1
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Asefifeyzabadi N, Das PK, Onorimuo AH, Durocher G, Shamsi MH. DNA interfaces with dimensional materials for biomedical applications. RSC Adv 2021; 11:28332-28341. [PMID: 35480758 PMCID: PMC9038036 DOI: 10.1039/d1ra04917h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022] Open
Abstract
DNA interfaces with nano, micro, and macro materials have gained widespread attention for various applications. Such interfaces exhibit distinct functions and properties not only due to the unique properties of interfacing materials but also sequence- and conformation-dependent characteristics of the DNA. Therefore, DNA interfaces with diverse dimensional materials have advanced our understanding of the interaction mechanisms and the properties of such interfaces. The unique interfacial properties of such novel materials have applications in nanotechnology, biophysics, cell biology, biosensing, and bioelectronics. The field is growing rapidly with the frequent emergence of new interfaces carrying remarkable interfacial character. In this review article, we have classified the DNA interfaces into 0D, 1D, 2D, and 3D categories based on the types of dimensional materials. We review the key efforts made in the last five years and focus on types of interfaces, interfacing mechanisms, and their state-of-the-art applications. This review will draw a general interest because of the diversity in the DNA materials science but also the unique applications that will play a cutting-edge role in biomedical and biosensing research.
Collapse
Affiliation(s)
- Narges Asefifeyzabadi
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Prabhangshu Kumer Das
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Avokerie Hillary Onorimuo
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Grace Durocher
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| | - Mohtashim Hassan Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale IL USA +1-618-453-6408 +1-618-453-6461
| |
Collapse
|
3
|
Riker KD, Daly ML, Papanikolas MJ, Jian T, Klawa SJ, Shin Sahin JYS, Liu D, Singh A, Miller AG, Freeman R. A Programmable Toolkit to Dynamically Signal Cells Using Peptide Strand Displacement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21018-21029. [PMID: 33938725 DOI: 10.1021/acsami.1c03370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The native extracellular matrix communicates and interacts with cells by dynamically displaying signals to control their behavior. Mimicking this dynamic environment in vitro is essential in order to unravel how cell-matrix interactions guide cell fate. Here, we present a synthetic platform for the temporal display of cell-adhesive signals using coiled-coil peptides. By designing an integrin-engaging coiled-coil pair to have a toehold (unpaired domain), we were able to use a peptide strand displacement reaction to remove the cell cue from the surface. This allowed us to test how the user-defined display of RGDS ligands at variable duration and periodicity of ligand exposure influence cell spreading degree and kinetics. Transient display of αVβ3-selective ligands instructed fibroblast cells to reversibly spread and contract in response to changes in ligand exposure over multiple cycles, exhibiting a universal kinetic response. Also, cells that were triggered to spread and contract repeatedly exhibited greater enrichment of integrins in focal adhesions versus cells cultured on persistent RGDS-displaying surfaces. This dynamic platform will allow us to uncover the molecular code by which cells sense and respond to changes in their environment and will provide insights into ways to program cellular behavior.
Collapse
Affiliation(s)
- Kyle D Riker
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Micah J Papanikolas
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tengyue Jian
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline Yalin S Shin Sahin
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dingyuan Liu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anamika Singh
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - A Griffin Miller
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Rf-Sputtered Teflon®-Modified Superhydrophobic Nanostructured Titanium Dioxide Coating on Aluminum Alloy for Icephobic Applications. COATINGS 2021. [DOI: 10.3390/coatings11040432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Icing on surfaces such as cables or high-voltage insulators may often lead to severe safety issues such as power outages in cold winter conditions. Conventional methods used to tackle such icing problems include mechanical deicing, where the ice is scraped or broken, and chemical deicing, where deicers such as ethylene glycol are used. However, the best approach to addressing these issues is to prevent ice formation in the first place. Research in the past few decades have shown hydrophobic and superhydrophobic surfaces to be effective in reducing ice adhesion. We used the concept of water repellency to turn an aluminum surface superhydrophobic to minimize ice adhesion on these surfaces. However, to render these surfaces also applicable to insulating surfaces, we also demonstrated the adaptability of the concept on a low dielectric oxide, TiO2, to an aluminum surface with icephobic properties. This work demonstrates the importance of the coexistence of rough nanostructures as well as low-surface-energy compositions on a surface to make it superhydrophobic and icephobic and is applicable on metals and insulating surfaces.
Collapse
|
5
|
Shi Y, Liu K, Zhang Z, Tao X, Chen HY, Kingshott P, Wang PY. Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomater Sci Eng 2020; 6:1836-1851. [DOI: 10.1021/acsbiomaterials.9b01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Shi
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Kun Liu
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Zhen Zhang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Xuelian Tao
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
6
|
Enhancing Neurogenesis of Neural Stem Cells Using Homogeneous Nanohole Pattern-Modified Conductive Platform. Int J Mol Sci 2019; 21:ijms21010191. [PMID: 31888101 PMCID: PMC6981825 DOI: 10.3390/ijms21010191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Biocompatible platforms, wherein cells attach and grow, are important for controlling cytoskeletal dynamics and steering stem cell functions, including differentiation. Among various components, membrane integrins play a key role in focal adhesion of cells (18-20 nm in size) and are, thus, highly sensitive to the nanotopographical features of underlying substrates. Hence, it is necessary to develop a platform/technique that can provide high flexibility in controlling nanostructure sizes. We report a platform modified with homogeneous nanohole patterns, effective in guiding neurogenesis of mouse neural stem cells (mNSCs). Sizes of nanoholes were easily generated and varied using laser interference lithography (LIL), by changing the incident angles of light interference on substrates. Among three different nanohole patterns fabricated on conductive transparent electrodes, 500 nm-sized nanoholes showed the best performance for cell adhesion and spreading, based on F-actin and lamellipodia/filopodia expression. Enhanced biocompatibility and cell adhesion of these nanohole patterns ultimately resulted in the enhanced neurogenesis of mNSCs, based on the mRNAs expression level of the mNSCs marker and several neuronal markers. Therefore, platforms modified with homogeneous nanohole patterns fabricated by LIL are promising for the precise tuning of nanostructures in tissue culture platforms and useful for controlling various differentiation lineages of stem cells.
