1
|
Kim H, Kim SJ. Upregulation of peroxisome proliferator-activated receptor γ with resorcinol alleviates reactive oxygen species generation and lipid accumulation in neuropathic lysosomal storage diseases. Int J Biochem Cell Biol 2024; 174:106631. [PMID: 39038642 DOI: 10.1016/j.biocel.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Neuropathic lysosomal storage diseases (NLSDs), including ceroid lipofuscinosis neuronal 3 (CLN3) disease and Gaucher disease type 2 (GD2), are typically present in adolescents; however, there are no approved therapies. CLN3 disease is the most common of the 13 types of neuronal ceroid lipofuscinosis, and Gaucher disease is the most common type of lysosomal storage disease. These NLSDs share oxidative stress and lysosomal dysfunction with Parkinson's disease. In this study, we used patient-derived cells (PDCs) and resorcinol to develop a therapeutic agent based on peroxisome proliferator-activated receptor γ (PPARγ) activation. PPARγ is a major regulator of autophagy and reactive oxygen species (ROS). Resorcinol, a polyphenolic compound, has been reported to exhibit PPARγ agonistic potential. Protein levels were analyzed by immunoblotting and immunofluorescence microscopy. Changes in cellular metabolism, including ROS levels, lipid droplet content, and lysosomal activity, were measured by flow cytometry. Resorcinol reduced ROS levels by suppressing hypoxia-inducible factor 1α levels in CLN3-PDCs. Resorcinol upregulated autophagy and reduced lipid accumulation in CLN3-PDCs; however, these effects were abolished by autophagy inhibitors. Resorcinol increased nuclear PPARγ levels in CLN3-PDCs, and PPARγ antagonists abolished the therapeutic effects of resorcinol. Moreover, Resorcinol upregulated nuclear PPARγ levels and lysosomal activity in GD2-PDCs, and reduced lipid accumulation and ROS levels. In summary, resorcinol alleviated the shared pathogenesis of CLN3 disease and GD2 through PPARγ upregulation. These findings suggest that resorcinol is a potential therapeutic candidate for alleviating NLSD progression.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan 31499, South Korea.
| |
Collapse
|
2
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
3
|
Shematorova EK, Shpakovski GV. Current Insights in Elucidation of Possible Molecular Mechanisms of the Juvenile Form of Batten Disease. Int J Mol Sci 2020; 21:ijms21218055. [PMID: 33137890 PMCID: PMC7663513 DOI: 10.3390/ijms21218055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) collectively constitute one of the most common forms of inherited childhood-onset neurodegenerative disorders. They form a heterogeneous group of incurable lysosomal storage diseases that lead to blindness, motor deterioration, epilepsy, and dementia. Traditionally the NCL diseases were classified according to the age of disease onset (infantile, late-infantile, juvenile, and adult forms), with at least 13 different NCL varieties having been described at present. The current review focuses on classic juvenile NCL (JNCL) or the so-called Batten (Batten-Spielmeyer-Vogt; Spielmeyer-Sjogren) disease, which represents the most common and the most studied form of NCL, and is caused by mutations in the CLN3 gene located on human chromosome 16. Most JNCL patients carry the same 1.02-kb deletion in this gene, encoding an unusual transmembrane protein, CLN3, or battenin. Accordingly, the names CLN3-related neuronal ceroid lipofuscinosis or CLN3-disease sometimes have been used for this malady. Despite excessive in vitro and in vivo studies, the precise functions of the CLN3 protein and the JNCL disease mechanisms remain elusive and are the main subject of this review. Although the CLN3 gene is highly conserved in evolution of all mammalian species, detailed analysis of recent genomic and transcriptomic data indicates the presence of human-specific features of its expression, which are also under discussion. The main recorded to date changes in cell metabolism, to some extent contributing to the emergence and progression of JNCL disease, and human-specific molecular features of CLN3 gene expression are summarized and critically discussed with an emphasis on the possible molecular mechanisms of the malady appearance and progression.
Collapse
Affiliation(s)
- Elena K. Shematorova
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
| | - George V. Shpakovski
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-330-4953; Fax: +7-(495)-335-7103
| |
Collapse
|
4
|
Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165570. [DOI: 10.1016/j.bbadis.2019.165570] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
5
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
6
|
Cellular models of Batten disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165559. [PMID: 31655107 PMCID: PMC7338907 DOI: 10.1016/j.bbadis.2019.165559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future. Developments made in cellular models for neuronal ceroid lipofuscinosis (NCL) in basic biology and use as therapeutic platforms. Cellular models elucidating function of NCL proteins. NCL proteins implicated in the mTor signalling pathway. Patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types providing insights into the molecular pathogenesis of NCL.
