1
|
Shamsan E, Almezgagi M, Gamah M, Khan N, Qasem A, Chuanchuan L, Haining F. The role of PI3k/AKT signaling pathway in attenuating liver fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1389329. [PMID: 38590313 PMCID: PMC10999701 DOI: 10.3389/fmed.2024.1389329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) components within the liver leads to a pathological condition known as liver fibrosis. Alcohol abuse, non-alcoholic fatty liver disease (NAFLD), autoimmune issues, and viral hepatitis cause chronic liver injury. Exploring potential therapeutic targets and understanding the molecular mechanisms involved in liver fibrosis are essential for the development of effective interventions. The goal of this comprehensive review is to explain how the PI3K/AKT signaling pathway contributes to the reduction of liver fibrosis. The potential of this pathway as a therapeutic target is investigated through a summary of results from in vivo and in vitro studies. Studies focusing on PI3K/AKT activation have shown a significant decrease in fibrosis markers and a significant improvement in liver function. The review emphasizes how this pathway may prevent ECM synthesis and hepatic stellate cell (HSC) activation, ultimately reducing the fibrotic response. The specific mechanisms and downstream effectors of the PI3K/AKT pathway in liver fibrosis constitute a rapidly developing field of study. In conclusion, the PI3K/AKT signaling pathway plays a significant role in attenuating liver fibrosis. Its complex role in regulating HSC activation and ECM production, demonstrated both in vitro and in vivo, underscores its potential as a effective therapeutic approach for managing liver fibrosis and slowing disease progression. A comprehensive review of this field provides valuable insights into its future developments and implications for clinical applications.
Collapse
Affiliation(s)
- Emad Shamsan
- College of Clinical Medicine, Qinghai University, Xining, China
- College of Medical Science, Taiz University, Taiz, Yemen
| | - Maged Almezgagi
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Mohammed Gamah
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Naveed Khan
- College of Clinical Medicine, Qinghai University, Xining, China
| | | | - Liu Chuanchuan
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Fan Haining
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
2
|
Gao J, Wang Y, Jia Z, Xue J, Zhou T, Zu G. (-)-Epigallocatechin-3-gallate promotes intestinal epithelial proliferation and barrier function after ischemia/reperfusion injury via activation of Nurr1. PHARMACEUTICAL BIOLOGY 2023; 61:1310-1317. [PMID: 37621064 PMCID: PMC10461505 DOI: 10.1080/13880209.2023.2245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT (-)-Epigallocatechin-3-gallate (EGCG) is involved in cell proliferation and ischemia/reperfusion (I/R) injury of several organs. OBJECTIVE To identify the role of EGCG in intestinal epithelial proliferation and barrier exposed to I/R injury. MATERIAL AND METHODS Fifty Sprague-Dawley rats were divided into sham, I/R, I/R + EGCG (12.5 mg/kg), I/R + EGCG (25 mg/kg) and I/R + EGCG (50 mg/kg). I/R group rats were subjected to intestinal ischemia for 1 h and 6 h reperfusion. The rats were supplemented with EGCG 12.5, 25 and 50 mg/kg daily for 3 days via intraperitoneal injection before surgery. We used IEC-6 to expose to hypoxia/reoxygenation (H/R) injury to mimic I/R in vivo. IEC-6 cells were divided into control, H/R and H/R + EGCG (40 μmol/L). The effects of EGCG and its mechanism was explored. RESULTS Pharmacological treatment with EGCG notably improves intestinal epithelial proliferation (12.5 mg/kg, 1.74-fold; 25 mg/kg, 2.93-fold, and 50 mg/kg, 4.33-fold) and barrier function after I/R injury. EGCG promoted cell proliferation (2.99-fold) and increased the expression of occludin (2.36-fold) and ZO-1 (1.64-fold) in IEC-6 cells after H/R injury. EGCG promoted proliferation of IEC-6 cells with ED50 values of 18.16 μmol/L. Further investigations indicated that EGCG activated Nurr1 expression in intestine after I/R injury. EGCG promote cell proliferation and increased the expression of occludin and ZO-1 in IEC-6 cells after H/R injury were abrogated in the knockdown of Nurr1 by siRNA. DISCUSSION AND CONCLUSION Our findings indicate that EGCG promotes intestinal epithelial cell proliferation and barrier function after I/R injury in vitro and in vivo via activation of Nurr1.