Collapse
|
7
|
Hortigüela V, Larrañaga E, Lagunas A, Acosta GA, Albericio F, Andilla J, Loza-Alvarez P, Martínez E. Large-Area Biomolecule Nanopatterns on Diblock Copolymer Surfaces for Cell Adhesion Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E579. [PMID: 30970600 PMCID: PMC6523780 DOI: 10.3390/nano9040579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022]
Abstract
Cell membrane receptors bind to extracellular ligands, triggering intracellular signal transduction pathways that result in specific cell function. Some receptors require to be associated forming clusters for effective signaling. Increasing evidences suggest that receptor clustering is subjected to spatially controlled ligand distribution at the nanoscale. Herein we present a method to produce in an easy, straightforward process, nanopatterns of biomolecular ligands to study ligand⁻receptor processes involving multivalent interactions. We based our platform in self-assembled diblock copolymers composed of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) that form PMMA nanodomains in a closed-packed hexagonal arrangement. Upon PMMA selective functionalization, biomolecular nanopatterns over large areas are produced. Nanopattern size and spacing can be controlled by the composition of the block-copolymer selected. Nanopatterns of cell adhesive peptides of different size and spacing were produced, and their impact in integrin receptor clustering and the formation of cell focal adhesions was studied. Cells on ligand nanopatterns showed an increased number of focal contacts, which were, in turn, more matured than those found in cells cultured on randomly presenting ligands. These findings suggest that our methodology is a suitable, versatile tool to study and control receptor clustering signaling and downstream cell behavior through a surface-based ligand patterning technique.
Collapse
Affiliation(s)
- Verónica Hortigüela
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Enara Larrañaga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| | - Anna Lagunas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain.
| | - Gerardo A Acosta
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain.
- Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Fernando Albericio
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain.
- Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Jordi Andilla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology (BIST), Castelldefels, 08860 Barcelona, Spain.
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology (BIST), Castelldefels, 08860 Barcelona, Spain.
| | - Elena Martínez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain.
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Dorgham A, Wang C, Morina A, Neville A. 3D tribo-nanoprinting using triboreactive materials. NANOTECHNOLOGY 2019; 30:095302. [PMID: 30530947 DOI: 10.1088/1361-6528/aaf70c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tribology: the science of friction, wear and lubrication has never been associated in a positive way with the ability to manufacture at the nanoscale. Triboreactivity, when the contact between two surfaces promotes a chemical reaction, has been harnessed in this study to create highly tenacious nano-features. The reported 3D tribo-nanoprinting methodology has been demonstrated for organic and inorganic fluids on steel and silicon substrates and is adaptable through the interface tribology. The growth rate, composition and shape of the printed features were all found to be dependent on the nature of the printing liquid and shearing interfaces in addition to the applied temperature and contact force. The reported methodology in this study opens unprecedented future possibilities to utilize the nanoprinted films for the expanding fields of microelectronics, medical devices, flexible electronics and sensor technologies.
Collapse
Affiliation(s)
- Abdel Dorgham
- Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
9
|
Hager R, Arnold A, Sevcsik E, Schütz GJ, Howorka S. Tunable DNA Hybridization Enables Spatially and Temporally Controlled Surface-Anchoring of Biomolecular Cargo. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15021-15027. [PMID: 30160973 PMCID: PMC6291803 DOI: 10.1021/acs.langmuir.8b01942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/30/2018] [Indexed: 05/04/2023]
Abstract
The controlled immobilization of biomolecules onto surfaces is relevant in biosensing and cell biological research. Spatial control is achieved by surface-tethering molecules in micro- or nanoscale patterns. Yet, there is an increasing demand for temporal control over how long biomolecular cargo stays immobilized until released into the medium. Here, we present a DNA hybridization-based approach to reversibly anchor biomolecular cargo onto micropatterned surfaces. Cargo is linked to a DNA oligonucleotide that hybridizes to a sequence-complementary, surface-tethered strand. The cargo is released from the substrate by the addition of an oligonucleotide that disrupts the duplex interaction via toehold-mediated strand displacement. The unbound tether strand can be reloaded. The generic strategy is implemented with small-molecule or protein cargo, varying DNA sequences, and multiple surface patterning routes. The approach may be used as a tool in biological research to switch membrane proteins from a locally fixed to a free state, or in biosensing to shed biomolecular receptors to regenerate the sensor surface.