Collapse
|
7
|
Sarafian TA, Yacoub A, Kunz A, Aranki B, Serobyan G, Cohn W, Whitelegge JP, Watson JB. Enhanced mitochondrial inhibition by 3,4-dihydroxyphenyl-acetaldehyde (DOPAL)-oligomerized α-synuclein. J Neurosci Res 2019; 97:1689-1705. [PMID: 31420910 DOI: 10.1002/jnr.24513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/24/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
Oligomeric forms of α-synuclein are believed to cause mitochondrial injury, which may contribute to neurotoxicity in Parkinson's disease (PD). Here oligomers of α-synuclein were prepared using the dopamine metabolite, DOPAL (3,4-dihydroxyphenyl-acetaldehyde), in the presence of guanidinium hydrochloride. Electron microscopy, mass spectrometry, and Western blotting studies revealed enhanced and stable oligomerization with DOPAL compared with dopamine or CuCl2 /H2 O2 . Using isolated mouse brain mitochondria, DOPAL-oligomerized α-synuclein (DOS) significantly inhibited oxygen consumption rates compared with untreated, control-fibrillated, and dopamine-fibrillated synuclein, or with monomeric α-synuclein. Inhibition was greater in the presence of malate plus pyruvate than with succinate, suggesting the involvement of mitochondrial complex I. Mitochondrial membrane potential studies using fluorescent probes, JC-1, and Safranin O also detected enhanced inhibition by DOS compared with the other aggregated forms of α-synuclein. Testing a small customized chemical library, four compounds were identified that rescued membrane potential from DOS injury. While diverse in chemical structure and mechanism, each compound has been reported to interact with mitochondrial complex I. Western blotting studies revealed that none of the four compounds disrupted the oligomeric banding pattern of DOS, suggesting their protection involved direct mitochondrial interaction. The remaining set of chemicals also did not disrupt oligomeric banding, attesting to the high structural stability of this α-synuclein proteoform. DOPAL and α-synuclein are both found in dopaminergic neurons, where their levels are elevated in PD and in animal models exposed to chemical toxicants, including agricultural pesticides. The current study provides further evidence of α-synuclein-induced mitochondrial injury and a likely role in PD neuropathology.
Collapse
Affiliation(s)
- Theodore A Sarafian
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Amneh Yacoub
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Anastasia Kunz
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Burkan Aranki
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Grigor Serobyan
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Whitaker Cohn
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Julian P Whitelegge
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Joseph B Watson
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| |
Collapse
|
8
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
9
|
McLaren MD, Mathavarajah S, Huber RJ. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum. Cells 2019; 8:cells8020115. [PMID: 30717401 PMCID: PMC6406579 DOI: 10.3390/cells8020115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.
Collapse
Affiliation(s)
- Meagan D McLaren
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
10
|
Kohlschütter A, Schulz A, Bartsch U, Storch S. Current and Emerging Treatment Strategies for Neuronal Ceroid Lipofuscinoses. CNS Drugs 2019; 33:315-325. [PMID: 30877620 PMCID: PMC6440934 DOI: 10.1007/s40263-019-00620-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The neuronal ceroid lipofuscinoses comprise a group of neurodegenerative lysosomal storage disorders caused by mutations in at least 13 different genes and primarily affect the brain and the retina of children or young adults. The disorders are characterized by progressive neurological deterioration with dementia, epilepsy, loss of vision, motor disturbances, and early death. While various therapeutic strategies are currently being explored as treatment options for these fatal disorders, there is presently only one clinically approved drug that has been shown to effectively attenuate the progression of a specific form of neuronal ceroid lipofuscinosis, CLN2 disease (cerliponase alfa, a lysosomal enzyme infused into the brain ventricles of patients with CLN2 disease). Therapeutic approaches for the treatment of other forms of neuronal ceroid lipofuscinosis include the administration of immunosuppressive agents to antagonize neuroinflammation associated with neurodegeneration, the use of various small molecules, stem cell therapy, and gene therapy. An important aspect of future work aimed at developing therapies for neuronal ceroid lipofuscinoses is the need for treatments that effectively attenuate neurodegeneration in both the brain and the retina.
