Replacement of Endocalyx (Xylariales, Sordariomycetes, Ascomycota). Life (Basel) 2021; 11:486. [PMID: 34073589 PMCID: PMC8227165 DOI: 10.3390/life11060486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
During our investigation of palm fungi in Thailand, two interesting taxa from Elaeis guineensis and Metroxylon sagu (Arecaceae) were collected. Based on phylogenetic analyses of a combined dataset of ITS, LSU, rpb2, and tub2 nucleotide sequences as well as unique morphological characteristics, we introduce the new genus Haploanthostomella within Xylariales, and a new species Endocalyx metroxyli. Additionally, in our study, the genus Endocalyx is transferred to the family Cainiaceae based on its brown conidia and molecular phylogenetic evidence.
Collapse
Affiliation(s)
- Sirinapa Konta
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (K.D.H.); (M.C.S.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (K.D.H.); (M.C.S.)
| | | | - Samantha C. Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
- World Agroforestry Centre, East and Central Asia, Kunming 650201, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
| | - Milan C. Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (K.D.H.); (M.C.S.)
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
- World Agroforestry Centre, East and Central Asia, Kunming 650201, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
| | - Lucas A. P. Dauner
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
| | - Sasith Tharanga Aluthwattha
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China;
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Saowaluck Tibpromma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.K.); (S.C.K.); (J.X.); (L.A.P.D.)
- World Agroforestry Centre, East and Central Asia, Kunming 650201, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
| |
Collapse
|
24
|
Phylogeny, Global Biogeography and Pleomorphism of Zanclospora. Microorganisms 2021; 9:microorganisms9040706. [PMID: 33805574 PMCID: PMC8066784 DOI: 10.3390/microorganisms9040706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Zanclospora (Chaetosphaeriaceae) is a neglected, phialidic dematiaceous hyphomycete with striking phenotypic heterogeneity among its species. Little is known about its global biogeography due to its extreme scarcity and lack of records verified by molecular data. Phylogenetic analyses of six nuclear loci, supported by phenotypic data, revealed Zanclospora as highly polyphyletic, with species distributed among three distantly related lineages in Sordariomycetes. Zanclospora is a pleomorphic genus with multiple anamorphic stages, of which phaeostalagmus-like and stanjehughesia-like are newly discovered. The associated teleomorphs were previously classified in Chaetosphaeria. The generic concept is emended, and 17 species are accepted, 12 of which have been verified with DNA sequence data. Zanclospora thrives on decaying plant matter, but it also occurs in soil or as root endophytes. Its global diversity is inferred from metabarcoding data and published records based on field observations. Phylogenies of the environmental ITS1 and ITS2 sequences derived from soil, dead wood and root samples revealed seven and 15 phylotypes. The field records verified by DNA data indicate two main diversity centres in Australasia and Caribbean/Central America. In addition, environmental ITS data have shown that Southeast Asia represents a third hotspot of Zanclospora diversity. Our data confirm that Zanclospora is a rare genus.
