1
|
Steinwerth P, Bertrand J, Sandt V, Marchal S, Sahana J, Bollmann M, Schulz H, Kopp S, Grimm D, Wehland M. Structural and Molecular Changes of Human Chondrocytes Exposed to the Rotating Wall Vessel Bioreactor. Biomolecules 2023; 14:25. [PMID: 38254625 PMCID: PMC10813504 DOI: 10.3390/biom14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last 30 years, the prevalence of osteoarthritis (OA), a disease characterized by a loss of articular cartilage, has more than doubled worldwide. Patients suffer from pain and progressive loss of joint function. Cartilage is an avascular tissue mostly consisting of extracellular matrix with embedded chondrocytes. As such, it does not regenerate naturally, which makes an early onset of OA prevention and treatment a necessity to sustain the patients' quality of life. In recent years, tissue engineering strategies for the regeneration of cartilage lesions have gained more and more momentum. In this study, we aimed to investigate the scaffold-free 3D cartilage tissue formation under simulated microgravity in the NASA-developed rotating wall vessel (RWV) bioreactor. For this purpose, we cultured both primary human chondrocytes as well as cells from the immortalized line C28/I2 for up to 14 days on the RWV and analyzed tissue morphology, development of apoptosis, and expression of cartilage-specific proteins and genes by histological staining, TUNEL-assays, immunohistochemical detection of collagen species, and quantitative real-time PCR, respectively. We observed spheroid formation in both cell types starting on day 3. After 14 days, constructs from C28/I2 cells had diameters of up to 5 mm, while primary chondrocyte spheroids were slightly smaller with 3 mm. Further inspection of the 14-day-old C28/I2 spheroids revealed a characteristic cartilage morphology with collagen-type 1, -type 2, and -type 10 positivity. Interestingly, these tissues were less susceptible to RWV-induced differential gene expression than those formed from primary chondrocytes, which showed significant changes in the regulation of IL6, ACTB, TUBB, VIM, COL1A1, COL10A1, MMP1, MMP3, MMP13, ITGB1, LAMA1, RUNX3, SOX9, and CASP3 gene expression. These diverging findings might reflect the differences between primary and immortalized cells. Taken together, this study shows that simulated microgravity using the RWV bioreactor is suitable to engineer dense 3D cartilage-like tissue without addition of scaffolds or any other artificial materials. Both primary articular cells and the stable chondrocyte cell line C28/I2 formed 3D neocartilage when exposed for 14 days to an RWV.
Collapse
Affiliation(s)
- Paul Steinwerth
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (J.B.); (M.B.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Viviann Sandt
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
| | - Miriam Bollmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (J.B.); (M.B.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| | - Sascha Kopp
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
- Core Facility Tissue Engineering, Otto von Guericke University, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University, 39106 Magdeburg, Germany; (P.S.); (V.S.); (S.M.); (H.S.); (M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany;
| |
Collapse
|
2
|
Hiramatsu N, Yamamoto N, Kato Y, Nagai N, Isogai S, Imaizumi K. Formation of three‑dimensional cell aggregates expressing lens‑specific proteins in various cultures of human iris‑derived tissue cells and iPS cells. Exp Ther Med 2022; 24:539. [PMID: 35837031 PMCID: PMC9257972 DOI: 10.3892/etm.2022.11476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are widely used as a research tool in regenerative medicine and embryology. In studies related to lens regeneration in the eye, iPS cells have been reported to differentiate into lens epithelial cells (LECs); however, to the best of our knowledge, no study to date has described their formation of three-dimensional cell aggregates. Notably, in vivo studies in newts have revealed that iris cells in the eye can dedifferentiate into LECs and regenerate a new lens. Thus, as basic research on lens regeneration, the present study investigated the differentiation of human iris tissue-derived cells and human iris tissue-derived iPS cells into LECs and their formation of three-dimensional cell aggregates using a combination of two-dimensional culture, static suspension culture and rotational suspension culture. The results revealed that three-dimensional cell aggregates were formed and differentiated into LECs expressing αA-crystallin, a specific marker protein for LECs, suggesting that the cell-cell interaction facilitated by cell aggregation may have a critical role in enabling highly efficient differentiation of LECs. However, the present study was unable to achieve transparency in the cell aggregates; therefore, we aim to continue to investigate the degradation of organelles and other materials necessary to make the interior of the formed cell aggregates transparent. Furthermore, we aim to expand on our current work to study the regeneration of the lens and ciliary body as a whole in vitro, with the aim of being able to restore focusing function after cataract surgery.
Collapse
Affiliation(s)
- Noriko Hiramatsu
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Naoki Yamamoto
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Yu Kato
- Support Office for Bioresource Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka 577‑8502, Japan
| | - Sumito Isogai
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, School of Medicine, Fujita Health University, Toyoake, Aichi 470‑1192, Japan
| |
Collapse
|
3
|
Fu L, Li P, Li H, Gao C, Yang Z, Zhao T, Chen W, Liao Z, Peng Y, Cao F, Sui X, Liu S, Guo Q. The Application of Bioreactors for Cartilage Tissue Engineering: Advances, Limitations, and Future Perspectives. Stem Cells Int 2021; 2021:6621806. [PMID: 33542736 PMCID: PMC7843191 DOI: 10.1155/2021/6621806] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering (TE) has brought new hope for articular cartilage regeneration, as TE can provide structural and functional substitutes for native tissues. The basic elements of TE involve scaffolds, seeded cells, and biochemical and biomechanical stimuli. However, there are some limitations of TE; what most important is that static cell culture on scaffolds cannot simulate the physiological environment required for the development of natural cartilage. Recently, bioreactors have been used to simulate the physical and mechanical environment during the development of articular cartilage. This review aims to provide an overview of the concepts, categories, and applications of bioreactors for cartilage TE with emphasis on the design of various bioreactor systems.