Collapse
Affiliation(s)
- Alfried Kohlschütter
- Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Angela Schulz
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Udo Bartsch
- 0000 0001 2180 3484grid.13648.38Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stephan Storch
- 0000 0001 2180 3484grid.13648.38Department of Pediatrics, Section Biochemistry, University Medical Center Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Bosch ME, Kielian T. Astrocytes in juvenile neuronal ceroid lipofuscinosis (CLN3) display metabolic and calcium signaling abnormalities. J Neurochem 2018; 148:612-624. [PMID: 29964296 DOI: 10.1111/jnc.14545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a lysosomal storage disease caused by autosomal recessive mutations in ceroid lipofuscinosis 3 (CLN3). Children with JNCL experience progressive visual, cognitive, and motor deterioration with a decreased life expectancy (late teens-early 20s). Neuronal loss is thought to occur, in part, via glutamate excitotoxicity; however, little is known about astrocyte glutamate regulation in JNCL. Spontaneous Ca2+ oscillations were reduced in murine Cln3Δex7/8 astrocytes, which were also observed following glutamate or cytokine exposure. Astrocyte glutamate transport is an energy-demanding process and disruptions in metabolic pathways could influence glutamate homeostasis in Cln3Δex7/8 astrocytes. Indeed, basal mitochondrial respiration and ATP production were significantly reduced in Cln3Δex7/8 astrocytes. These changes were not attributable to reduced mitochondria, since mitochondrial DNA levels were similar between wild type and Cln3Δex7/8 astrocytes. Interestingly, despite these functional deficits in Cln3Δex7/8 astrocytes, glutamate transporter expression and glutamate uptake were not dramatically affected. Concurrent with impaired astrocyte metabolism and Ca2+ signaling, murine Cln3Δex7/8 neurons were hyper-responsive to glutamate, as reflected by heightened and prolonged Ca2+ signals. These findings identify intrinsic metabolic and Ca2+ signaling defects in Cln3Δex7/8 astrocytes that may contribute to neuronal dysfunction in CLN3 disease. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Megan E Bosch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
12
|
Ravi S, Parry TL, Willis MS, Lockyer P, Patterson C, Bain JR, Stevens RD, Ilkayeva OR, Newgard CB, Schisler JC. Adverse Effects of Fenofibrate in Mice Deficient in the Protein Quality Control Regulator, CHIP. J Cardiovasc Dev Dis 2018; 5:jcdd5030043. [PMID: 30111698 PMCID: PMC6162787 DOI: 10.3390/jcdd5030043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
We previously reported how the loss of CHIP expression (Carboxyl terminus of Hsc70-Interacting Protein) during pressure overload resulted in robust cardiac dysfunction, which was accompanied by a failure to maintain ATP levels in the face of increased energy demand. In this study, we analyzed the cardiac metabolome after seven days of pressure overload and found an increase in long-chain and medium-chain fatty acid metabolites in wild-type hearts. This response was attenuated in mice that lack expression of CHIP (CHIP−/−). These findings suggest that CHIP may play an essential role in regulating oxidative metabolism pathways that are regulated, in part, by the nuclear receptor PPARα (Peroxisome Proliferator-Activated Receptor alpha). Next, we challenged CHIP−/− mice with the PPARα agonist called fenofibrate. We found that treating CHIP−/− mice with fenofibrate for five weeks under non-pressure overload conditions resulted in decreased skeletal muscle mass, compared to wild-type mice, and a marked increase in cardiac fibrosis accompanied by a decrease in cardiac function. Fenofibrate resulted in decreased mitochondrial cristae density in CHIP−/− hearts as well as decreased expression of genes involved in the initiation of autophagy and mitophagy, which suggests that a metabolic challenge, in the absence of CHIP expression, impacts pathways that contribute to mitochondrial quality control. In conclusion, in the absence of functional CHIP expression, fenofibrate results in unexpected skeletal muscle and cardiac pathologies. These findings are particularly relevant to patients harboring loss-of-function mutations in CHIP and are consistent with a prominent role for CHIP in regulating cardiac metabolism.
Collapse
Affiliation(s)
- Saranya Ravi
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Traci L Parry
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Monte S Willis
- Indiana Center for Musculoskeletal Health, University of Indiana School of Medicine, Indianapolis, IN 46202, USA.
| | - Pamela Lockyer
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Cam Patterson
- The Office of the Chancellor, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA.
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA.
| | - Olga R Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA.
