1
|
Song XH, He N, Xing YT, Jin XQ, Li YW, Liu SS, Gao ZY, Guo C, Wang JJ, Huang YY, Hu H, Wang LL. A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells. Front Genet 2021; 12:761926. [PMID: 34858478 PMCID: PMC8630790 DOI: 10.3389/fgene.2021.761926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue-derived stromal cells are promising candidates investigating the stem cell-related treatment. However, their proportion and utility in the human body decline with time, rendering stem cells incompetent to complete repair processes in vivo. The involvement of circRNAs in the aging process is poorly understood. Rat subcutaneous adipose tissue from 10-week-old and 27-month-old rats were used for hematoxylin and eosin (H and E) staining, TUNEL staining, and circRNA sequencing. Rat adipose tissue-derived stromal cells were cultured and overexpressed with circ-ATXN2. Proliferation was examined using xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Apoptosis was induced by CoCl2 and examined using flow cytometry. RT-PCR assay and Oil Red O staining were used to measure adipogenesis at 48 h and 14 days, respectively. H and E staining showed that the diameter of adipocytes increased; however, the number of cells decreased in old rats. TUNEL staining showed that the proportion of apoptotic cells was increased in old rats. A total of 4,860 and 4,952 circRNAs was detected in young and old rats, respectively. Among them, 67 circRNAs exhibited divergent expression between the two groups (fold change ≥2, p ≤ 0.05), of which 33 were upregulated (49.3%) and 34 were downregulated (50.7%). The proliferation of circ-ATXN2-overexpressing cells decreased significantly in vitro, which was further validated by xCELLigence real-time cell analysis, EdU staining, and cell cycle assay. Overexpression of circ-ATXN2 significantly increased the total apoptotic rate from 5.78 ± 0.46% to 11.97 ± 1.61%, early apoptotic rate from 1.76 ± 0.22% to 5.50 ± 0.66%, and late apoptosis rate from 4.02 ± 0.25% to 6.47 ± 1.06% in adipose tissue-derived stromal cells. Furthermore, in circ-ATXN2-overexpressing cells, RT-PCR assay revealed that the expression levels of adipose differentiation-related genes PPARγ and CEBP/α were increased and the Oil Red O staining assay showed more lipid droplets. Our study revealed the expression profile of circRNAs in the adipose tissue of old rats. We found a novel age-related circular RNA—circ-ATXN2—that inhibits proliferation and promotes cell death and adipogenesis in rat adipose tissue-derived stromal cells.
Collapse
Affiliation(s)
- Xing-Hui Song
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning He
- Department of Basic Medicine Sciences and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Ting Xing
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Qin Jin
- China Medical Research Center, Zhejiang Chinese Medical University Academy of Chinese Medical Sciences, Hangzhou, China
| | - Yan-Wei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang-Shuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Zi-Ying Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Chun Guo
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Jia Wang
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Huang
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Hu Hu
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Abstract
OBJECTIVES We aimed to determine whether responsive insulin-producing cells (IPCs) could be generated from adipose-derived stem cells (ADSCs) isolated from patients with type 1 diabetes mellitus (T1DM). METHODS We isolated ADSCs from adipose tissue of 4 patients (one patient with T1DM and 3 nondiabetic patients), who underwent surgery and differentiated them into IPCs with using a 2-step xeno-antigen free, 3-dimensional culture method. Characteristics of isolated ADSCs, in vitro cell quality, programmed cell death ligand-1 (PDL-1) expression, and transplantation into streptozotocin induced diabetic nude mice were investigated. RESULTS Adipose-derived stem cells from T1DM patients and commercially obtained ADSCs showed the same surface markers; CD31CD34CD45CD90CD105CD146. Moreover, the generated IPCs at day 21 demonstrated appropriate autonomous insulin secretion (stimulation index, 3.5; standard deviation, 0.8). Nonfasting blood glucose concentrations of IPC-transplanted mice were normal at 30 days. The normalized rate of IPC-transplanted mice was significantly higher than that of the sham-operated group (P < 0.05). Insulin-producing cells generated from T1DM adipose tissue expressed high levels of PDL-1. CONCLUSIONS Insulin-producing cells obtained from adipose tissue of T1DM patients are capable of secreting insulin long-term and achieve normoglycemia after transplantation. Expression of PDL-1 suggests the potential for immune circumvention.