Collapse
Affiliation(s)
- Liwei Fu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Pinxue Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Cangjian Gao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhen Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tianyuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhiyao Liao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fuyang Cao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Nordberg RC, Mellor LF, Krause AR, Donahue HJ, Loboa EG. LRP receptors in chondrocytes are modulated by simulated microgravity and cyclic hydrostatic pressure. PLoS One 2019; 14:e0223245. [PMID: 31584963 PMCID: PMC6777824 DOI: 10.1371/journal.pone.0223245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
Mechanical loading is essential for the maintenance of musculoskeletal homeostasis. Cartilage has been demonstrated to be highly mechanoresponsive, but the mechanisms by which chondrocytes respond to mechanical stimuli are not clearly understood. The goal of the study was to determine how LRP4, LRP5, and LRP6 within canonical Wnt-signaling are regulated in simulated microgravity and cyclic hydrostatic pressure, and to investigate the potential role of LRP 4/5/6 in cartilage degeneration. Rat chondrosacroma cell (RCS) pellets were stimulated using either cyclic hydrostatic pressure (1Hz, 7.5 MPa, 4hr/day) or simulated microgravity in a rotating wall vessel (RWV) bioreactor (11RPM, 24hr/day). LRP4/5/6 mRNA expression was assessed by RT-qPCR and LRP5 protein expression was determined by fluorescent immunostaining. To further evaluate our in vitro findings in vivo, mice were subjected to hindlimb suspension for 14 days and the femoral heads stained for LRP5 expression. We found that, in vitro, LRP4/5/6 mRNA expression is modulated in a time-dependent manner by mechanical stimulation. Additionally, LRP5 protein expression is upregulated in response to both simulated microgravity and cyclic hydrostatic pressure. LRP5 is also upregulated in vivo in the articular cartilage of hindlimb suspended mice. This is the first study to examine how LRP4/5/6, critical receptors within musculoskeletal biology, respond to mechanical stimulation. Further elucidation of this mechanism could provide significant clinical benefit for the identification of pharmaceutical targets for the maintenance of cartilage health.
Collapse
Affiliation(s)
- Rachel C. Nordberg
- College of Engineering, University of Missouri, Columbia, Missouri, United States of America
| | | | - Andrew R. Krause
- Sport Health and Physical Education, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Henry J. Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Elizabeth G. Loboa
- College of Engineering, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
5
|
Jamshidi P, Chouhan G, Williams RL, Cox SC, Grover LM. Modification of gellan gum with nanocrystalline hydroxyapatite facilitates cell expansion and spontaneous osteogenesis. Biotechnol Bioeng 2016; 113:1568-76. [DOI: 10.1002/bit.25915] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Parastoo Jamshidi
- School of Metallurgy and Materials; University of Birmingham; Edgbaston B15 2TT United Kingdom
| | - Gurpreet Chouhan
- School of Chemical Engineering; University of Birmingham; Edgbaston B15 2TT United Kingdom
| | - Richard L. Williams
- School of Chemical Engineering; University of Birmingham; Edgbaston B15 2TT United Kingdom
| | - Sophie C. Cox
- School of Chemical Engineering; University of Birmingham; Edgbaston B15 2TT United Kingdom
| | - Liam M. Grover
- School of Chemical Engineering; University of Birmingham; Edgbaston B15 2TT United Kingdom
| |
Collapse
|
6
|
Goodwin TJ, McCarthy M, Cohrs RJ, Kaufer BB. 3D tissue-like assemblies: A novel approach to investigate virus-cell interactions. Methods 2015; 90:76-84. [PMID: 25986169 PMCID: PMC5489059 DOI: 10.1016/j.ymeth.2015.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/09/2023] Open
Abstract
Virus-host cell interactions are most commonly analyzed in cells maintained in vitro as two-dimensional tissue cultures. However, these in vitro conditions vary quite drastically from the tissues that are commonly infected in vivo. Over the years, a number of systems have been developed that allow the establishment of three-dimensional (3D) tissue structures that have properties similar to their in vivo 3D counterparts. These 3D systems have numerous applications including drug testing, maintenance of large tissue explants, monitoring migration of human lymphocytes in tissues, analysis of human organ tissue development and investigation of virus-host interactions including viral latency. Here, we describe the establishment of tissue-like assemblies for human lung and neuronal tissue that we infected with a variety of viruses including the respiratory pathogens human parainfluenza virus type 3 (PIV3), respiratory syncytial virus (RSV) and SARS corona virus (SARS-CoV) as well as the human neurotropic herpesvirus, varicella-zoster virus (VZV).
Collapse
Affiliation(s)
- Thomas J Goodwin
- Disease Modelling/Tissue Analogues Laboratory, NASA Johnson Space Center, Houston, TX, USA.
| | - Maureen McCarthy
- Disease Modelling/Tissue Analogues Laboratory, NASA Johnson Space Center, Houston, TX, USA
| | - Randall J Cohrs
- Departments of Neurology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| | | |
Collapse
|
7
|
Stannard JT, Edamura K, Stoker AM, O'Connell GD, Kuroki K, Hung CT, Choma TJ, Cook JL. Development of a whole organ culture model for intervertebral disc disease. J Orthop Translat 2015; 5:1-8. [PMID: 30035069 PMCID: PMC5987001 DOI: 10.1016/j.jot.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/13/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background/Objective Whole organ in vitro intervertebral disc models have been associated with poor maintenance of cell viability. No previous studies have used a rotating wall vessel bioreactor for intervertebral disc explants culture. The purpose of this study was to develop and validate an in vitro model for the assessment of biological and biomechanical measures of intervertebral disc health and disease. Methods To this end, endplate-intervertebral disc-endplate whole organ explants were harvested from the tails of rats. For the injured group, the annulus fibrosus was penetrated with a 20G needle to the nucleus pulposus and aspirated. Explants were cultured in a rotating wall vessel bioreactor for 14 days. Results Cell viability and histologic assessments were performed at Day 0, Day 1, Day 7, and Day 14. Compressive mechanical properties of the intervertebral disc were assessed at Day 0 and Day 14. In the annulus fibrosus and nucleus pulposus cells, the uninjured group maintained high viability through 14 days of culture, whereas cell viability in annulus fibrosus and nucleus pulposus of the injured intervertebral discs was markedly lower at Day 7 and Day 14. Histologically, the uninjured intervertebral discs maintained cell viability and tissue morphology and architecture through 14 days, whereas the injured intervertebral discs showed areas of cell death, loss of extracellular matrix integrity, and architecture by Day 14. Stiffness values for uninjured intervertebral discs were similar at Day 0 and Day 14, whereas the stiffness for the injured intervertebral discs was approximately 2.5 times greater at Day 14. Conclusion These results suggest that whole organ intervertebral discs explants can be successfully cultured in a rotating wall vessel bioreactor to maintain cell viability and tissue architecture in both annulus fibrosus and nucleus pulposus for at least 14 days. In addition, the injury used produced pathologic changes consistent with those seen in degenerative intervertebral disc disease in humans. This model will permit further study into potential future treatments and other mechanisms of addressing intervertebral disc disease.