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA.
| | - Jonathan C Schisler
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Kim H, Yi SS, Lee HK, Heo TH, Park SK, Jun HS, Song KD, Kim SJ. Antiproliferative Effect of Vine Stem Extract from Spatholobus Suberectus Dunn on Rat C6 Glioma Cells Through Regulation of ROS, Mitochondrial Depolarization, and P21 Protein Expression. Nutr Cancer 2018; 70:605-619. [PMID: 29668336 DOI: 10.1080/01635581.2018.1460673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vine stem of Spatholobus suberectus Dunn (SS) is used as a traditional herbal medicine in China. Chinese herbal medicines are well known as natural bioactive compounds that can be used as new medicines, and their antioxidant and anticancer effects have also been reported. This study aimed to examine the anticancer effect of a high-pressure hot-water SS extract on rat C6 glioma cells. The SS extract effectively suppressed the viability and proliferation of C6 glioma cells through an antioxidant effect. Reactive oxygen species (ROS) levels in cancer cells are higher than that in normal cells. If the ROS level falls below that required for the growth of cancer cells, their rapid proliferation and growth can be suppressed. We also measured the induction of mitochondrial membrane depolarization and cell cycle arrest effect caused by the SS extract in C6 glioma cells through a FACS analysis. In addition, we observed an increase in STAT3, p53, E2F1, and p21 mRNA expression and a decrease in Bcl-2 mRNA expression by quantitative PCR. An increase in p21 protein expression of over 83% was observed through western blot analysis. All these data support the fact that the high-pressure hot-water SS extract has the potential to be used for glioma treatment.
Collapse
Affiliation(s)
- Hyungkuen Kim
- a Department of Biotechnology , Hoseo University , Asan , Chungnam , Republic of Korea
| | - Sun Shin Yi
- b Department of Biomedical Laboratory Science , College of Biomedical Sciences, Soonchunhyang University , Asan , Chungnam , Republic of Korea
| | - Hak-Kyo Lee
- c Department of Animal Biotechnology , Chonbuk National University , Jeonju , Jeonbuk , Republic of Korea
| | - Tae-Hwe Heo
- d Lab of Immunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea , Bucheon , Gyeonggi , Republic of Korea
| | - Sang-Kyu Park
- e Department of Medical Biotechnology , College of Medical Sciences, Soonchunhyang University , Asan , Chungnam , Republic of Korea
| | - Hyun Sik Jun
- f Department of Biotechnology and Bioinformatics , College of Science and Technology, Korea University , Sejong , Republic of Korea
| | - Ki Duk Song
- c Department of Animal Biotechnology , Chonbuk National University , Jeonju , Jeonbuk , Republic of Korea
| | - Sung-Jo Kim
- a Department of Biotechnology , Hoseo University , Asan , Chungnam , Republic of Korea
| |
Collapse
|
14
|
Hwang E, Sim S, Park SH, Song KD, Lee HK, Heo TH, Jun HS, Kim SJ. Anti-proliferative effect of Zea mays L. cob extract on rat C6 glioma cells through regulation of glycolysis, mitochondrial ROS, and apoptosis. Biomed Pharmacother 2018; 98:726-732. [DOI: 10.1016/j.biopha.2017.12.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/15/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
|
15
|
Kim K, Kleinman HK, Lee HJ, Pahan K. Safety and potential efficacy of gemfibrozil as a supportive treatment for children with late infantile neuronal ceroid lipofuscinosis and other lipid storage disorders. Orphanet J Rare Dis 2017. [PMID: 28623936 PMCID: PMC5474050 DOI: 10.1186/s13023-017-0663-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuronal Ceroid Lipofuscinosis (NCL), also known as Batten disease, is a group of genetically distinct lysosomal disorders that mainly affect the central nervous system, resulting in progressive motor and cognitive decline primarily in children. Multiple distinct genes involved in the metabolism of lipids have been identified to date with various mutations in this family of diseases. There is no cure for these diseases but some new therapeutic approaches have been tested that offer more hope than the standard palliative care. Many of the therapeutic advances require invasive procedures but some progress in slowing the disease has been found and more options can be expected in the future. We also review the literature on children with disease/conditions other than NCL for the non-invasive use, safety, and tolerability of a lipid-lowering drug, gemfibrozil, as a potential treatment for NCLs. Gemfibrozil has shown efficacy in an animal model of NCL known as CLN2 (late infantile classic juvenile) and has been shown to be safe for lowering lipids in children. Among the 200 non-NCL children found in the published literature who were treated with gemfibrozil for NCL-related problems, only 3 experienced adverse events, including 2 with muscle pain and 1 with localized linear IgA bullous dermatitis. We conclude that gemfibrozil is safe for long-term use in children, causes minimal adverse events, is well tolerated, and may delay the progression of NCLs. Gemfibrozil may potentially be an alternative to more invasive therapeutic approaches currently under investigation and has the potential to be used in combination with other therapeutic approaches.