Collapse
Affiliation(s)
- Roland Hager
- Center
for Advanced Bioanalysis GmbH. Linz, 4020, Austria
| | - Andreas Arnold
- Institute
of Applied Physics, TU Wien, Wien, 1040, Austria
| | - Eva Sevcsik
- Institute
of Applied Physics, TU Wien, Wien, 1040, Austria
| | | | - Stefan Howorka
- Center
for Advanced Bioanalysis GmbH. Linz, 4020, Austria
- Department
of Chemistry, Institute for Structural and Molecular Biology, University College London (UCL), London, WC1E 6BT, U.K.
| |
Collapse
|
10
|
Yesildag C, Bartsch C, Lensen MC. Micropatterning of Au NPs on PEG Hydrogels Using Different Silanes To Control Cell Adhesion on the Nanocomposites. ACS OMEGA 2018; 3:7214-7223. [PMID: 30087909 PMCID: PMC6068692 DOI: 10.1021/acsomega.8b00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Amino-silanization of silica-based substrates has proven to be effective in guiding the immobilization of citrate-stabilized Au NPs in a good, homogeneous fashion. This accomplishment has formed the basis of fabricating micropatterns of Au NPs on such substrates by patterning of oxidized silicon wafers with (3-aminopropyl)trimethoxysilane (amino-silane) using the microcontact printing (μCP) process. This micropattern of amino-silane is used to specifically adsorb Au NPs. To avoid unspecific adsorption to the nonsilanized areas on the silicon wafers, the nonstamped areas were backfilled with self-assembled monolayers of organosilanes, for example, with methyl- or perfluoro-end-groups. Finally, after having fabricated a micropattern of Au NPs on silicon wafers, the Au NP patterns were transferred onto poly(ethylene glycol) hydrogels by our newly developed procedures, and on these nanocomposite materials, controlled cell adhesion has been achieved. Furthermore, these materials are great candidates for plasmon-based biosensor applications and also for various medical applications, such as for drug delivery systems or photothermal therapies.
Collapse
Affiliation(s)
- Cigdem Yesildag
- Technische Universität Berlin,
Nanopatterned Biomaterials, Sekr. TC 1, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Christoph Bartsch
- Technische Universität Berlin,
Nanopatterned Biomaterials, Sekr. TC 1, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Marga C. Lensen
- Technische Universität Berlin,
Nanopatterned Biomaterials, Sekr. TC 1, Strasse des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
11
|
Li S, Zeng S, Chen L, Zhang Z, Hjort K, Zhang SL. Nanoarrays on Passivated Aluminum Surface for Site-Specific Immobilization of Biomolecules. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shiyu Li
- Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Shuangshuang Zeng
- Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Lei Chen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden
| | - Zhen Zhang
- Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Klas Hjort
- Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| | - Shi-Li Zhang
- Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21 Uppsala, Sweden
| |
Collapse
|
12
|
Okoh OA, Klahn P. Trimethyl Lock: A Multifunctional Molecular Tool for Drug Delivery, Cellular Imaging, and Stimuli-Responsive Materials. Chembiochem 2018; 19:1668-1694. [PMID: 29888433 DOI: 10.1002/cbic.201800269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Trimethyl lock (TML) systems are based on ortho-hydroxydihydrocinnamic acid derivatives displaying increased lactonization reactivity owing to unfavorable steric interactions of three pendant methyl groups, and this leads to the formation of hydrocoumarins. Protection of the phenolic hydroxy function or masking of the reactivity as benzoquinone derivatives prevents lactonization and provides a trigger for controlled release of molecules attached to the carboxylic acid function through amides, esters, or thioesters. Their easy synthesis and possible chemical adaption to several different triggers make TML a highly versatile module for the development of drug-delivery systems, prodrug approaches, cell-imaging tools, molecular tools for supramolecular chemistry, as well as smart stimuliresponsive materials.
Collapse
Affiliation(s)
- Okoh Adeyi Okoh
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Philipp Klahn
- Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
13
|
Multilayered membranes with tuned well arrays to be used as regenerative patches. Acta Biomater 2017; 57:313-323. [PMID: 28438703 DOI: 10.1016/j.actbio.2017.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 11/20/2022]
Abstract
Membranes have been explored as patches in tissue repair and regeneration, most of them presenting a flat geometry or a patterned texture at the nano/micrometer scale. Herein, a new concept of a flexible membrane featuring well arrays forming pore-like environments to accommodate cell culture is proposed. The processing of such membranes using polysaccharides is based on the production of multilayers using the layer-by-layer methodology over a patterned PDMS substrate. The detached multilayered membrane exhibits a layer of open pores at one side and a total thickness of 38±2.2µm. The photolithography technology used to produce the molds allows obtaining wells on the final membranes with a tuned shape and micro-scale precision. The influence of post-processing procedures over chitosan/alginate films with 100 double layers, including crosslinking with genipin or fibronectin immobilization, on the adhesion and proliferation of human osteoblast-like cells is also investigated. The results suggest that the presence of patterned wells affects positively cell adhesion, morphology and proliferation. In particular, it is seen that cells colonized preferentially the well regions. The geometrical features with micro to sub-millimeter patterned wells, together with the nano-scale organization of the polymeric components along the thickness of the film will allow to engineer highly versatile multilayered membranes exhibiting a pore-like microstructure in just one of the sides, that could be adaptable in the regeneration of multiple tissues. STATEMENT OF SIGNIFICANCE Flexible multilayered membranes containing multiple micro-reservoirs are found as potential regenerative patches. Layer-by-layer (LbL) methodology over a featured PDMS substrate is used to produce patterned membranes, composed only by natural-based polymers, that can be easily detached from the PDMS substrate. The combination of nano-scale control of the polymeric organization along the thickness of the chitosan/alginate (CHT/ALG) membranes, provided by LbL, together with the geometrical micro-scale features of the patterned membranes offers a uniqueness system that allows cells to colonize 3-dimensionally. This study provides a promising strategy to control cellular spatial organization that can face the region of the tissue to regenerate.