Collapse
Affiliation(s)
- James T. Stannard
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Kazuya Edamura
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
- Laboratory of Veterinary Surgery, Nihon University, Fujisawa, Kanagawa, Japan
| | - Aaron M. Stoker
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Grace D. O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Keiichi Kuroki
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Clark T. Hung
- Laboratory of Veterinary Surgery, Nihon University, Fujisawa, Kanagawa, Japan
| | - Theodore J. Choma
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
- Corresponding author. Comparative Orthopaedic Laboratory, University of Missouri, 900 East Campus Drive, Columbia, MO 65211, USA.
| |
Collapse
|
8
|
Sun L, Yang C, Ge Y, Yu M, Chen G, Guo W, Tian W. In vitro three-dimensional development of mouse molar tooth germs in a rotary cell culture system. Int J Paediatr Dent 2014; 24:175-83. [PMID: 23865728 DOI: 10.1111/ipd.12057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In vitro tooth germ cultivation is an effective method to explore the mechanism of odontogenesis. The three-dimensional rotary cell culture system (RCCS) is typically used to culture simulated organs such as cartilage, skin, and bone. In this study, we established an in vitro tooth germ culture model using RCCS to investigate whether RCCS could provide an appropriate environment for tooth germ development in vitro. METHODS Mandibular first molar tooth germs from 1-day post-natal mice were cultured in RCCS for 3, 6, and 9 days. Tooth germ development was monitored via histology (hematoxylin & eosin staining), stereoscopic microscopy, and quantitative real-time PCR (RT-PCR). RESULTS Tooth germs cultured in RCCS maintained their typical spatial shape. Blood vessels were maintained on the dental follicle surface surrounding the crown. After cultivation, thick layers of dentin and enamel were secreted. Compared with tooth germs grown in jaw, the tooth germs grown in RCCS exhibited no significant difference in DMP1 or FGF10 expression at all time points. CONCLUSIONS Use of RCCS enhanced the development of tooth germs and allowed the tooth germs to maintain their spatial morphology. These results indicate that RCCS may be an effective culture system to investigate the mechanism of tooth development.
Collapse
Affiliation(s)
- Liang Sun
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Derivation, characterization and expansion of fetal chondrocytes on different microcarriers. Cytotechnology 2011; 63:633-43. [PMID: 21837435 DOI: 10.1007/s10616-011-9380-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022] Open
Abstract
Fetal chondrocytes (FCs) have recently been identified as an alternative cell source for cartilage tissue engineering applications because of their partially chondrogenically differentiated phenotype and developmental plasticity. In this study, chondrocytes derived from fetal bovine cartilage were characterized and then cultured on commercially available Cytodex-1 and Biosilon microcarriers and thermosensitive poly(hydroxyethylmethacrylate)-poly(N-isopropylacrylamide) (PHEMA-PNIPAAm) beads produced by us. Growth kinetics of FCs were estimated by means of specific growth rate and metabolic activity assay. Cell detachment from thermosensitive microcarriers was induced by cold treatment at 4 °C for 20 min or enzymatic treatment was applied for the detachment of cells from Cytodex-1 and Biosilon. Although attachment efficiency and proliferation of FCs on PHEMA-PNIPAAm beads were lower than that of commercial Cytodex-1 and Biosilon microcarriers, these beads also supported growth of FCs. Detached cells from thermosensitive beads by cold induction exhibited a normal proliferative activity. Our results indicated that Cytodex-1 microcarrier was the most suitable material for the production of FCs in high capacity, however, 'thermosensitive microcarrier model' could be considered as an attractive solution to the process scale up for cartilage tissue engineering by improving surface characteristics of PHEMA-PNIPAAm beads.
Collapse
|
10
|
Skardal A, Sarker SF, Crabbé A, Nickerson CA, Prestwich GD. The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 2010; 31:8426-35. [PMID: 20692703 DOI: 10.1016/j.biomaterials.2010.07.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
With the increasing necessity for functional tissue- and organ equivalents in the clinic, the optimization of techniques for the in vitro generation of organotypic structures that closely resemble the native tissue is of paramount importance. The engineering of a variety of highly differentiated tissues has been achieved using the rotating wall vessel (RWV) bioreactor technology, which is an optimized suspension culture allowing cells to grow in three-dimensions (3-D). However, certain cell types require the use of scaffolds, such as collagen-coated microcarrier beads, for optimal growth and differentiation in the RWV. Removal of the 3-D structures from the microcarriers involves enzymatic treatment, which disrupts the delicate 3-D architecture and makes it inapplicable for potential implantation. Therefore, we designed a microcarrier bead coated with a synthetic extracellular matrix (ECM) composed of a disulfide-crosslinked hyaluronan and gelatin hydrogel for 3-D tissue engineering, that allows for enzyme-free cell detachment under mild reductive conditions (i.e. by a thiol-disulfide exchange reaction). The ECM-coated beads (ECB) served as scaffold to culture human intestinal epithelial cells (Int-407) in the RWV, which formed viable multi-layered cell aggregates and expressed epithelial differentiation markers. The cell aggregates remained viable following dissociation from the microcarriers, and could be returned to the RWV bioreactor for further culturing into bead-free tissue assemblies. The developed ECBs thus offer the potential to generate scaffold-free 3-D tissue assemblies, which could further be explored for tissue replacement and remodeling.