Collapse
Affiliation(s)
- Jiacheng Gao
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Yuhang Wang
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zirui Jia
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Jiaming Xue
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Tingting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guo Zu
- Department of Gastroenterology Surgery, The Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Sesamin Protects against and Ameliorates Rat Intestinal Ischemia/Reperfusion Injury with Involvement of Activating Nrf2/HO-1/NQO1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5147069. [PMID: 34630849 PMCID: PMC8494576 DOI: 10.1155/2021/5147069] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia-reperfusion (I/R) may induce cell/tissue injuries, leading to multiple organ failure. Based on our preexperiments, we proposed that sesamin could protect against and ameliorate intestinal I/R injuries and related disorders with involvement of activating Nrf2 signaling pathway. This proposal was evaluated using SD intestinal I/R injury rats in vivo and hypoxia/reoxygenation- (H/R-) injured rat small intestinal crypt epithelial cell line (IEC-6 cells) in vitro. Sesamin significantly alleviated I/R-induced intestinal histopathological injuries and significantly reduced serum biochemical indicators ALT and AST, alleviating I/R-induced intestinal injury in rats. Sesamin also significantly reversed I/R-increased TNF-α, IL-6, IL-1β, and MPO activity in serum and MDA in tissues and I/R-decreased GSH in tissues and SOD in both tissues and IEC-6 cells, indicating its anti-inflammatory and antioxidative stress effects. Further, sesamin significantly decreased TUNEL-positive cells, downregulated the increased Bax and caspase-3 protein expression, upregulated the decreased protein expression of Bcl-2 in I/R-injured intestinal tissues, and significantly reversed H/R-reduced IEC-6 cell viability as well as reduced the number of apoptotic cells among H/R-injured IEC-6 cell, showing antiapoptotic effects. Activation of Nrf2 is known to ameliorate tissue/cell injuries. Consistent with sesamin-induced ameliorations of both intestinal I/R injuries and H/R injuries, transfection of Nrf2 cDNA significantly upregulated the expression of Nrf2, HO-1, and NQO1, respectively. On the contrary, either Nrf2 inhibitor (ML385) or Nrf2 siRNA transfection significantly decreased the expression of these proteins. Our results suggest that activation of the Nrf2/HO-1/NQO1 signaling pathway is involved in sesamin-induced anti-inflammatory, antioxidative, and antiapoptotic effects in protection against and amelioration of intestinal I/R injuries.
Collapse
|
4
|
Iqbal S, Jabeen F, Chaudhry AS, Shah MA, Batiha GES. Toxicity assessment of metallic nickel nanoparticles in various biological models: An interplay of reactive oxygen species, oxidative stress, and apoptosis. Toxicol Ind Health 2021; 37:635-651. [PMID: 34491146 DOI: 10.1177/07482337211011008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel nanoparticles (Ni-NPs) are widely used for multiple purposes in industries. Ni-NPs exposure is detrimental to ecosystems owing to widespread use, and so their toxicity is important to consider for real-world applications. This review mainly focuses on the notable pathophysiological activities of Ni-NPs in various research models. Ni-NPs are stated to be more toxic than bulk forms because of their larger surface area to volume ratio and are reported to provoke toxicity through reactive oxygen species generation, which leads to the upregulation of nuclear factor-κB and promotes further signaling cascades. Ni-NPs may contribute to provoking oxidative stress and apoptosis. Hypoxia-inducible factor 1α and mitogen-activated protein kinases pathways are involved in Ni-NPs associated toxicity. Ni-NPs trigger the transcription factors p-p38, p-JNK, p-ERK1/2, interleukin (IL)-3, TNF-α, IL-13, Fas, Cyt c, Bax, Bid protein, caspase-3, caspase-8, and caspase-9. Moreover, Ni-NPs have an occupational vulnerability and were reported to induce lung-related disorders owing to inhalation. Ni-NPs may cause serious effects on reproduction as Ni-NPs induced deleterious effects on reproductive cells (sperm and eggs) in animal models and provoked hormonal alteration. However, recent studies have provided limited knowledge regarding the important checkpoints of signaling pathways and less focused on the toxic limitation of Ni-NPs in humans, which therefore needs to be further investigated.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira, Egypt