Collapse
|
14
|
Hager R, Burns JR, Grydlik MJ, Halilovic A, Haselgrübler T, Schäffler F, Howorka S. Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2877-84. [PMID: 27062557 DOI: 10.1002/smll.201600311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/18/2016] [Indexed: 06/05/2023]
Abstract
The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co-binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm-wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read-out. The co-immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami-protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single-molecule protein arrays.
Collapse
Affiliation(s)
- Roland Hager
- Center for Advanced Bioanalysis GmbH, 4020, Linz, Austria
| | - Jonathan R Burns
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Martyna J Grydlik
- Institute for Semiconductor and Solid State Physics, Johannes Kepler University, 4040, Linz, Austria
| | - Alma Halilovic
- Institute for Semiconductor and Solid State Physics, Johannes Kepler University, 4040, Linz, Austria
| | | | - Friedrich Schäffler
- Institute for Semiconductor and Solid State Physics, Johannes Kepler University, 4040, Linz, Austria
| | - Stefan Howorka
- Center for Advanced Bioanalysis GmbH, 4020, Linz, Austria
- Department of Chemistry, Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
15
|
Yu Q, Ista LK, Gu R, Zauscher S, López GP. Nanopatterned polymer brushes: conformation, fabrication and applications. NANOSCALE 2016; 8:680-700. [PMID: 26648412 DOI: 10.1039/c5nr07107k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surfaces with end-grafted, nanopatterned polymer brushes that exhibit well-defined feature dimensions and controlled chemical and physical properties provide versatile platforms not only for investigation of nanoscale phenomena at biointerfaces, but also for the development of advanced devices relevant to biotechnology and electronics applications. In this review, we first give a brief introduction of scaling behavior of nanopatterned polymer brushes and then summarize recent progress in fabrication and application of nanopatterned polymer brushes. Specifically, we highlight applications of nanopatterned stimuli-responsive polymer brushes in the areas of biomedicine and biotechnology.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Linnea K Ista
- Center for Biomedical Engineering and Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Renpeng Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA and NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, USA
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA and NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, USA
| | - Gabriel P López
- Center for Biomedical Engineering and Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131, USA and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
16
|
Huang F, Zhou X, Yao D, Xiao S, Liang H. DNA Polymer Brush Patterning through Photocontrollable Surface-Initiated DNA Hybridization Chain Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5800-5806. [PMID: 26382921 DOI: 10.1002/smll.201501826] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/11/2015] [Indexed: 06/05/2023]
Abstract
The fabrication of DNA polymer brushes with spatial resolution onto a solid surface is a crucial step for biochip research and related applications, cell-free gene expression study, and even artificial cell fabrication. Here, for the first time, a DNA polymer brush patterning method is reported based on the photoactivation of an ortho-nitrobenzyl linker-embedded DNA hairpin structure and a subsequent surface-initiated DNA hybridization chain reaction (HCR). Inert DNA hairpins are exposed to ultraviolet light irradiation to generate DNA duplexes with two active sticky ends (toeholds) in a programmable manner. These activated DNA duplexes can initiate DNA HCR to generate multifunctional patterned DNA polymer brushes with complex geometrical shapes. Different multifunctional DNA polymer brush patterns can be fabricated on certain areas of the same solid surface using this method. Moreover, the patterned DNA brush surface can be used to capture target molecules in a desired manner.
Collapse
Affiliation(s)
- Fujian Huang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dongbao Yao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shiyan Xiao
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haojun Liang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
17
|
Abstract
The cellular microenvironment is extremely complex, and a plethora of materials and methods have been employed to mimic its properties in vitro. In particular, scientists and engineers have taken an interdisciplinary approach in their creation of synthetic biointerfaces that replicate chemical and physical aspects of the cellular microenvironment. Here the focus is on the use of synthetic materials or a combination of synthetic and biological ligands to recapitulate the defined surface chemistries, microstructure, and function of the cellular microenvironment for a myriad of biomedical applications. Specifically, strategies for altering the surface of these environments using self-assembled monolayers, polymer coatings, and their combination with patterned biological ligands are explored. Furthermore, methods for augmenting an important physical property of the cellular microenvironment, topography, are highlighted, and the advantages and disadvantages of these approaches are discussed. Finally, the progress of materials for prolonged stem cell culture, a key component in the translation of stem cell therapeutics for clinical use, is featured.
Collapse
Affiliation(s)
- A.M. Ross
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - J. Lahann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Biointerfaces Institute,
- Department of Chemical Engineering,
- Department of Materials Science and Engineering, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
18
|
Roy D, Park JW. Spatially nanoscale-controlled functional surfaces toward efficient bioactive platforms. J Mater Chem B 2015; 3:5135-5149. [PMID: 32262587 DOI: 10.1039/c5tb00529a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interest in well-defined surface architectures has shown a steady increase, particularly among those involved in biological applications where the reactivity of functional groups on the surface is desired to be close to that of the solution phase. Recent research has demonstrated that utilizing the self-assembly process is an attractive and viable choice for the fabrication of two-dimensional nanoscale-controlled architectures. This review highlights representative examples for controlling the spatial placement of reactive functional groups in the optimization of bioactive surfaces. While the selection is not comprehensive, it becomes evident that surface architecture is one of the key components in allowing efficient biomolecular interactions with surfaces and that the optimized lateral spacing between the immobilized molecules is crucial and even critical in some cases.