Collapse
Affiliation(s)
- Aleksander Skardal
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84108-1257, USA
| | | | | | | | | |
Collapse
|
11
|
Stamenković V, Keller G, Nesic D, Cogoli A, Grogan SP. Neocartilage formation in 1 g, simulated, and microgravity environments: implications for tissue engineering. Tissue Eng Part A 2010; 16:1729-36. [PMID: 20141387 DOI: 10.1089/ten.tea.2008.0624] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM The aim of this study was to analyze and compare the deposition of cartilage-specific extracellular matrix components and cellular organization in scaffold-free neocartilage produced in microgravity and simulated microgravity. METHODS Porcine chondrocytes were seeded (100 x 10(6)/mL) into cylindrical culture chambers (n = 8) and cultured in the following environments: (i) microgravity during the Flight 7S (Cervantes mission) on the International Space Station (ISS), (ii) simulated microgravity in a random positioning machine (RPM), and (iii) normal gravity (1 g, control). After 16 days, each neocartilage tissue was processed for histology, immunohistochemistry, quantitative real-time reverse transcriptase-polymerase chain reaction, and histomorphometric analysis. RESULTS Weaker extracellular matrix staining of ISS neocartilage tissue was noted compared with both Earth-cultivated tissues. Higher collagen II/I expression ratios were observed in ISS samples compared with control tissue. Conversely, higher aggrecan/versican gene expression profiles were seen in control 1 g samples compared with microgravity samples. Cell density produced in microgravity was significantly reduced compared with the normal gravity neocartilage tissues. CONCLUSION Tissue cultivated on the RPM showed intermediate characteristics compared with ISS and 1 g conditions. These data indicate that the RPM system does not sustain microgravity. Although microgravity impacts the development of in vitro generated cartilage, simulated microgravity using the RPM may be a useful tool to produce cartilaginous tissue grafts with fewer cells.
Collapse
|
12
|
Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. Cartilage Tissue Engineering: Controversy in the Effect of Oxygen. Crit Rev Biotechnol 2010. [DOI: 10.1080/bty.23.3.175] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Lenas P, Moos M, Luyten FP. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:395-422. [PMID: 19589040 DOI: 10.1089/ten.teb.2009.0461] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
Collapse
Affiliation(s)
- Petros Lenas
- Department of Biochemistry and Molecular Biology IV, Veterinary Faculty, Complutense University of Madrid , Madrid, Spain
| | | | | |
Collapse
|
14
|
Ohyabu Y, Tanaka J, Ikada Y, Uemura T. Cartilage tissue regeneration from bone marrow cells by RWV bioreactor using collagen sponge scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Huang S, Wang Y, Liang T, Jin F, Liu S, Jin Y. Fabrication and characterization of a novel microparticle with gyrus-patterned surface and growth factor delivery for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Tissue Culture Models. MOLECULAR PATHOLOGY LIBRARY 2009. [PMCID: PMC7122392 DOI: 10.1007/978-0-387-89626-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Collagen nanofiber-covered porous biodegradable carboxymethyl chitosan microcarriers for tissue engineering cartilage. Eur Polym J 2008. [DOI: 10.1016/j.eurpolymj.2008.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Hidaka M, Su GNC, Chen JKH, Mukaisho KI, Hattori T, Yamamoto G. Transplantation of engineered bone tissue using a rotary three-dimensional culture system. In Vitro Cell Dev Biol Anim 2007; 43:49-58. [PMID: 17570019 DOI: 10.1007/s11626-006-9005-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 11/13/2006] [Indexed: 11/26/2022]
Abstract
Bone is a complex, highly structured, mechanically active, three-dimensional (3-D) tissue composed of cellular and matrix elements. We previously published a report on in situ collagen gelation using a rotary 3-D culture system (CG-RC system) for the construction of large tissue specimens. The objective of the current study was to evaluate the feasibility of bone tissue engineering using our CG-RC system. Osteoblasts from the calvaria of newborn Wistar rats were cultured in the CG-RC system for up to 3 wk. The engineered 3-D tissues were implanted into the backs of nude mice and calvarial round bone defects in Wistar rats. Cell metabolic activity, mineralization, and bone-related proteins were measured in vitro in the engineered 3-D tissues. Also, the in vivo histological features of the transplanted, engineered 3-D tissues were evaluated in the animal models. We found that metabolic activity increased in the engineered 3-D tissues during cultivation, and that sufficient mineralization occurred during the 3 wk in the CG-RC system in vitro. One mo posttransplantation, the transplants to nude mice remained mineralized and were well invaded by host vasculature. Of particular interest, 2 mo posttransplantation, the transplants into the calvarial bone defects of rats were replaced by new mature bone. Thus, this study shows that large 3-D osseous tissue could be produced in vitro and that the engineered 3-D tissue had in vivo osteoinductive potential when transplanted into ectopic locations and into bone defects. Therefore, this system should be a useful model for bone tissue engineering.
Collapse
Affiliation(s)
- Miyoko Hidaka
- Department of Oral and Maxillofacial Surgery, Shiga University of Medical Science, Seta-tsukinowa-cho, Otsu, Shiga, 520-2192, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Ohyabu Y, Kida N, Kojima H, Taguchi T, Tanaka J, Uemura T. Cartilaginous tissue formation from bone marrow cells using rotating wall vessel (RWV) bioreactor. Biotechnol Bioeng 2006; 95:1003-8. [PMID: 16986169 DOI: 10.1002/bit.20892] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This is the first successful report of the rapid regeneration of three-dimensional large and homogeneous cartilaginous tissue from rabbit bone marrow cells without a scaffold using a rotating wall vessel (RWV) bioreactor, which simulates a microgravity environment for cells. Bone marrow cells cultured for 3 weeks in DMEM were resuspended and cultured for 4 weeks in the chondrogenic medium within the vessel. Large cylindrical cartilaginous tissue with dimensions of (1.25 +/- 0.06) x (0.60 +/- 0.08) cm (height x diameter) formed. Their cartilage marker expression was confirmed by mRNA expressions of aggrecan, collagen type I and II, and glycosaminoglycan (GAG)/DNA ratio. Their cartilaginous properties were demonstrated by toluidine blue, safranin-O staining, and polarization.