| |
Collapse
|
5
|
Ahadi S, Zargari M, Khalatbary AR. Assessment of the neuroprotective effects of (-)-epigallocatechin-3-gallate on spinal cord ischemia-reperfusion injury in rats. J Spinal Cord Med 2021; 44:725-732. [PMID: 31809244 PMCID: PMC8477957 DOI: 10.1080/10790268.2019.1691862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective: Paraplegia or paraparesis due to spinal cord ischemia is one of the complications following thoracoabdominal aortic surgery. Recent studies revealed the neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) on a variety of neurological disorders. The purpose of this study was to determine the neuroprotective effects of EGCG following spinal cord ischemia-reperfusion injury (IRI).Design: The present study was conducted on four groups of rats each as follows: Sham-operated group (laparotomy alone); Control group (with IRI); EGCGI group (50-mg/kg, i.p., before IRI), and EGCGII group (50-mg/kg, i.p., after IRI). Neurological function evaluated with motor deficit index (MDI) test. Spinal cord samples were taken 48 h after IRI and studied for determination of malodialdehyde (MDA) level, histopathology, and immunohistochemistry of caspase-3, TNF-α, and iNOS.Setting: Mazandaran University of Medical Sciences, Sari, Iran.Results: The level of MDA was significantly decreased in EGCG-treated rats. Attenuated caspase-3, TNF-α, and iNOS expression could be significantly detected in the EGCG-treated rats. Also, EGCG reduced the extent of degeneration of the spinal cord neurons, in addition to a significant reduction of MDI.Conclusion: The results suggest that pre- and post-treatment with EGCG may be effective in protecting spinal cord from IRI.
Collapse
Affiliation(s)
- Sahar Ahadi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry and Genetic/Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran,Correspondence to: Ali Reza Khalatbary, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Tian Y, Shu J, Huang R, Chu X, Mei X. Protective effect of renal ischemic postconditioning in renal ischemic-reperfusion injury. Transl Androl Urol 2020; 9:1356-1365. [PMID: 32676420 PMCID: PMC7354320 DOI: 10.21037/tau-20-859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Renal ischemic postconditioning (RIPo) can protect the kidney from renal ischemia/reperfusion injury (RIRI). However, the underlying molecular mechanisms for RIPo in renal protection remained elusive. This study aimed to investigate the renoprotective effects of RIPo in an RIR rat model. Method The Sprague Dawley (SD) rats were randomly divided into three groups respectively: sham group, the RIRI group and the RIPo group. The levels of proteinuria, blood urea nitrogen (BUN), creatinine (Cr), malondialdehyde (MDA), superoxide dismutase (SOD), lactate dehydrogenase (LDH), reactive oxidative species (ROS), interleukins (IL)-6, IL-1β, and IL-18 were measured by ELISA. Apoptotic cells and caspase-3 positive cells were detected by TUNEL assay and immunohistochemistry, respectively. The protein expressive levels of caspase-3, caspase-9, ATG8, Beclin1, p62, LC3-II, P-P13K, P-AKT and P-mTOR were detected by western blot. Results Our results showed that pretreatment with RIPo significantly reduced ischemic pathological and morphological changes. The levels of proteinuria, BUN, and Cr were also significantly reduced by RIPo pretreatment. Besides, ATG8, LC3-II and Beclin-1 were upregulated in the RIPo group, but p62 was downregulated. Moreover, RIPo pretreatment resulted in higher levels of phosphorylated PI3K, Akt, and mTOR. These results showed that RIPo protects the kidneys of rats from IRI with suppressed apoptosis and activated autophagy. Mechanically, the activated PI3K/AKT/mTOR signaling pathway were activated. Conclusions Collectively, our data demonstrated that RIPo could suppress Inflammatory response, oxidative stress, apoptosis and induce autophagy as well as activate the PI3K/AKT/mTOR pathway, which may play an important role in renal protection against RIRI.