Collapse
Affiliation(s)
- Dhruvajyoti Roy
- Nanogea Inc., 6162 Bristol Parkway, Culver City, CA 90230, USA
| | | |
Collapse
|
19
|
Xu Y, Wu H, Huang C, Hao C, Wu B, Miao C, Chen S, Jia N. Sensitive detection of tumor cells by a new cytosensor with 3D-MWCNTs array based on vicinal-dithiol-containing proteins (VDPs). Biosens Bioelectron 2015; 66:321-6. [DOI: 10.1016/j.bios.2014.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 12/23/2022]
|
20
|
Fabié L, Agostini P, Stopel M, Blum C, Lassagne B, Subramaniam V, Ondarçuhu T. Direct patterning of nanoparticles and biomolecules by liquid nanodispensing. NANOSCALE 2015; 7:4497-4504. [PMID: 25684315 DOI: 10.1039/c4nr06824f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the localized deposition of nanoparticles and proteins, nano-objects commonly used in many nanodevices, by the liquid nanodispensing (NADIS) technique which consists in depositing droplets of a solution through a nanochannel drilled at the apex of an AFM tip. We demonstrate that the size of spots can be adjusted from microns down to sub-50 nm by tuning the channel diameter, independently of the chemical nature of the solute. In the case of nanoparticles, we demonstrated the ultimate limit of the method and showed that large arrays of single (or pairs of) nanoparticles can be reproducibly deposited. We further explored the possibility to deposit different visible fluorescent proteins using NADIS without loss of protein function. The intrinsic fluorescence of these proteins is characteristic of their structural integrity; the retention of fluorescence after NADIS deposition demonstrates that the proteins are intact and functional. This study demonstrates that NADIS can be a viable alternative to other scanning probe lithography techniques since it combines high resolution direct writing of nanoparticles or biomolecules with the versatility of liquid lithography techniques.
Collapse
Affiliation(s)
- Laure Fabié
- Nanosciences Group, CEMES-CNRS, 29 rue Jeanne Marvig, 31055 Toulouse cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
21
|
Schröter A, Franzka S, Hartmann N. Photothermal laser fabrication of micro- and nanostructured chemical templates for directed protein immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14841-14848. [PMID: 25397891 DOI: 10.1021/la503814n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photothermal patterning of poly(ethylene glycol) terminated organic monolayers on surface-oxidized silicon substrates is carried out using a microfocused beam of a CW laser operated at a wavelength of 532 nm. Trichlorosilane and trimethoxysilane precursors are used for coating. Monolayers from trimethoxysilane precursors show negligible unspecific protein adsorption in the background, i.e., provide platforms of superior protein repellency. Laser patterning results in decomposition of the monolayers and yields chemical templates for directed immobilization of proteins at predefined positions. Characterization is carried out via complementary analytical methods including fluorescence microscopy, atomic force microscopy, and scanning electron microscopy. Appropriate labeling techniques (fluorescent markers and gold clusters) and substrates (native and thermally oxidized silicon substrates) are chosen in order to facilitate identification of protein adsorption and ensure high sensitivity and selectivity. Variation of the laser parameters at a 1/e(2) spot diameter of 2.8 μm allows for fabrication of protein binding domains with diameters on the micrometer and nanometer length scale. Minimum domain sizes are about 300 nm. In addition to unspecific protein adsorption on as-patterned monolayers, biotin-streptavidin coupling chemistry is exploited for specific protein binding. This approach represents a novel facile laser-based means for fabrication of protein micro- and nanopatterns. The routine is readily applicable to femtosecond laser processing of glass substrates for the fabrication of transparent templates.
Collapse
Affiliation(s)
- Anja Schröter
- Fakultät für Chemie, Universität Duisburg-Essen , 45117 Essen, Germany
| | | | | |
Collapse
|
22
|
Ricoult SG, Nezhad AS, Knapp-Mohammady M, Kennedy TE, Juncker D. Humidified microcontact printing of proteins: universal patterning of proteins on both low and high energy surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12002-12010. [PMID: 25222734 DOI: 10.1021/la502742r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microcontact printing (μCP) of proteins is widely used for biosensors and cell biology but is constrained to printing proteins adsorbed to a low free energy, hydrophobic surface to a high free energy, hydrophilic surface. This strongly limits μCP as harsh chemical treatments are required to form a high energy surface. Here, we introduce humidified μCP (HμCP) of proteins which enables universal printing of protein on any smooth surface. We found that by flowing water in proximity to proteins adsorbed on a hydrophilized stamp, the water vapor diffusing through the stamp enables the printing of proteins on both low and high energy surfaces. Indeed, when proteins are printed using stamps with increasing spacing between water-filled microchannels, only proteins adjacent to the channels are transferred. The vapor transport through the stamp was modeled, and by comparing the humidity profiles with the protein patterns, 88% relative humidity in the stamp was identified as the threshold for HμCP. The molecular forces occurring between PDMS, peptides, and glass during printing were modeled ab initio to confirm the critical role water plays in the transfer. Using HμCP, we introduce straightforward protocols to pattern multiple proteins side-by-side down to nanometer resolution without the need for expensive mask aligners, but instead exploiting self-alignment effects derived from the stamp geometry. Finally, we introduce vascularized HμCP stamps with embedded microchannels that allow printing proteins as arbitrary, large areas patterns with nanometer resolution. This work introduces the general concept of water-assisted μCP and opens new possibilities for "solvent-assisted" printing of proteins and of other nanoparticles.
Collapse
Affiliation(s)
- Sébastien G Ricoult
- Department of Biomedical Engineering, McGill University , Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
23
|
Fischer UC, Hentschel C, Fontein F, Stegemann L, Hoeppener C, Fuchs H, Hoeppener S. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1441-1449. [PMID: 25247126 PMCID: PMC4168865 DOI: 10.3762/bjnano.5.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV-ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.