Collapse
|
25
|
Vandegrift R. Xylariales (Sordariomycetes, Ascomycota) of the Boston Harbor Islands. Northeast Nat (Steuben) 2021. [DOI: 10.1656/045.025.s907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Roo Vandegrift
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289;
| |
Collapse
|
26
|
Crous P, Wingfield M, Schumacher R, Akulov A, Bulgakov T, Carnegie A, Jurjević Ž, Decock C, Denman S, Lombard L, Lawrence D, Stack A, Gordon T, Bostock R, Burgess T, Summerell B, Taylor P, Edwards J, Hou L, Cai L, Rossman A, Wöhner T, Allen W, Castlebury L, Visagie C, Groenewald J. New and Interesting Fungi. 3. Fungal Syst Evol 2020; 6:157-231. [PMID: 32904192 PMCID: PMC7452156 DOI: 10.3114/fuse.2020.06.09] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Seven new genera, 26 new species, 10 new combinations, two epitypes, one new name, and 20 interesting new host and / or geographical records are introduced in this study. New genera are: Italiofungus (based on Italiofungus phillyreae) on leaves of Phillyrea latifolia (Italy); Neolamproconium (based on Neolamproconium silvestre) on branch of Tilia sp. (Ukraine); Neosorocybe (based on Neosorocybe pini) on trunk of Pinus sylvestris (Ukraine); Nothoseptoria (based on Nothoseptoria caraganae) on leaves of Caragana arborescens (Russia); Pruniphilomyces (based on Pruniphilomyces circumscissus) on Prunus cerasus (Russia); Vesiculozygosporium (based on Vesiculozygosporium echinosporum) on leaves of Muntingia calabura (Malaysia); Longiseptatispora (based on Longiseptatispora curvata) on leaves of Lonicera tatarica (Russia). New species are: Barrmaelia serenoae on leaf of Serenoa repens (USA); Chaetopsina gautengina on leaves of unidentified grass (South Africa); Chloridium pini on fallen trunk of Pinus sylvestris (Ukraine); Cadophora fallopiae on stems of Reynoutria sachalinensis (Poland); Coleophoma eucalyptigena on leaf litter of Eucalyptus sp. (Spain); Cylindrium corymbiae on leaves of Corymbia maculata (Australia); Diaporthe tarchonanthi on leaves of Tarchonanthus littoralis (South Africa); Elsinoe eucalyptorum on leaves of Eucalyptus propinqua (Australia); Exophiala quercina on dead wood of Quercus sp., (Germany); Fusarium californicum on cambium of budwood of Prunus dulcis (USA); Hypomyces gamsii on wood of Alnus glutinosa (Ukraine); Kalmusia araucariae on leaves of Araucaria bidwillii (USA); Lectera sambuci on leaves of Sambucus nigra (Russia); Melanomma populicola on fallen twig of Populus canadensis (Netherlands), Neocladosporium syringae on branches of Syringa vulgarishorus (Ukraine); Paraconiothyrium iridis on leaves of Iris pseudacorus (Ukraine); Pararoussoella quercina on branch of Quercus robur (Ukraine); Phialemonium pulveris from bore dust of deathwatch beetle (France); Polyscytalum pinicola on needles of Pinus tecunumanii (Malaysia); Acervuloseptoria fraxini on Fraxinus pennsylvanica (Russia); Roussoella arundinacea on culms of Arundo donax (Spain); Sphaerulina neoaceris on leaves of Acer negundo (Russia); Sphaerulina salicicola on leaves of Salix fragilis (Russia); Trichomerium syzygii on leaves of Syzygium cordatum (South Africa); Uzbekistanica vitis-viniferae on dead stem of Vitis vinifera (Ukraine); Vermiculariopsiella eucalyptigena on leaves of Eucalyptus sp. (Australia).