Collapse
Affiliation(s)
- Yoshimi Ohyabu
- Nanotechnology Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central-6, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol 2006; 24:299-304. [PMID: 16678291 DOI: 10.1016/j.tibtech.2006.04.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/15/2006] [Accepted: 04/21/2006] [Indexed: 11/24/2022]
Abstract
A major problem in tissue engineering is the availability of a sufficient number of cells with the appropriate phenotype for delivery to damaged or diseased cartilage and bone; the challenge is to amplify cell numbers and maintain the appropriate phenotype for tissue repair and restoration of function. The microcarrier bioreactor culture system offers an attractive method for cell amplification and enhancement of phenotype expression. Besides serving as substrates for the propagation of anchorage-dependent cells, microcarriers can also be used to deliver the expanded undifferentiated or differentiated cells to the site of the defect. The present article provides an overview of the microcarrier culture system, its utility as an in vitro research tool and its potential applications in tissue engineering, particularly in the repair of cartilage and bone.
Collapse
Affiliation(s)
- Jos Malda
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | | |
Collapse
|
21
|
Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical Properties and Cellular Proliferation of Electrospun Collagen Type II. ACTA ACUST UNITED AC 2004; 10:1510-7. [PMID: 15588410 DOI: 10.1089/ten.2004.10.1510] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A suitable technique for articular cartilage repair and replacement is necessitated by inadequacies of current methods. Electrospinning has potential in cartilage repair by producing scaffolds with fiber diameters in the range of native extracellular matrix. Chondrocytes seeded onto such scaffolds may prefer this environment for differentiation and proliferation, thus approaching functional cartilage replacement tissue. Scaffolds of collagen type II were created by an electrospinning technique. Individual scaffold specimens were prepared and evaluated as uncross-linked, cross-linked, or crosslinked/seeded. Uncross-linked scaffolds contained a minimum and average fiber diameter of 70 and 496 nm, respectively, whereas cross-linked scaffolds possessed diameters of 140 nm and 1.46 microm. The average thickness for uncross-linked scaffolds was 0.20 +/- 0.02 mm and 0.52 +/- 0.07 mm for cross-linked scaffolds. Uniaxial tensile tests of uncross-linked scaffolds revealed an average tangent modulus, ultimate tensile strength, and ultimate strain of 172.5 +/- 36.1 MPa, 3.3 +/- 0.3 MPa, and 0.026 +/- 0.005 mm/mm, respectively. Scanning electron microscopy of cross-linked scaffolds cultured with chondrocytes demonstrated the ability of the cells to infiltrate the scaffold surface and interior. Electrospun collagen type II scaffolds produce a suitable environment for chondrocyte growth, which potentially establishes the foundation for the development of articular cartilage repair.
Collapse
Affiliation(s)
- Kelly J Shields
- Orthopedic Research Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23298-0694, USA
| | | | | | | |
Collapse
|
22
|
Malda J, Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials 2004; 24:5153-61. [PMID: 14568432 DOI: 10.1016/s0142-9612(03)00428-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Articular cartilage has a limited capacity for self-repair. To overcome this problem, it is expected that functional cartilage replacements can be created from expanded chondrocytes seeded in biodegradable scaffolds. Expansion of chondrocytes in two-dimensional culture systems often results in dedifferentiation. This investigation focuses on the post-expansion phenotype of human nasal chondrocytes expanded on macroporous gelatin CultiSpher G microcarriers. Redifferentiation was evaluated in vitro via pellet cultures in three different culture media. Furthermore, the chondrogenic potential of expanded cells seeded in polyethylene glycol terephthalate/ polybuthylene terephthalate (PEGT/PBT) scaffolds, cultured for 14 days in vitro, and subsequently implanted subcutaneously in nude mice, was assessed. Chondrocytes remained viable during microcarrier culture and yielded doubling times (1.07+/-0.14 days) comparable to T-flask expansion (1.20+/-0.36 days). Safranin-O staining from pellet culture in different media demonstrated that production of GAG per cell was enhanced by microcarrier expansion. Chondrocyte-polymer constructs with cells expanded on microcarriers contained significantly more proteoglycans after subcutaneous implantation (288.5+/-29.2 microg) than those with T-flask-expanded cells (164.0+/-28.7 microg). Total collagen content was similar between the two groups. This study suggests that macroporous gelatin microcarriers are effective matrices for nasal chondrocyte expansion, while maintaining the ability of chondrocyte differentiation. Although the exact mechanism by which chondrocyte redifferentiation is induced through microcarrier expansion has not yet been elucidated, this technique shows promise for cartilage tissue engineering approaches.