Collapse
Affiliation(s)
- Ulrich Christian Fischer
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Carsten Hentschel
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Florian Fontein
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Linda Stegemann
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Christiane Hoeppener
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Interface Physics Group, Westfälische Wilhelms-University Münster, Wilhelm Klemm Str. 10, 48149 Münster, Germany
| | - Stefanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Humboldtstr. 10, 07743 Jena, Germany
| |
Collapse
|
24
|
El Muslemany KM, Twite AA, ElSohly AM, Obermeyer AC, Mathies RA, Francis MB. Photoactivated bioconjugation between ortho-azidophenols and anilines: a facile approach to biomolecular photopatterning. J Am Chem Soc 2014; 136:12600-6. [PMID: 25171554 DOI: 10.1021/ja503056x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner. The reaction involves the photolysis of 2-azidophenols to generate iminoquinone intermediates that couple rapidly to aniline groups. We demonstrate the broad functional group compatibility of this reaction for the modification of proteins, polymers, oligonucleotides, peptides, and small molecules. As a specific application, the reaction was adapted for the photolithographic patterning of azidophenol DNA on aniline glass substrates. The presence of the DNA was confirmed by the ability of the surface to capture living cells bearing the sequence complement on their cell walls or cytoplasmic membranes. Compared to other light-based DNA patterning methods, this reaction offers higher speed and does not require the use of a photoresist or other blocking material.
Collapse
Affiliation(s)
- Kareem M El Muslemany
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | | | | | | | | | |
Collapse
|
25
|
Ogaki R, Foss M. Biofunctional surface patterns retaining activity after exposure to whole blood. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7014-7023. [PMID: 24866477 DOI: 10.1021/la5007378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biofunctional surface patterns capable of resisting nonspecific bioadsorption while retaining bioactivity play crucial roles in the advancement of life science and biomedical technologies. The currently available functional surface coatings suffer from a high level of nonspecific surface adsorption of proteins under biologically challenging conditions, leading to a loss of activity in functional moieties over time. In this study, the recently discovered facile method of temperature-induced polyelectrolyte (TIP) grafting has been used to graft two biofunctional variants (biotin and nitrilotriacetic acid, NTA) of poly(l-lysine)-grafted PEG (PLL-g-PEG) onto a titanium surface. A significant increase in the polymer adsorption was observed from the TIP-grafted surfaces assembled at 80 °C, compared to the polymer surfaces assembled at ambient temperature (20 °C). These functional PLL-g-PEG surfaces were subsequently incubated in whole human blood continuously for up to 7 days, and the TIP-grafted surfaces achieved close-to-zero nonspecific protein adsorption, as confirmed by ultrasensitive time-of-flight secondary ion mass spectrometry (ToF-SIMS). To test the maintenance of the bioactivity of the biotin and NTA moieties, submicrometer-scale mono- (biotin) and bi- (biotin/NTA) functional surface chemical patterns were fabricated via two-step TIP grafting using colloidal lithography (CL), preincubated in blood for up to 7 days and sequentially exposed to streptavidin and Ni(2+)-histidine-tagged calmodulin. The fluorescence microscopy studies revealed that the PLL-g-PEG-NTA and -biotin surfaces grafted from the TIP method were still capable of recognizing the corresponding affinity proteins for up to 1 and 7 days of preincubation in blood, respectively. These results highlight the bioresistant robustness realized by the facile TIP grafting method, which in turn preserves the activities of biofunctional moieties over a prolonged period in whole blood.
Collapse
Affiliation(s)
- Ryosuke Ogaki
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University , Aarhus, Denmark
| | | |
Collapse
|
26
|
Iqbal P, Rawson F, Ho WKW, Lee SF, Leung KCF, Wang X, Beri A, Preece JA, Ma J, Mendes PM. Surface molecular tailoring using pH-switchable supramolecular dendron-ligand assemblies. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6264-74. [PMID: 24742280 PMCID: PMC4072702 DOI: 10.1021/am501613c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 04/17/2014] [Indexed: 05/20/2023]
Abstract
The rational design of materials with tailored properties is of paramount importance for a wide variety of biological, medical, electronic and optical applications. Here we report molecular level control over the spatial distribution of functional groups on surfaces utilizing self-assembled monolayers (SAMs) of pH-switchable surface-appended pseudorotaxanes. The supramolecular systems were constructed from a poly(aryl ether) dendron-containing a dibenzo[24]crown-8 (DB24C8) macrocycle and a thiol ligand-containing a dibenzylammonium recognition site and a fluorine end group. The dendron establishes the space (dendritic effect) that each pseudorotaxane occupies on the SAM. Following SAM formation, the dendron is released from the surface by switching off the noncovalent interactions upon pH stimulation, generating surface materials with tailored physical and chemical properties.