Collapse
Affiliation(s)
- Kyeongsoon Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae, South Korea
| | - Hynda K Kleinman
- Polaryx Therapeutics Inc., Paramus, NJ, USA. .,The George Washington University Medical Center, Washington, DC, USA.
| | | | | |
Collapse
|
16
|
Marotta D, Tinelli E, Mole SE. NCLs and ER: A stressful relationship. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1273-1281. [PMID: 28390949 PMCID: PMC5479446 DOI: 10.1016/j.bbadis.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders with variable age of onset, characterized by the lysosomal accumulation of autofluorescent ceroid lipopigments. The endoplasmic reticulum (ER) is a critical organelle for normal cell function. Alteration of ER homeostasis leads to accumulation of misfolded protein in the ER and to activation of the unfolded protein response. ER stress and the UPR have recently been linked to the NCLs. In this review, we will discuss the evidence for UPR activation in the NCLs, and address its connection to disease pathogenesis. Further understanding of ER-stress response involvement in the NCLs may encourage development of novel therapeutical agents targeting these pathogenic pathways. ER-stress activation has been linked to various neurodegenerative diseases. ER-stress is a common patho-mechanism in four forms of NCL. Pharmacological modulation of UPR could provide new treatment for NCL.
Collapse
Affiliation(s)
- Davide Marotta
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Elisa Tinelli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT; UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
17
|
Best HL, Neverman NJ, Wicky HE, Mitchell NL, Leitch B, Hughes SM. Characterisation of early changes in ovine CLN5 and CLN6 Batten disease neural cultures for the rapid screening of therapeutics. Neurobiol Dis 2017; 100:62-74. [DOI: 10.1016/j.nbd.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/19/2016] [Accepted: 01/01/2017] [Indexed: 01/12/2023] Open
|
18
|
Mucke HA. Drug Repurposing Patent Applications January–March 2017. Assay Drug Dev Technol 2017; 15:127-132. [DOI: 10.1089/adt.2017.29057.pq1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
19
|
Kim SJ, Hwang E, Yi SS, Song KD, Lee HK, Heo TH, Park SK, Jung YJ, Jun HS. Sea Buckthorn Leaf Extract Inhibits Glioma Cell Growth by Reducing Reactive Oxygen Species and Promoting Apoptosis. Appl Biochem Biotechnol 2017; 182:1663-1674. [PMID: 28181191 DOI: 10.1007/s12010-017-2425-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Hippophae rhamnoides L., also known as sea buckthorn (SBT), possesses a wide range of biological and pharmacological activities. However, the underlying mechanism is largely unknown. The present study examined whether SBT leaf extract could inhibit proliferation and promote apoptosis of rat glioma C6 cells. The results revealed that the treatment with SBT leaf extract inhibited proliferation of rat C6 glioma cells in a dose-dependent manner. SBT-induced reduction of C6 glioma cell proliferation and viability was accompanied by a decrease in production of reactive oxygen species (ROS), which are critical for the proliferation of tumor cells. SBT treatment not only significantly upregulated the expression of the pro-apoptotic protein Bcl-2-associated X (Bax) but also promoted its localization in the nucleus. Although increased expression and nuclear translocation of Bax were observed in SBT-treated C6 glioma cells, the induced nuclear morphological change was distinct from that of typical apoptotic cells in that most of SBT-treated cells were characterized by convoluted nuclei with cavitations and clumps of chromatin. All of these results suggest that SBT leaf extract could inhibit the rapid proliferation of rat C6 glioma cells, possibly by inducing the early events of apoptosis. Thus, SBT may serve as a potential therapeutic candidate for the treatment of glioma.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 31499, Republic of Korea
| | - Eunmi Hwang
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 31499, Republic of Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Biomedical Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Ki Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Immunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Sang-Kyu Park
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Yun Joo Jung
- Corea Cosmedical Center, 3-103, 38, Wolgok-gil, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28171, Republic of Korea.