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - M.J. Wingfield
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | | | - A. Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - T.S. Bulgakov
- Department of Plant Protection, Russian Research Institute of Floriculture and Subtropical Crops, Yana Fabritsiusa street 2/28, 354002 Sochi, Krasnodar region, Russia
| | - A.J. Carnegie
- Forest Health & Biosecurity, Forest Science, NSW Department of Primary Industries - Forestry, Level 12, 10 Valentine Ave, Parramatta NSW 2150, Australia
- School of Environment Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - C. Decock
- Mycothèque de l’Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.25, B-1348 Louvain-la-Neuve, Belgium
| | - S. Denman
- Forest Research, Alice Holt Lodge, Farnham, Surrey, UK
| | - L. Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - D.P. Lawrence
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - A.J. Stack
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - T.R. Gordon
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - R.M. Bostock
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - T. Burgess
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - B.A. Summerell
- Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia
| | - P.W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - J. Edwards
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio Centre, 5 Ring Road, LaTrobe University, Bundoora, Victoria 3083, Australia
- School of Applied Systems Biology, LaTrobe University, Bundoora, Victoria 3083, Australia
| | - L.W. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - A.Y. Rossman
- Botany & Plant Pathology Department, Oregon State University, Corvallis, Oregon 97333, USA
| | - T. Wöhner
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326, Dresden, Germany
| | - W.C. Allen
- North Carolina State University, Raleigh, North Carolina 27695, USA
- USDA ARS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, Maryland 20705, USA
| | - L.A. Castlebury
- USDA ARS Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, Maryland 20705, USA
| | - C.M. Visagie
- Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
- Biosystematics Division, Agricultural Research Council – Plant Health and Protection, Private Bag X134, Queenswood, Pretoria, 0121, South Africa
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
27
|
Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, Kušan I, He SH, Liu NG, Sarma VV, Zhao CL, Cui BK, Yousaf N, Sun G, Liu SY, Wu F, Lin CG, Dayarathne MC, Gibertoni TB, Conceição LB, Garibay-Orijel R, Villegas-Ríos M, Salas-Lizana R, Wei TZ, Qiu JZ, Yu ZF, Phookamsak R, Zeng M, Paloi S, Bao DF, Abeywickrama PD, Wei DP, Yang J, Manawasinghe IS, Harishchandra D, Brahmanage RS, de Silva NI, Tennakoon DS, Karunarathna A, Gafforov Y, Pem D, Zhang SN, de Azevedo Santiago ALCM, Bezerra JDP, Dima B, Acharya K, Alvarez-Manjarrez J, Bahkali AH, Bhatt VK, Brandrud TE, Bulgakov TS, Camporesi E, Cao T, Chen YX, Chen YY, Devadatha B, Elgorban AM, Fan LF, Du X, Gao L, Gonçalves CM, Gusmão LFP, Huanraluek N, Jadan M, Jayawardena RS, Khalid AN, Langer E, Lima DX, de Lima-Júnior NC, de Lira CRS, Liu JK(J, Liu S, Lumyong S, Luo ZL, Matočec N, Niranjan M, Oliveira-Filho JRC, Papp V, Pérez-Pazos E, Phillips AJL, Qiu PL, Ren Y, Ruiz RFC, Semwal KC, Soop K, de Souza CAF, Souza-Motta CM, Sun LH, Xie ML, Yao YJ, Zhao Q, Zhou LW. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00461-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
|
29
|
Halecker S, Wennrich JP, Rodrigo S, Andrée N, Rabsch L, Baschien C, Steinert M, Stadler M, Surup F, Schulz B. Fungal endophytes for biocontrol of ash dieback: The antagonistic potential of Hypoxylon rubiginosum. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Samarakoon MC, Thongbai B, Hyde KD, Brönstrup M, Beutling U, Lambert C, Miller AN, Liu JK(J, Promputtha I, Stadler M. Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00443-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei D, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayaka AH, Bao DF, Li J, Samarakoon MC, Chaiwan N, Lin CG, Phutthacharoen K, Zhang SN, Senanayake IC, Goonasekara ID, Thambugala KM, Phukhamsakda C, Tennakoon DS, Jiang HB, Yang J, Zeng M, Huanraluek N, Liu JK(J, Wijesinghe SN, Tian Q, Tibpromma S, Brahmanage RS, Boonmee S, Huang SK, Thiyagaraja V, Lu YZ, Jayawardena RS, Dong W, Yang EF, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Pfliegler WP, Horváth E, Imre A, Alves AL, da Silva Santos AC, Tiago PV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doilom M, Elgorban AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu J, Sheng J. Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00439-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa, as well as providing new information of fungal taxa worldwide. This article is the 11th contribution to the fungal diversity notes series, in which 126 taxa distributed in two phyla, six classes, 24 orders and 55 families are described and illustrated. Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China, India and Thailand, as well as in some other European, North American and South American countries. Taxa described in the present study include two new families, 12 new genera, 82 new species, five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports. The two new families are Eriomycetaceae (Dothideomycetes, family incertae sedis) and Fasciatisporaceae (Xylariales, Sordariomycetes). The twelve new genera comprise Bhagirathimyces (Phaeosphaeriaceae), Camporesiomyces (Tubeufiaceae), Eriocamporesia (Cryphonectriaceae), Eriomyces (Eriomycetaceae), Neomonodictys (Pleurotheciaceae), Paraloratospora (Phaeosphaeriaceae), Paramonodictys (Parabambusicolaceae), Pseudoconlarium (Diaporthomycetidae, genus incertae sedis), Pseudomurilentithecium (Lentitheciaceae), Setoapiospora (Muyocopronaceae), Srinivasanomyces (Vibrisseaceae) and Xenoanthostomella (Xylariales, genera incertae sedis). The 82 new species comprise Acremonium chiangraiense, Adustochaete nivea, Angustimassarina camporesii, Bhagirathimyces himalayensis, Brunneoclavispora camporesii, Camarosporidiella camporesii, Camporesiomyces mali, Camposporium appendiculatum, Camposporium multiseptatum, Camposporium septatum, Canalisporium aquaticium, Clonostachys eriocamporesiana, Clonostachys eriocamporesii, Colletotrichum hederiicola, Coniochaeta vineae, Conioscypha verrucosa, Cortinarius ainsworthii, Cortinarius aurae, Cortinarius britannicus, Cortinarius heatherae, Cortinarius scoticus, Cortinarius subsaniosus, Cytospora fusispora, Cytospora rosigena, Diaporthe camporesii, Diaporthe nigra, Diatrypella yunnanensis, Dictyosporium muriformis, Didymella camporesii, Diutina bernali, Diutina sipiczkii, Eriocamporesia aurantia, Eriomyces heveae, Ernakulamia tanakae, Falciformispora uttaraditensis, Fasciatispora cocoes, Foliophoma camporesii, Fuscostagonospora camporesii, Helvella subtinta, Kalmusia erioi, Keissleriella camporesiana, Keissleriella camporesii, Lanspora cylindrospora, Loratospora arezzoensis, Mariannaea atlantica, Melanographium phoenicis, Montagnula camporesii, Neodidymelliopsis camporesii, Neokalmusia kunmingensis, Neoleptosporella camporesiana, Neomonodictys muriformis, Neomyrmecridium guizhouense, Neosetophoma camporesii, Paraloratospora camporesii, Paramonodictys solitarius, Periconia palmicola, Plenodomus triseptatus, Pseudocamarosporium camporesii, Pseudocercospora maetaengensis, Pseudochaetosphaeronema kunmingense, Pseudoconlarium punctiforme, Pseudodactylaria camporesiana, Pseudomurilentithecium camporesii, Pseudotetraploa rajmachiensis, Pseudotruncatella camporesii, Rhexocercosporidium senecionis, Rhytidhysteron camporesii, Rhytidhysteron erioi, Septoriella camporesii, Setoapiospora thailandica, Srinivasanomyces kangrensis, Tetraploa dwibahubeeja, Tetraploa pseudoaristata, Tetraploa thrayabahubeeja, Torula camporesii, Tremateia camporesii, Tremateia lamiacearum, Uzbekistanica pruni, Verruconis mangrovei, Wilcoxina verruculosa, Xenoanthostomella chromolaenae and Xenodidymella camporesii. The five new combinations are Camporesiomyces patagoniensis, Camporesiomyces vaccinia, Camposporium lycopodiellae, Paraloratospora gahniae and Rhexocercosporidium microsporum. The 22 new records on host and geographical distribution comprise Arthrinium marii, Ascochyta medicaginicola, Ascochyta pisi, Astrocystis bambusicola, Camposporium pellucidum, Dendryphiella phitsanulokensis, Diaporthe foeniculina, Didymella macrostoma, Diplodia mutila, Diplodia seriata, Heterosphaeria patella, Hysterobrevium constrictum, Neodidymelliopsis ranunculi, Neovaginatispora fuckelii, Nothophoma quercina, Occultibambusa bambusae, Phaeosphaeria chinensis, Pseudopestalotiopsis theae, Pyxine berteriana, Tetraploa sasicola, Torula gaodangensis and Wojnowiciella dactylidis. In addition, the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy, respectively. The holomorph of Diaporthe cynaroidis is also reported for the first time.