Collapse
Affiliation(s)
- Parvez Iqbal
- School of Chemical Engineering and School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Frankie
J. Rawson
- Laboratory
of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom
| | - Watson K.-W. Ho
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin NT, Hong Kong SAR
| | - Siu-Fung Lee
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin NT, Hong Kong SAR
| | - Ken Cham-Fai Leung
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin NT, Hong Kong SAR
- Department
of Chemistry and Institute of Creativity and Institute of Molecular Functional Materials, University Grants Committee, The Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Xingyong Wang
- School
of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210093, P. R. China
| | - Akash Beri
- School of Chemical Engineering and School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jon A. Preece
- School of Chemical Engineering and School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jing Ma
- School
of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210093, P. R. China
| | - Paula M. Mendes
- School of Chemical Engineering and School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
- E-mail: . Tel: +(121) 414-5343
| |
Collapse
|
27
|
Recent Advances in Nano Patterning and Nano Imprint Lithography for Biological Applications. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.proeng.2014.12.420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Malainou A, Tsougeni K, Ellinas K, Petrou PS, Constantoudis V, Sarantopoulou E, Awsiuk K, Bernasik A, Budkowski A, Markou A, Panagiotopoulos I, Kakabakos SE, Gogolides E, Tserepi A. Plasma-Assisted Nanoscale Protein Patterning on Si Substrates via Colloidal Lithography. J Phys Chem A 2013; 117:13743-51. [DOI: 10.1021/jp407810x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Malainou
- Department of Microelectronics, Institute of Advanced Materials, Physicochemical Process, Nanotechnology & Microsystems, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - K. Tsougeni
- Department of Microelectronics, Institute of Advanced Materials, Physicochemical Process, Nanotechnology & Microsystems, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - K. Ellinas
- Department of Microelectronics, Institute of Advanced Materials, Physicochemical Process, Nanotechnology & Microsystems, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - P. S. Petrou
- Immunoassay/Immunosensors Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - V. Constantoudis
- Department of Microelectronics, Institute of Advanced Materials, Physicochemical Process, Nanotechnology & Microsystems, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - E. Sarantopoulou
- National Hellenic Research Foundation, Theoretical and Physical Chemistry Institute, 11635, Athens, Greece
| | - K. Awsiuk
- M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - A. Bernasik
- M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - A. Budkowski
- M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
| | - A. Markou
- Department
of Materials Science and Engineering, University of Ioannina, Greece
| | - I. Panagiotopoulos
- Department
of Materials Science and Engineering, University of Ioannina, Greece
| | - S. E. Kakabakos
- Immunoassay/Immunosensors Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - E. Gogolides
- Department of Microelectronics, Institute of Advanced Materials, Physicochemical Process, Nanotechnology & Microsystems, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| | - A. Tserepi
- Department of Microelectronics, Institute of Advanced Materials, Physicochemical Process, Nanotechnology & Microsystems, NCSR “Demokritos”, 15310 Aghia Paraskevi, Attiki, Greece
| |
Collapse
|
29
|
Howorka S. DNA nanoarchitectonics: assembled DNA at interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7344-7353. [PMID: 23373872 DOI: 10.1021/la3045785] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA is a powerful biomaterial for creating rationally designed and functionally enhanced nanostructures. DNA nanoarchitectures positioned at substrate interfaces can offer unique advantages leading to improved surface properties relevant to biosensing, nanotechnology, materials science, and cell biology. This Perspective highlights the benefits and challenges of using assembled DNA as a nanoscale building block for interfacial layers and surveys their applications in three areas: homogeneous dense surface coatings, bottom-up nanopatterning, and 3D nanoparticle lattices. Possible future research developments are discussed at the end of the Perspective.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London, England, United Kingdom.
| |
Collapse
|
30
|
Ross AM, Lahann J. Surface engineering the cellular microenvironment via patterning and gradients. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23275] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Stadermann J, Riedel M, Voit B. Nanostructured Films of Block Copolymers Functionalized With Photolabile Protected Amino Groups. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201200409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Rawson FJ, Yeung CL, Jackson SK, Mendes PM. Tailoring 3D single-walled carbon nanotubes anchored to indium tin oxide for natural cellular uptake and intracellular sensing. NANO LETTERS 2013; 13:1-8. [PMID: 22268573 PMCID: PMC3542912 DOI: 10.1021/nl203780d] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/06/2012] [Indexed: 05/05/2023]
Abstract
The ability to monitor intracellular events in real time is paramount to advancing fundamental biological and clinical science. We present the first demonstration of a direct interface of vertically aligned single-walled carbon nanotubes (VASWCNTs) with eukaryotic cells, RAW 264.7 mouse macrophage cell line. The cells were cultured on indium tin oxide with VASWCNTs. VASWCNTs entered the cells naturally without application of any external force and were shown to sense the intracellular presence of a redox active moiety, methylene blue. The technology developed provides an alluring platform to enable electrochemical study of an intracellular environment.
Collapse
Affiliation(s)
- F. J. Rawson
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - C. L. Yeung
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| | - S. K. Jackson
- School of Biomedical
and Biological
Sciences, University of Plymouth, Portland
Square, Drake Circus, Plymouth, Devon PL4 8AA, U.K
| | - P. M. Mendes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15
2TT, U.K
| |
Collapse
|
33
|
Hynes MJ, Maurer JA. Lighting the path: photopatternable substrates for biological applications. ACTA ACUST UNITED AC 2013; 9:559-64. [DOI: 10.1039/c2mb25403d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
|
35
|
Hynes MJ, Maurer JA. Photoinduced monolayer patterning for the creation of complex protein patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16237-16242. [PMID: 23145751 DOI: 10.1021/la303429a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work investigates self-assembled monolayers that were formed from a glycol-terminated thiol monomer and were patterned using photoinduced monolayer desorption. Utilizing direct-write photolithography provided a facile means to generate complex protein patterns containing gradients and punctate regions. The ablated glycol monolayers were characterized using scanning probe microscopy, which allowed us to observe differences in the nanomechanical properties between the patterned and nonpatterned regions of the substrate. The patterned regions on the surface adsorbed proteins, and this process was monitored quantitatively using surface plasmon resonance imaging (SPRi). Moreover, the concentration of the protein could be controlled accurately by simply setting the gray level in the 8-bit image. Adsorbed protein was probed using a commercially available antibody binding assay, which showed significant enhancement over the background. The ability to produce complex protein patterns will contribute greatly to creating in vitro models that more accurately mimic an in vivo environment.