Collapse
Affiliation(s)
- Ying Tian
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Jia Shu
- Functional Inspection Division, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Ruizhen Huang
- Department of Cardiovascular, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Xin Chu
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Xuefeng Mei
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| |
Collapse
|
7
|
Effects and mechanism of epigallocatechin-3-gallate on apoptosis and mTOR/AKT/GSK-3β pathway in substantia nigra neurons in Parkinson rats. Neuroreport 2019; 30:60-65. [PMID: 30571663 DOI: 10.1097/wnr.0000000000001149] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study is to investigate the protective effect of epigallocatechin-3-gallate (EGCG) on apoptosis and mTOR/AKT/GSK-3β pathway in substantia nigra neurons in 6-dopamine-induced Parkinson rats. A total of 30 healthy male SD rats were randomly divided into control group, the Parkinson model group, and Parkinson model+EGCG treatment group. The model and EGCG groups were injected into the right striatum with 6-OHDA to establish the Parkinson model, and the control group was injected with saline only. The EGCG group was intragastrically administered with EGCG 50 mg/kg daily for 4 weeks. The rats' turns, speed, and left forelimb usage; neuron apoptosis by TUNEL; and the α-synuclein protein expression in substantia nigra by immunohistochemical staining were studied. Western blotting was used to detect the relative protein (mTOR, AKT and GSK-3β) expressions. Compared with the model group, the EGCG group significantly reduced the rotation speed; increased the left forelimb usage (P<0.01); reduced the neuron apoptosis (P<0.01); decreased α-synuclein expression (P<0.01); and decreased the mTOR, AKT, and GSK-3β protein expressions (P<0.01). EGCG can reduce neuron cell apoptosis in substantia nigra neurons in 6-OHDA-induced Parkinson rats. The mechanism might be related to mTOR/AKT/GSK-3β activation.
Collapse
|
8
|
Epigallocatechin-3-gallate improves cardiac hypertrophy and short-term memory deficits in a Williams-Beuren syndrome mouse model. PLoS One 2018; 13:e0194476. [PMID: 29554110 PMCID: PMC5858783 DOI: 10.1371/journal.pone.0194476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 11/19/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of 26–28 genes at chromosome band 7q11.23. The complete deletion (CD) mouse model mimics the most common deletion found in WBS patients and recapitulates most neurologic features of the disorder along with some cardiovascular manifestations leading to significant cardiac hypertrophy with increased cardiomyocytes’ size. Epigallocatechin-3-gallate (EGCG), the most abundant catechin found in green tea, has been associated with potential health benefits, both on cognition and cardiovascular phenotypes, through several mechanisms. We aimed to investigate the effects of green tea extracts on WBS-related phenotypes through a phase I clinical trial in mice. After feeding CD animals with green tea extracts dissolved in the drinking water, starting at three different time periods (prenatal, youth and adulthood), a set of behavioral tests and several anatomical, histological and molecular analyses were performed. Treatment resulted to be effective in the reduction of cardiac hypertrophy and was also able to ameliorate short-term memory deficits of CD mice. Taken together, these results suggest that EGCG might have a therapeutic and/or preventive role in the management of WBS.