Collapse
Affiliation(s)
- J Malda
- IsoTis NV, PO Box 98, 3720 AB, Bilthoven, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Malda J, van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J. Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. ACTA ACUST UNITED AC 2004; 9:939-48. [PMID: 14633378 DOI: 10.1089/107632703322495583] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Functional cartilage implants for orthopedic surgery or in vitro tissue evaluation can be created from expanded chondrocytes and biodegradable scaffolds. Expansion of chondrocytes in two-dimensional culture systems results in their dedifferentiation. The hallmark of this process is the switch of collagen synthesis from type II to type I. The aim of this study was to evaluate the postexpansion chondrogenic potential of microcarrier-expanded bovine articular chondrocytes in pellet cultures. A selection of microcarriers was screened for initial attachment of chondrocytes. On the basis of those results and additional selection criteria related to clinical application, Cytodex-1 microcarriers were selected for further investigation. Comparable doubling times were obtained in T-flask and microcarrier cultures. During propagation on Cytodex-1 microcarriers, cells acquired a spherical-like morphology and the presence of collagen type II was detected. Both observations are indicative of a differentiated chondrocyte. Pellet cultures of microcarrier-expanded cells showed cartilage-like morphology and staining for proteoglycans and collagen type II after 14 days. In contrast, pellets of T-flask-expanded cells had a fibrous appearance and showed abundant staining only for collagen type I. Therefore, culture of chondrocytes on microcarriers may offer useful and cost-effective cell expansion opportunities in the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- J Malda
- Cartilage Tissue Engineering Group, IsoTis, Bilthoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Rhiel MH, Cohen MB, Arnold MA, Murhammer DW. On-line monitoring of human prostate cancer cells in a perfusion rotating wall vessel by near-infrared spectroscopy. Biotechnol Bioeng 2004; 86:852-61. [PMID: 15162462 DOI: 10.1002/bit.10834] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PC-3 human prostate cancer cells have been cultivated in a rotating wall vessel in which glucose, lactate, and glutamine profiles were monitored noninvasively and in real time by near-infrared (NIR) spectroscopy. The calibration models were based on off-line spectra from tissue culture experiments described previously (Rhiel et al., Biotechnol Bioeng 77:73-82). Monitoring performance was improved by Fourier filtering of the spectra and initial off-set adjustment. The resulting standard errors of predictions were 0.95, 0.74, and 0.39 mM for glucose, lactate, and glutamine, respectively. The concentration of ammonia could not be accurately measured from the same spectra. In addition, metabolite uptake and production rates were determined for PC-3 prostate cancer cells during exponential growth in batch-mode cultivation. Cells grew with a doubling time of 21 h and consumed glucose and glutamine at rates of 6.8 and 1.8 x 10(-17) mol/cell.s, respectively. This resulted in lactate and ammonia production rates of 11.9 and 1.3 x 10(-17) mol/cell.s, respectively. Compared with other monitoring technologies, this technology has many advantages for spaceflights and stand-alone units; for instance, calibration can be performed at one time and then applied in a reagentless, low-maintenance way at a later time. The resulting concentration information can be incorporated into closed-loop control schemes, thereby leading to better in vitro models of in vivo behavior.
Collapse
Affiliation(s)
- Martin H Rhiel
- Department of Chemical and Biochemical Engineering, 4133 Seamens Center, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
25
|
Marlovits S, Tichy B, Truppe M, Gruber D, Vécsei V. Chondrogenesis of Aged Human Articular Cartilage in a Scaffold-Free Bioreactor. ACTA ACUST UNITED AC 2003; 9:1215-26. [PMID: 14670109 DOI: 10.1089/10763270360728125] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chondrogenesis of aged human articular chondrocytes was evaluated under controlled in vitro conditions, using a rotating bioreactor vessel. Articular chondrocytes isolated from 10 aged patients (median age, 84 years) were increased in monolayer culture. A single-cell suspension of dedifferentiated chondrocytes was inoculated in a rotating wall vessel, without the use of any scaffold or supporting gel material. After 90 days of cultivation, a three-dimensional cartilage-like tissue was formed, encapsulated by fibrous tissue resembling a perichondrial membrane. Morphological examination revealed differentiated chondrocytes ordered in clusters within a continuous dense cartilaginous matrix demonstrating a strong positive staining with monoclonal antibodies against collagen type II and articular proteoglycan. The surrounding fibrous membrane consisted of fibroblast-like cells, and showed a clear distinction from the cartilaginous areas when stained against collagen type I. Transmission electron microscopy revealed differentiated and highly metabolically active chondrocytes, producing an extracellular matrix consisting of a fine network of randomly distributed cross-banded collagen fibrils. Chondrogenesis of aged human articular chondrocytes can be induced in vitro in a rotating bioreactor vessel using low shear and efficient mass transfer. Moreover, the tissue-engineered constructs may be used for further in vitro studies of differentiation, aging, and regeneration of human articular cartilage.
Collapse
Affiliation(s)
- Stefan Marlovits
- Department of Traumatology, University of Vienna Medical School, Vienna, Austria.
| | | | | | | | | |
Collapse
|
26
|
Nettles DL, Elder SH, Gilbert JA. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. TISSUE ENGINEERING 2002; 8:1009-16. [PMID: 12542946 DOI: 10.1089/107632702320934100] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One of the most important factors in any tissue-engineering application is the cell substrate. The purpose of this study was the initial evaluation of chitosan, a derivative of the abundant, naturally occurring biopolymer chitin, as a cell scaffold for cartilage tissue engineering. Chitosan scaffolds having an interconnecting porous structure were easily fabricated by simple freezing and lyophilization of a chitosan solution. After rehydration of scaffolds, porcine chondrocytes were seeded onto scaffolds and cultured for up to 28 days in a rotating-wall bioreactor. Chitosan scaffolds supported cell attachment and maintenance of a rounded cell morphology. After 18 days, cells within the scaffolds had synthesized extracellular matrix in which proteoglycan and type II collagen were detected by toluidine blue staining and immunohistochemistry, respectively. Abundant extracellular matrix was found almost exclusively in the periphery of the scaffolds, as scaffold microstructure prevented cells from penetrating to interior regions. Nonetheless, the results suggest that chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering.
Collapse
Affiliation(s)
- Dana L Nettles
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Mississippi, USA
| | | | | |
Collapse
|
27
|
Sanford GL, Ellerson D, Melhado-Gardner C, Sroufe AE, Harris-Hooker S. Three-dimensional growth of endothelial cells in the microgravity-based rotating wall vessel bioreactor. In Vitro Cell Dev Biol Anim 2002; 38:493-504. [PMID: 12703976 DOI: 10.1290/1071-2690(2002)038<0493:tgoeci>2.0.co;2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We characterized bovine aortic endothelial cells (BAEC) continuously cultured in the rotating wall vessel (RWV) bioreactor for up to 30 d. Cultures grew as large tissue-like aggregates (containing 20 or more beads) after 30 d. These cultures appeared to be growing in multilayers around the aggregates, where single beads were covered with confluent BAEC, which displayed the typical endothelial cell (EC) morphology. The 30-d multibead aggregate cultures have a different and smoother surface when viewed under a higher-magnification scanning electron microscope. Transmission electron microscopy of these large BAEC aggregates showed that the cells were viable and formed multilayered sheets that were separated by an extracellular space containing matrix-like material. These three-dimensional cultures also were found to have a basal production of nitric oxide (NO) that was 10-fold higher for the RWV than for the Spinner flask bioreactor (SFB). The BAEC in the RWV showed increased basal NO production, which was dependent on the RWV rotation rate: 73% increase at 8 rpm, 262% increase at 15 rpm, and 500% increase at 20 rpm as compared with control SFB cultures. The addition of l-arginine to the RWV cultures resulted in a fourfold increase in NO production over untreated RWV cultures, which was completely blocked by L-NAME [N(G)-nitro-L-arginine-methylester]. Cells in the SFB responded similarly. The RWV cultures showed an increase in barrier properties with an up-regulation of tight junction protein expression. We believe that this study is the first report of a unique growth pattern for ECs, resulting in enhanced NO production and barrier properties, and it suggests that RWV provides a unique model for investigating EC biology and differentiated function.