Collapse
|
32
|
Voglmayr H, Beenken L. Linosporopsis, a new leaf-inhabiting scolecosporous genus in Xylariaceae. Mycol Prog 2020; 19:205-222. [PMID: 32104168 PMCID: PMC7008769 DOI: 10.1007/s11557-020-01559-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/02/2022]
Abstract
Based on molecular phylogenetic and morphological evidence, the new genus Linosporopsis (Xylariales) is established for several species previously classified within Linospora (Diaporthales). Fresh collections of Linospora ischnotheca from dead overwintered leaves of Fagus sylvatica and of L. ochracea from dead overwintered leaves of Malus domestica, Pyrus communis, and Sorbus intermedia were isolated in pure culture, and molecular phylogenetic analyses of a multi-locus matrix of partial nuITS-LSU rDNA, RPB2 and TUB2 sequences as well as morphological investigations revealed that both species are unrelated to the diaporthalean genus Linospora, but belong to Xylariaceae sensu stricto. The new combinations Linosporopsis ischnotheca and L. ochracea are proposed, the species are described and illustrated, and their basionyms lecto- and epitypified. Linospora faginea is synonymized with L. ischnotheca. Based on similar morphology and ecology, Linospora carpini and Linospora magnagutiana from dead leaves of Carpinus betulus and Sorbus torminalis, respectively, are also combined in Linosporopsis. The four accepted species of Linosporopsis are illustrated, a key to species is provided and their ecology is discussed.
Collapse
Affiliation(s)
- Hermann Voglmayr
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Franz Schwackhöfer Haus, Peter-Jordan-Straße 82/I, 1190 Vienna, Austria
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Ludwig Beenken
- Eidgenössische Forschungsanstalt WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
33
|
Natonodosa speciosa gen. et sp. nov. and rediscovery of Poroisariopsis inornata: neotropical anamorphic fungi in Xylariales. Mycol Prog 2020. [DOI: 10.1007/s11557-019-01537-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Helaly SE, Thongbai B, Stadler M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 2019; 35:992-1014. [PMID: 29774351 DOI: 10.1039/c8np00010g] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to December 2017 The diversity of secondary metabolites in the fungal order Xylariales is reviewed with special emphasis on correlations between chemical diversity and biodiversity as inferred from recent taxonomic and phylogenetic studies. The Xylariales are arguably among the predominant fungal endophytes, which are the producer organisms of pharmaceutical lead compounds including the antimycotic sordarins and the antiparasitic nodulisporic acids, as well as the marketed drug, emodepside. Many Xylariales are "macromycetes", which form conspicuous fruiting bodies (stromata), and the metabolite profiles that are predominant in the stromata are often complementary to those encountered in corresponding mycelial cultures of a given species. Secondary metabolite profiles have recently been proven highly informative as additional parameters to support classical morphology and molecular phylogenetic approaches in order to reconstruct evolutionary relationships among these fungi. Even the recent taxonomic rearrangement of the Xylariales has been relying on such approaches, since certain groups of metabolites seem to have significance at the species, genus or family level, respectively, while others are only produced in certain taxa and their production is highly dependent on the culture conditions. The vast metabolic diversity that may be encountered in a single species or strain is illustrated based on examples like Daldinia eschscholtzii, Hypoxylon rickii, and Pestalotiopsis fici. In the future, it appears feasible to increase our knowledge of secondary metabolite diversity by embarking on certain genera that have so far been neglected, as well as by studying the volatile secondary metabolites more intensively. Methods of bioinformatics, phylogenomics and transcriptomics, which have been developed to study other fungi, are readily available for use in such scenarios.