Collapse
|
9
|
Down-regulation of NOX4 by betulinic acid protects against cerebral ischemia-reperfusion in mice. Curr Med Sci 2017; 37:744-749. [DOI: 10.1007/s11596-017-1798-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/09/2017] [Indexed: 12/19/2022]
|
10
|
Zhang X, Yang H, Yue S, He G, Qu S, Zhang Z, Ma B, Ding R, Peng W, Zhang H, Yang Z, Dou K, Tao K, Li X. The mTOR inhibition in concurrence with ERK1/2 activation is involved in excessive autophagy induced by glycyrrhizin in hepatocellular carcinoma. Cancer Med 2017; 6:1941-1951. [PMID: 28675698 PMCID: PMC5548872 DOI: 10.1002/cam4.1127] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 04/12/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a life phenomenon in which autophagosomes remove damaged or aging organelles and long‐lived circulating proteins to maintain the cell's stability. However, disorders of excessive autophagy are a response of cancer cells to a variety of anticancer treatments which lead to cancer cell death. The Akt/mammalian target of rapamycin (mTOR) and the extracellular signal‐regulated kinase 1/2 (ERK1/2) pathways are both involved in nutrient‐induced autophagic phenomenon and exhibit vital relevance to oncogenesis in various cancer cell types, including hepatocellular carcinoma (HCC). However, the influence of autophagy for cancer cell death remains controversial and few scientists have investigated the variation of these two signaling pathways in cancer cell autophagic phenomenon induced by anticancer treatment simultaneously. Here, we explored the anticancer efficacy and mechanisms of glycyrrhizin (GL), a bioactive compound of licorice with little toxicity in normal cells. It is interesting that inhibition of Akt/mTOR signaling in concurrence with enhanced ERK1/2 activity exists in GL‐induced autophagy and cytotoxicity in HepG2 and MHCC97‐H hepatocellular carcinoma cells. These results imply that the GL‐related anticancer ability might correlate with the induction of autophagy. The influence of induced autophagic phenomenon on cell viability might depend on the severity of autophagy and be pathway specific. In the subsequent subcutaneous xenograft experiment in vivo with MHCC97‐H cells, GL obviously exhibited its inhibitory efficacy in tumor growth via inducing excess autophagy in MHCC97‐H cells (P < 0.05). Our data prompt that GL possesses a property of excess autophagic phenomenon induction in HCC and exerts high anticancer efficacy in vitro and in vivo. This warrants further investigation toward possible clinical applications in patients with HCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hua Yang
- Department of Geriatrics, Xi'an No. 1 Hospital, Xi'an, Shaanxi, China
| | - Shuqiang Yue
- Department of Oncological Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guangbin He
- Department of Ultrasound Diagnosis, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuochao Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ben Ma
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongtao Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Chang M, Tang H, Liu D, Li Y, Zhang L. Comparison of Melatonin, Hypertonic Saline, and Hydroxyethyl Starch for Resuscitation of Secondary Intra-Abdominal Hypertension in an Animal Model. PLoS One 2016; 11:e0161688. [PMID: 27560478 PMCID: PMC4999144 DOI: 10.1371/journal.pone.0161688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022] Open
Abstract
A variety of agents may have a beneficial effect in reducing injury-induced intestinal edema of fluid, but studies confirming the efficacy and mechanisms of these agents in secondary intra-abdominal hypertension (IAH) are lacking. This study was to compare the effectiveness of melatonin, 7.5% hypertonic saline (HS), and hydroxyethyl starch 130/0.4 (HES) on the resuscitation of secondary IAH in a rat model. Female SD rats were divided into: sham group, shock group, lactated Ringer solution (LR) group, melatonin group, HS group, and HES group. Except for the sham group, all rats underwent a combination of inducing portal hypertension, hemorrhaging to a MAP of 40 mmHg for 2 hr, and using an abdominal restraint device. The collected blood was reinfused and the rats were treated with LR (30ml/h), melatonin (50 mg/kg) + LR, HS (6 ml/kg) + LR, and HES (30 ml/kg) + LR, respectively. The shock group received no fluids. LR was continuously infused for 6hr. The intestinal permeability, immunofluorescence of tight junction proteins, transmission electron microscopy, level of inflammatory mediators (TNF-a, IL-1β, IL-6) and of biochemical markers of oxidative stress (malondialdehyde, myeloperoxidase activity, and glutathione peroxidase) were assessed. Expressions of the protein kinase B (Akt) and of tight junction proteins were detected by Western blot. Compared with LR, HS, and HES, melatonin was associated with less inflammatory and oxidative injury, less intestinal permeability and injury, and lower incidence of secondary IAH in this model. The salutary effect of melatonin in this model was associated with the upregulation of intestinal Akt phosphorylation.