Collapse
|
3
|
Kamm JL, Parlane NA, Riley CB, Gee EK, Dittmer KE, McIlwraith CW. Blood type and breed-associated differences in cell marker expression on equine bone marrow-derived mesenchymal stem cells including major histocompatibility complex class II antigen expression. PLoS One 2019; 14:e0225161. [PMID: 31747418 PMCID: PMC6867698 DOI: 10.1371/journal.pone.0225161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND As the search for an immune privileged allogeneic donor mesenchymal stem cell (MSC) line continues in equine medicine, the characterization of the cells between different sources becomes important. Our research seeks to more clearly define the MSC marker expression of different equine MSC donors. METHODS The bone marrow-derived MSCs from two equine breeds and different blood donor-types were compared over successive culture passages to determine the differential expression of important antigens. Eighteen Thoroughbreds and 18 Standardbreds, including 8 blood donor (erythrocyte Aa, Ca, and Qa antigen negative) horses, were evaluated. Bone marrow was taken from each horse for isolation and culture of MSCs. Samples from passages 2, 4, 6, and 8 were labelled and evaluated by flow cytometry. The cell surface expression of CD11a/18, CD44, CD90 and MHC class II antigens were assessed. Trilineage assays for differentiation into adipogenic, chondrogenic and osteogenic lines were performed to verify characterization of the cells as MSCs. FINDINGS There were significant differences in mesenchymal stem cell marker expression between breeds and blood antigen-type groups over time. Standardbred horses showed a significantly lower expression of MHC class II than did Thoroughbred horses at passages 2, 4 and 6. CD90 was significantly higher in universal blood donor Standardbreds as compared to non-blood donor Standardbreds over all time points. All MSC samples showed high expression of CD44 and low expression of CD11a/18. CONCLUSIONS Universal blood donor- type Standardbred MSCs from passages 2-4 show the most ideal antigen expression pattern of the horses and passages that we characterized for use as a single treatment of donor bone marrow-derived MSCs. Further work is needed to determine the significance of this differential expression along with the effect of the expression of MHC I on equine bone marrow-derived MSCs.
Collapse
Affiliation(s)
- J. Lacy Kamm
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Veterinary Associates, Karaka, Auckland, New Zealand
- * E-mail:
| | - Natalie A. Parlane
- AgResearch, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Christopher B. Riley
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Erica K. Gee
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Keren E. Dittmer
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - C. Wayne McIlwraith
- Massey University, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Colorado State University, Orthopaedic Research Center, Fort Collins, Colorado, United States of America
| |
Collapse
|
4
|
Sadie-Van Gijsen H. Adipocyte biology: It is time to upgrade to a new model. J Cell Physiol 2018; 234:2399-2425. [PMID: 30192004 DOI: 10.1002/jcp.27266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.,Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
5
|
Jia Z, Liang Y, Li X, Xu X, Xiong J, Wang D, Duan L. Magnetic-Activated Cell Sorting Strategies to Isolate and Purify Synovial Fluid-Derived Mesenchymal Stem Cells from a Rabbit Model. J Vis Exp 2018:57466. [PMID: 30148486 PMCID: PMC6126689 DOI: 10.3791/57466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are the main cell source for cell-based therapy. MSCs from articular cavity synovial fluid could potentially be used for cartilage tissue engineering. MSCs from synovial fluid (SF-MSCs) have been considered promising candidates for articular regeneration, and their potential therapeutic benefit has made them an important research topic of late. SF-MSCs from the knee cavity of the New Zealand white rabbit can be employed as an optimized translational model to assess human regenerative medicine. By means of CD90-based magnetic activated cell sorting (MACS) technologies, this protocol successfully obtains rabbit SF-MSCs (rbSF-MSCs) from this rabbit model and further fully demonstrates the MSC phenotype of these cells by inducing them to differentiate to osteoblasts, adipocytes, and chondrocytes. Therefore, this approach can be applied in cell biology research and tissue engineering using simple equipment and procedures.
Collapse
Affiliation(s)
- Zhaofeng Jia
- Postgraduate institution, Guangzhou Medical University; Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology; Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopaedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University)
| | - Yujie Liang
- Department of Chemistry, Chinese University of Hong Kong; Shenzhen Kangning Hospital, Shenzhen Mental Health Center
| | - Xingfu Li
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology; Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopaedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University)
| | - Xiao Xu
- Postgraduate institution, Guangzhou Medical University; Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology; Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopaedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University)
| | - Jianyi Xiong
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology; Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopaedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University)
| | - Daping Wang
- Postgraduate institution, Guangzhou Medical University; Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology; Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopaedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University);
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology; Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopaedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University);
| |
Collapse
|