Collapse
Affiliation(s)
- Soleiman E Helaly
- Dept Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | | | | |
Collapse
|
35
|
Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00429-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Lichens or endophytes? The enigmatic genus Leptosillia in the Leptosilliaceae fam. nov. ( Xylariales), and Furfurella gen. nov. ( Delonicicolaceae). Persoonia - Molecular Phylogeny and Evolution of Fungi 2019; 42:228-260. [PMID: 31551620 PMCID: PMC6712540 DOI: 10.3767/persoonia.2019.42.09] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/04/2019] [Indexed: 11/25/2022]
Abstract
Based on DNA sequence data, the genus Leptosillia is shown to belong to the Xylariales. Molecular phylogenetic analyses of ITS-LSU rDNA sequence data and of a combined matrix of SSU-ITS-LSU rDNA, rpb1, rpb2, tef1 and tub2 reveal that the genera Cresporhaphis and Liberomyces are congeneric with Leptosillia. Coelosphaeria fusariospora, Leptorhaphis acerina, Leptorhaphis quercus f. macrospora, Leptorhaphis pinicola, Leptorhaphis wienkampii, Liberomyces pistaciae, Sphaeria muelleri and Zignoëlla slaptonensis are combined in Leptosillia, and all of these taxa except for C. fusariospora, L. pinicola and L. pistaciae are epitypified. Coelosphaeria fusariospora and Cresporhaphis rhoina are lectotypified. Liberomyces macrosporus and L. saliciphilus, which were isolated as phloem and sapwood endophytes, are shown to be synonyms of Leptosillia macrospora and L. wienkampii, respectively. All species formerly placed in Cresporhaphis that are now transferred to Leptosillia are revealed to be non-lichenized. Based on morphology and ecology, Cresporhaphis chibaensis is synonymised with Rhaphidicyrtis trichosporella, and C. rhoina is considered to be unrelated to the genus Leptosillia, but its generic affinities cannot be resolved in lack of DNA sequence data. Phylogenetic analyses place Leptosillia as sister taxon to Delonicicolaceae, and based on morphological and ecological differences, the new family Leptosilliaceae is established. Furfurella, a new genus with the three new species, F. luteostiolata, F. nigrescens and F. stromatica, growing on dead branches of mediterranean fabaceous shrubs from tribe Genisteae, is revealed to be the closest relative of Delonicicola in the family Delonicicolaceae, which is emended. ITS rDNA sequence data retrieved from GenBank demonstrate that the Leptosilliaceae were frequently isolated or sequenced as endophytes from temperate to tropical regions, and show that the genus Leptosillia represents a widely distributed component of endophyte communities of woody plants.
Collapse
|
37
|
|
38
|
Voglmayr H, Jaklitsch WM, Mohammadi H, Kazemzadeh Chakusary M. The genus Juglanconis ( Diaporthales) on Pterocarya. Mycol Prog 2019; 18:425-437. [PMID: 30906242 PMCID: PMC6399749 DOI: 10.1007/s11557-018-01464-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Based on molecular phylogenetic analyses of a multigene matrix of partial nuSSU-ITS-LSU rDNA, cal, his, ms204, rpb1, rpb2, tef1 and tub2 sequences, recent European and Iranian collections of Melanconium pterocaryae from the type host, Pterocarya fraxinifolia, are shown to be distinct from the Japanese Melanconis pterocaryae from Pterocarya rhoifolia, and both are confirmed as closely related members of the recently described genus Juglanconis. Therefore, the new name Juglanconis japonica is proposed for Melanconis pterocaryae. As no type collection could be traced, Melanconium pterocaryae (syn. J. pterocaryae) is neotypified, described and illustrated, and it is recorded for Europe for the first time. During field surveys in natural stands of P. fraxinifolia in Guilan province (Iran), Juglanconis pterocaryae was consistently isolated from tissues affected by branch and trunk cankers, twig dieback and wood necrosis, indicating that it is the causal agent of these diseases. The external and internal symptoms associated with these trunk diseases are described and illustrated.