Collapse
Affiliation(s)
- Gary L Sanford
- Space Medicine and Life Sciences Research Center, Morehouse School of Medicine, Atlanta, Georgia 30310, USA.
| | | | | | | | | |
Collapse
|
28
|
Malaviya P, Nerem RM. Fluid-induced shear stress stimulates chondrocyte proliferation partially mediated via TGF-beta1. TISSUE ENGINEERING 2002; 8:581-90. [PMID: 12201998 DOI: 10.1089/107632702760240508] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is growing evidence that a hydrodynamic environment is beneficial for growing cartilage tissue-engineered constructs; however, the mechanisms by which fluid shear provides for a better construct are not well understood. In this study, we investigated one possible mechanism by which constructs grow faster under fluid shear: fluid shear upregulates chondrocyte proliferation. Further, we investigated if this effect is mediated by TGF-beta1, a known mediator of fluid shear effects in other cell types and a mitogen for chondrocytes. To test the hypotheses, primary bovine articular chondrocytes were cultured in monolayers (approximately 40,000 cells/cm(2)) to 80-85% confluency. After 24 h of growth arrest, cells were exposed to 3.5 Pa fluid shear stress for 96 h. Total DNA was compared between flow and static culture slides. Total TGF-beta1 was quantified in flow-conditioned media (CM) and static culture-CM. Mitogenic capacity of the CM, with or without anti-TGF-beta1 or anti-TbetaRII (TGF beta receptor type II) antibodies, was also assessed. Results show that fluid shear significantly up-regulates chondrocyte proliferation (p < 0.02). Further, total TGF-beta1 in the flow-CM was more than 3.5-fold higher (p < 0.03) and its mitogenicity significantly higher (p < 0.007) as compared to static culture-CM. Adding excess anti-TGF-beta1 or anti-TbetaRII antibodies partially, but significantly depressed mitogenicity (approximately 20% decrease) of the flow-CM. These results show that fluid shear stress upregulates chondrocyte proliferation and that this effect is partially mediated by TGF-beta1.
Collapse
Affiliation(s)
- Prasanna Malaviya
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | | |
Collapse
|
29
|
Colvin GA, Lambert JF, Carlson JE, McAuliffe CI, Abedi M, Quesenberry PJ. Rhythmicity of engraftment and altered cell cycle kinetics of cytokine-cultured murine marrow in simulated microgravity compared with static cultures. In Vitro Cell Dev Biol Anim 2002; 38:343-51. [PMID: 12513122 DOI: 10.1290/1071-2690(2002)038<0343:roeaac>2.0.co;2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Space flight with associated microgravity is complicated by "astronaut's anemia" and other hematologic abnormalities. Altered erythroid differentiation, red cell survival, plasma volume, and progenitor numbers have been reported. We studied the impact of microgravity on engraftable stem cells, culturing marrow cells in rotary wall vessel (RWV) culture chambers mimicking microgravity and in normal gravity nonadherent Teflon bottles. A quantitative competitive engraftment technique was assessed under both conditions in lethally irradiated hosts. We assessed 8-wk engraftable stem cells over a period spanning at least one cell cycle for cytokine (FLT-3 ligand, thrombopoietin [TPO], steel factor)-activated marrow stem cells. Engraftable stem cells were supported out to 56 h under microgravity conditions, and this support was superior to that seen in normal-gravity Teflon bottle cultures out to 40 h, with Teflon bottle culture support superior to RWV from 40 to 56 h. A nadir of stem cell number was seen at 40 h in Teflon and 48 h in RWV, suggesting altered marrow stem cell cycle kinetics under microgravity. This is the first study of engraftable stem cells under microgravity conditions, and the differences between microgravity and normal gravity cultures may present opportunities for unique future stem cell expansion strategies.
Collapse
Affiliation(s)
- Gerald A Colvin
- University of Massachusetts Cancer Center, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wang SS, Good TA. Effect of culture in a rotating wall bioreactor on the physiology of differentiated neuron-like PC12 and SH-SY5Y cells. J Cell Biochem 2002; 83:574-84. [PMID: 11746501 DOI: 10.1002/jcb.1252] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A variety of evidence suggests that nervous system function is altered during microgravity, however, assessing changes in neuronal physiology during space flight is a non-trivial task. We have used a rotating wall bioreactor with a high aspect ratio vessel (HARV), which simulates the microgravity environment, to investigate the how the viability, neurite extension, and signaling of differentiated neuron-like cells changes in different culture environments. We show that culture of differentiated PC12 and SH-SY5Y cells in the simulated microgravity HARV bioreactor resulted in high cell viability, moderate neurite extension, and cell aggregation accompanied by NO production. Neurite extension was less than that seen in static cultures, suggesting that less than optimal differentiation occurs in simulated microgravity relative to normal gravity. Cells grown in a mixed vessel under normal gravity (a spinner flask) had low viability, low neurite extension, and high glutamate release. This work demonstrates the feasibility of using a rotating wall bioreactor to explore the effects of simulated microgravity on differentiation and physiology of neuron-like cells.
Collapse
Affiliation(s)
- S S Wang
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | |
Collapse
|
31
|
Sytkowski AJ, Davis KL. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. In Vitro Cell Dev Biol Anim 2001. [PMID: 11332741 DOI: 10.1290/1071-2690(2001)037%3c0079:ecgadi%3e2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1 x g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1 x g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1 x g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.