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
20
|
Lee TW, Bai KJ, Lee TI, Chao TF, Kao YH, Chen YJ. PPARs modulate cardiac metabolism and mitochondrial function in diabetes. J Biomed Sci 2017; 24:5. [PMID: 28069019 PMCID: PMC5223385 DOI: 10.1186/s12929-016-0309-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] Open
Abstract
Diabetic cardiomyopathy is a major complication of diabetes mellitus (DM). Currently, effective treatments for diabetic cardiomyopathy are limited. The pathophysiology of diabetic cardiomyopathy is complex, whereas mitochondrial dysfunction plays a vital role in the genesis of diabetic cardiomyopathy. Metabolic regulation targeting mitochondrial dysfunction is expected to be a reasonable strategy for treating diabetic cardiomyopathy. Peroxisome proliferator-activated receptors (PPARs) are master executors in regulating glucose and lipid homeostasis and also modulate mitochondrial function. However, synthetic PPAR agonists used for treating hyperlipidemia and DM have shown controversial effects on cardiovascular regulation. This article reviews our updated understanding of the beneficial and detrimental effects of PPARs on mitochondria in diabetic hearts.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Jen Bai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
21
|
Sukhotnik I, Nissimov N, Ben Shahar Y, Moati D, Bitterman N, Pollak Y, Berkowitz D, Coran AG, Bitterman A. Fenofibrate reduces intestinal damage and improves intestinal recovery following intestinal ischemia-reperfusion injury in a rat. Pediatr Surg Int 2016; 32:1193-1200. [PMID: 27651374 DOI: 10.1007/s00383-016-3979-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
PURPOSE Fenofibrate (FEN) is known as a nuclear receptor activator which regulates many pathophysiological processes, such as oxidative stress, inflammation, and leukocyte endothelium interactions. Recent studies have demonstrated an anti-oxidant, anti-inflammatory, and anti-ischemic role of FEN in the attenuation of ischemia-reperfusion (IR) injury in the kidney, liver, brain, and heart. The purpose of the present study was to examine the effect of FEN on intestinal recovery and enterocyte turnover after intestinal IR injury in rats. METHODS Male Sprague-Dawley rats were divided into four experimental groups: (1) sham rats underwent laparotomy, (2) sham-FEN rats underwent laparotomy and were treated with intraperitoneal (IP) FEN (20 mg/kg); (3) IR rats underwent occlusion of both the superior mesenteric artery and the portal vein for 30 min followed by 24 h of reperfusion, and (4) IR-FEN rats underwent IR and were treated with IP FEN immediately before abdominal closure. Intestinal structural changes, Park's injury score, enterocyte proliferation, and enterocyte apoptosis were determined 24 h following IR. The expression of Bax, Bcl-2, p-ERK, and caspase-3 in the intestinal mucosa was determined using real-time PCR, Western blot, and immunohistochemistry. RESULTS Treatment with FEN resulted in a significant decrease in Park's injury score in jejunum (32 %) and ileum (33 %) compared to IR animals. IR-FEN rats also demonstrated a significant increase in mucosal weight in jejunum (23 %) and ileum (22 %), mucosal DNA (38 %) and protein (65 %) in jejunum, villus height in jejunum (17 %) and ileum (21 %), and crypt depth in ileum (14 %) compared to IR animals. IR-FEN rats also experienced significant proliferation rates as well as lower apoptotic indices in jejunum and ileum which was accompanied with higher Bcl-2 levels compared to IR animals. CONCLUSIONS Treatment with fenofibrate prevents intestinal mucosal damage and stimulates intestinal epithelial cell turnover following intestinal IR in a rat model.
Collapse
Affiliation(s)
- I Sukhotnik
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Department of Pediatric Surgery B, Bnai Zion Medical Center, 47 Golomb St., P.O.B. 4940, 31048, Haifa, Israel.
| | - N Nissimov
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Pediatric Surgery B, Bnai Zion Medical Center, 47 Golomb St., P.O.B. 4940, 31048, Haifa, Israel
| | - Y Ben Shahar
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Surgery, Carmel Medical Center, Haifa, Israel
| | - D Moati
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - N Bitterman
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Y Pollak
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - D Berkowitz
- Department of Pediatric Gastroenterology, Bnai Zion Medical Center, Haifa, Israel
| | - A G Coran
- Section of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, MI, USA
| | - A Bitterman
- Department of Surgery, Carmel Medical Center, Haifa, Israel
| |
Collapse
|