Collapse
Affiliation(s)
- Hermann Voglmayr
- 1Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - Walter M Jaklitsch
- 1Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria.,2Department of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Institute of Forest Entomology, Forest Pathology and Forest Protection, Franz Schwackhöfer Haus, Peter-Jordan-Straße 82/I, 1190 Vienna, Austria
| | - Hamid Mohammadi
- 3Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111 Iran
| | - Mohammad Kazemzadeh Chakusary
- 3Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 7616914111 Iran
| |
Collapse
|
39
|
Vitale S, Aiello D, Guarnaccia V, Luongo L, Galli M, Crous PW, Polizzi G, Belisario A, Voglmayr H. Liberomycespistaciae sp. nov., the causal agent of pistachio cankers and decline in Italy. MycoKeys 2018:29-51. [PMID: 30271263 PMCID: PMC6160797 DOI: 10.3897/mycokeys.40.28636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022] Open
Abstract
A new canker and decline disease of pistachio (Pistaciavera) is described from Sicily (Italy). Observations of the disease and sampling of the causal agent started in spring 2010, in the area where this crop is typically cultivated, Bronte and Adrano (Catania province) and later extended to the Agrigento and Caltanissetta provinces. Isolations from the margins of twig, branch and stem cankers of declining plants resulted in fungal colonies with the same morphology. Pathogenicity tests on 5-year-old potted plants of Pistaciavera grafted on P.terebinthus reproduced similar symptoms to those observed in nature and the pathogen was confirmed to be a coloniser of woody plant tissue. Comparison of our isolates with the type of the apparently similar Asteromellapistaciarum showed that our isolates are morphologically and ecologically different from A.pistaciarum, the latter being a typical member of Mycosphaerellaceae. Asteromellapistaciarum is lectotypified, described and illustrated and it is considered to represent a spermatial morph of Septoriapistaciarum. Multi-locus phylogenies based on two (ITS and LSU rDNA) and three (ITS, rpb2 and tub2) genomic loci revealed isolates of the canker pathogen to represent a new species of Liberomyces within the Delonicicolaceae (Xylariales), which is here described as Liberomycespistaciaesp. nov. (Delonicicolaceae, Xylariales). The presence of this fungus in asymptomatic plants with apparently healthy woody tissues indicates that it also has a latent growth phase. This study improves the understanding of pistachio decline, but further studies are needed for planning effective disease management strategies and ensuring that the pathogen is not introduced into new areas with apparently healthy, but infected plants.
Collapse
Affiliation(s)
- Salvatore Vitale
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)- Centro di Ricerca Difesa e Certificazione (DC), Via C. G. Bertero 22, 00156 Roma, Italy Centro di Ricerca Difesa e Certificazione Roma Italy
| | - Dalia Aiello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sezione Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy University of Catania Catania Italy
| | - Vladimiro Guarnaccia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands.,Department of Plant Pathology, University of Stellenbosch, Matieland 7602, South Africa University of Stellenbosch Matieland South Africa
| | - Laura Luongo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)- Centro di Ricerca Difesa e Certificazione (DC), Via C. G. Bertero 22, 00156 Roma, Italy Centro di Ricerca Difesa e Certificazione Roma Italy
| | - Massimo Galli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)- Centro di Ricerca Difesa e Certificazione (DC), Via C. G. Bertero 22, 00156 Roma, Italy Centro di Ricerca Difesa e Certificazione Roma Italy
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands Westerdijk Fungal Biodiversity Institute Utrecht Netherlands.,Department of Plant Pathology, University of Stellenbosch, Matieland 7602, South Africa University of Stellenbosch Matieland South Africa
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sezione Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy University of Catania Catania Italy
| | - Alessandra Belisario
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA)- Centro di Ricerca Difesa e Certificazione (DC), Via C. G. Bertero 22, 00156 Roma, Italy Centro di Ricerca Difesa e Certificazione Roma Italy
| | - Hermann Voglmayr
- Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria University of Vienna Vienna Austria
| |
Collapse
|
40
|
Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R. Outline of Ascomycota: 2017. FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0394-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|