Collapse
Affiliation(s)
- A J Sytkowski
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
32
|
Dabos KJ, Nelson LJ, Bradnock TJ, Parkinson JA, Sadler IH, Hayes PC, Plevris JN. The simulated microgravity environment maintains key metabolic functions and promotes aggregation of primary porcine hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1526:119-30. [PMID: 11325533 DOI: 10.1016/s0304-4165(01)00097-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high aspect ratio vessel allows the culture of primary porcine hepatocytes in an environment of low shear stress and simulated microgravity. Primary porcine hepatocytes have been difficult to maintain in culture long term while preserving their metabolic functions. This study was carried out in order to characterise key metabolic functions of cell aggregates formed by primary porcine hepatocytes cultured in a high aspect ratio vessel for a predetermined period of 21 days. 10(8) porcine hepatocytes were loaded into the high aspect ratio vessel and continuously rotated during the experiments. 0.7 ml of the culture medium was sampled on days 1, 2, 4, 7, 10, 14 and 21. 1H nuclear magnetic resonance spectroscopy of the culture medium, using the presaturation technique, assessed the following: glucose metabolism, glutamine synthesis and ketogenesis. There was glucose breakdown anaerobically during the first 10 days as manifested by lactate production and pyruvate and threonine consumption. After day 10 there was significantly smaller lactate production (day 1 vs day 10 P < 0.01), and significantly smaller pyruvate (day 1 vs day 14 P < 0.03) and threonine consumption (day 1 vs day 10 P < 0.002), indicative of an aerobic metabolic pattern. Significantly more glutamate was produced after day 10 (day 1 vs day 10 P < 0.031), and more glutamine was consumed after day 14. There was a steadily diminishing production of acetate which reached a minimum on day 14 (day 2 vs day 14 P < 0.00014). After an initial 10 day period of acclimatisation cell aggregates formed in the high aspect ratio vessel switched from the anaerobic pattern of metabolism to the more efficient aerobic pattern, which was exhibited until the experiments were terminated. The high aspect ratio vessel is suitable for long-term culture of porcine hepatocytes and it is worthwhile carrying out scale-up feasibility studies.
Collapse
Affiliation(s)
- K J Dabos
- Liver Cell Biology Laboratory, Department of Internal Medicine, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Hughes JH, Long JP. Simulated microgravity impairs respiratory burst activity in human promyelocytic cells. In Vitro Cell Dev Biol Anim 2001; 37:209-15. [PMID: 11409685 DOI: 10.1007/bf02577531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The concept of microgravity (free-fall) influencing cellular functions in nonadherent cells has not been a part of mainstream scientific thought. Utilizing rotating wall vessels (RWVs) to generate simulated microgravity conditions, we found that respiratory burst activity was significantly altered in nonadherent promyelocytic (HL-60) cells. Specifically, HL-60 cells in simulated microgravity for 6, 19, 42, 47, and 49 d had 3.8-fold fewer cells that were able to participate in respiratory burst activity than cells from 1 x g cultures (P = 0.0011, N = 5). The quantity of respiratory burst products from the cells in simulated microgravity was also significantly reduced. The fold increase over controls in mean fluorescence intensities for oxidative products from cells in microgravity was 1.1+/-0.1 versus 1.8+/-0.3 for cells at 1 x g (P = 0.013, N = 4). Furthermore, the kinetic response for phorbol ester-stimulated burst activity was affected by simulated microgravity. These results demonstrate that simulated microgravity alters an innate cellular function (burst activity). If respiratory burst activity is impaired by true microgravity, then recovery from infections during spaceflight could be delayed. Finally, RWVs provide an excellent model for investigating the mechanisms associated with microgravity-induced changes in nonadherent cells.
Collapse
Affiliation(s)
- J H Hughes
- Department of Molecular Virology, The Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
34
|
Sytkowski AJ, Davis KL. Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. In Vitro Cell Dev Biol Anim 2001; 37:79-83. [PMID: 11332741 DOI: 10.1290/1071-2690(2001)037<0079:ecgadi>2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1 x g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1 x g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1 x g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.
Collapse
Affiliation(s)
- A J Sytkowski
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
35
|
Fei X, Tan BK, Lee ST, Foo CL, Sun DF, Aw SE. Effect of fibrin glue coating on the formation of new cartilage. Transplant Proc 2000; 32:210-7. [PMID: 10701027 DOI: 10.1016/s0041-1345(99)00939-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- X Fei
- Department of Clinical Research, Singapore General Hospital, Singapore
| | | | | | | | | | | |
Collapse
|
36
|
Tawil NJ, Connors D, Gies D, Bennett S, Gruskin E, Mustoe T. Stimulation of wound healing by positively charged dextran beads depends upon clustering of beads and cells in close proximity to the wound. Wound Repair Regen 1999; 7:389-99. [PMID: 10564568 DOI: 10.1046/j.1524-475x.1999.00389.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that positively charged dextran (DEAE A25) increases wound breaking strength in linear incisions in rats and nonhuman primates at days 10-14 postwounding. In this article, we examined the cellular responses to different types of charged dextran beads (DEAE A50 and Cytodex-1) in culture studies and in rat incisional wounds. We show that Cytodex 1 and DEAE A50 beads also increased wound breaking strength in a rat linear incisional model. However, the increase was approximately 30-40% less than that observed in wounds treated with DEAE A25 beads. The main distinction between the three types of beads was the presence of bead clusters observed in tissue sections. Wounds treated with DEAE A25 beads formed distinct clusters while both Cytodex 1 and DEAE A50 beads clustered to a lesser extent or failed to cluster at all. We propose that the different types of charged dextran beads improve healing by promoting cell adhesion and encouraging proliferation in close proximity to the wound. We also hypothesize that the 30-40% improvement in wound breaking strength seen with DEAE A25 beads compared to other types of charged dextran beads (DEAE A50 and Cytodex-1) originates from the unique characteristic of DEAE A25 beads in forming cell-bead aggregates adjacent to the wounded area. This clustering, in turn, affects the distribution of cells infiltrating the wounded area (such as macrophages) during the healing process and, as a consequence, alters the distribution of matrix molecules and growth factors secreted by these cells.
Collapse
Affiliation(s)
- N J Tawil
- Life Sciences, a Division of US Surgical Corp., North Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
37
|
|