Collapse
Affiliation(s)
- Mingtao Chang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hao Tang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Dong Liu
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yang Li
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lianyang Zhang
- Trauma Center, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
12
|
Wein S, Beyer B, Gohlke A, Blank R, Metges CC, Wolffram S. Systemic Absorption of Catechins after Intraruminal or Intraduodenal Application of a Green Tea Extract in Cows. PLoS One 2016; 11:e0159428. [PMID: 27427946 PMCID: PMC4948893 DOI: 10.1371/journal.pone.0159428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
Green tea catechins have various potential health benefits in humans including anti-inflammatory, anti-oxidative and hepato-protective effects. If present in the circulation, they might have similar effects in ruminants, which are exposed to oxidative stress and fatty liver disease such as dairy cows during the periparturient phase. However, the bioavailability of a substance is a prerequisite for any post absorptive effect in vivo. This study aimed to investigate the appearance of catechins from a green tea extract (GTE) in cattle plasma after intraruminal and intraduodenal administration because absorption is of major importance regarding the bioavailability of catechins. The studies were performed in 5 rumen-fistulated non-lactating heifers and 6 duodenally fistulated lactating dairy cows, respectively, equipped with indwelling catheters placed in a jugular vein. The GTE was applied intraruminally (10 and 50 mg/kg BW, heifers) or duodenally (10, 20 and 30 mg/kg BW, dairy cows) in a cross-over design with a 2 d washout period between different dosages. Blood samples were drawn following the GTE administration at various pre-defined time intervals. The concentration of the major GTE catechins (gallocatechin, epigallocatechin, catechin, epicatechin, epigallocatechin-gallate, epicatechin-gallate) in plasma samples were analysed by HPLC with electrochemical detection. Irrespective of the dose, almost none of the catechins originally contained in the GTE were detected in plasma samples after intraruminal application. In contrast, intraduodenal administration of GTE resulted in increased plasma concentrations of epicatechin, epigallocatechin, epigallocatechin gallate in a dose-dependent manner. Thus, we can conclude that intraruminally or orally administered catechins are intensively metabolized by ruminal microorganisms.
Collapse
Affiliation(s)
- Silvia Wein
- Institute of Animal Nutrition & Physiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Birgit Beyer
- Institute of Animal Nutrition & Physiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Annika Gohlke
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Ralf Blank
- Institute of Animal Nutrition & Physiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Cornelia C. Metges
- Institute of Nutritional Physiology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
- * E-mail:
| | - Siegfried Wolffram
- Institute of Animal Nutrition & Physiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
13
|
Inhibition of Nickel Nanoparticles-Induced Toxicity by Epigallocatechin-3-Gallate in JB6 Cells May Be through Down-Regulation of the MAPK Signaling Pathways. PLoS One 2016; 11:e0150954. [PMID: 26943640 PMCID: PMC4778769 DOI: 10.1371/journal.pone.0150954] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
With the rapid development in nanotechnology, nickel nanoparticles (Ni NPs) have emerged in the application of nanomedicine in recent years. However, the potential adverse health effects of Ni NPs are unclear. In this study, we examined the inhibition effects of epigallocatechin-3-gallate (EGCG) on the toxicity induced by Ni NPs in mouse epidermal cell line (JB6 cell). MTT assay showed that Ni NPs induced cytotoxicity in a dose-dependent manner while EGCG exerted a certain inhibition on the toxicity. Additionally, EGCG could reduce the apoptotic cell number and the level of reactive oxygen species (ROS) in JB6 cells induced by Ni NPs. Furthermore, we observed that EGCG could down-regulate Ni NPs-induced activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) activation in JB6 cells, which has been shown to play pivotal roles in tumor initiation, promotion and progression. Western blot indicated that EGCG could alleviate the toxicity of Ni NPs through regulating protein changes in MAPK signaling pathways. In summary, our results suggest that careful evaluation on the potential health effects of Ni NPs is necessary before being widely used in the field of nanomedicine. Inhibition of EGCG on Ni NPs-induced cytotoxicity in JB6 cells may be through the MAPK signaling pathways suggesting that EGCG might be useful in preventing the toxicity of Ni NPs.
Collapse
|