Collapse
Affiliation(s)
- Matthew J Hynes
- Department of Chemistry and Center for Materials Innovation, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
36
|
Valdrè G, Moro D, Hounsome CM, Antognozzi M. SPM nanolithography of hydroxy-silicates. NANOTECHNOLOGY 2012; 23:385301. [PMID: 22948182 DOI: 10.1088/0957-4484/23/38/385301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bio-nanopatterning of surfaces is becoming a crucial technique with applications ranging from molecular and cell biology to medicine. Scanning probe microscopy (SPM) is one of the most useful tools for nanopatterning of flat surfaces. However, these patterns are usually built on homogeneous surfaces and require chemical functionalization to ensure specific affinity. Layered magnesium-aluminum hydroxide-silicates have already shown unique self-assembly properties on DNA molecules, due to their peculiar crystal chemistry based on alternating positive and negative crystal layers. However, patterns on these surfaces tend to be randomly organized. Here we show etching and oxidation at the nanometer scale of magnesium-aluminum hydroxide-silicates using the same SPM probe for the creation of organized nanopatterns. In particular, it is possible to produce three-dimensional structures in a reproducible way, with a depth resolution of 0.4 nm, lateral resolution of tens of nm, and a speed of about 10 μm s(-1). We report, as an example, the construction of an atomically flat charged pattern, designed to guide DNA deposition along predetermined directions without the need of any chemical functionalization of the surface.
Collapse
Affiliation(s)
- G Valdrè
- Department of Earth and Geo-Environmental Sciences, University of Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
37
|
Huang M, Galarreta BC, Artar A, Adato R, Aksu S, Altug H. Reusable nanostencils for creating multiple biofunctional molecular nanopatterns on polymer substrate. NANO LETTERS 2012; 12:4817-4822. [PMID: 22839211 DOI: 10.1021/nl302266u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we demonstrate a novel method for high throughput patterning of bioprobes with nanoscale features on biocompatible polymer substrate. Our technique, based on nanostencil lithography, employs high resolution and robust masks integrated with array of reservoirs. We show that the smallest pattern size can reach down to 100 nm. We also show that different types of biomolecules can be patterned on the same substrate simultaneously. Furthermore, the stencil can be reused multiple times to generate a series of identical patterns at low cost. Finally, we demonstrate that biomolecules can be covalently patterned on the surface while retaining their biofunctionalities. By offering the flexibility on the nanopattern design and enabling the reusability of the stencil, our approach significantly simplifies the bionanopatterning process and therefore could have profound implications in diverse biological and medical applications.
Collapse
Affiliation(s)
- Min Huang
- Electrical and Computer Engineering, Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | | | | | | | | | | |
Collapse
|
38
|
Costello CM, Yeung CL, Rawson FJ, Mendes PM. Application of nanotechnology to control bacterial adhesion and patterning on material surfaces. JOURNAL OF EXPERIMENTAL NANOSCIENCE 2012; 7:634-651. [PMID: 24273593 PMCID: PMC3836354 DOI: 10.1080/17458080.2012.740640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/13/2012] [Indexed: 06/02/2023]
Abstract
Bacterial adhesion and biofilm formation on surfaces raises health hazard issues in the medical environment. Previous studies of bacteria adhesion have focused on observations in their natural/native environments. Recently, surface science has contributed in advancing the understanding of bacterial adhesion by providing ideal platforms that attempt to mimic the bacteria's natural environments, whilst also enabling concurrent control, selectivity and spatial control of bacterial adhesion. In this review, we will look at techniques of how nanotechnology is used to control cell adhesion on a planar scale, in addition to describing the use of nanotools for cell micropatterning. Additionally, it will provide a general background of common methods for nanoscale modification enabling biologist unfamiliar with nanotechnology to enter the field.
Collapse
Affiliation(s)
- Cait M. Costello
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chun L. Yeung
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Frankie J. Rawson
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paula M. Mendes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
39
|
Mitsakakis K, Sekula-Neuner S, Lenhert S, Fuchs H, Gizeli E. Convergence of dip-pen nanolithography and acoustic biosensors towards a rapid-analysis multi-sample microsystem. Analyst 2012; 137:3076-82. [PMID: 22627738 DOI: 10.1039/c2an35156k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work demonstrates for the first time patterning of a ready-to-use biosensor with several different biomolecules using Dip-Pen Nanolithography (DPN) for the development of a procedure towards more rapid and efficient multi-sample detection. The biosensor platform used is based on a Surface Acoustic Wave (SAW) device integrated with a parallel-channel microfluidic module, termed as "microfluidics-on-SAW" ("μF-on-SAW"), for reproducible multi-sample analysis. Lipids with different functionalized head groups were patterned at distinct, microfluidic-formed rectangular domains with sharp edges all located on the same sensor surface; pattern quality was verified using a fluorescent microscope. The functionality of the head groups, the efficiency of the patterning method, and the suitability of DPN for the surface modification of the acoustic device were subsequently examined through acoustic experiments. The μF-on-SAW configuration was used to detect specific binding between the pre-patterned functionalized lipids with their corresponding biomolecules. The achievement of an improved sensitivity (5-fold compared to previous acoustic configurations) and reduced preparation time by at least 2 h clearly indicates the suitability of DPN as a direct patterning method for ready-to-use acoustic sensor devices like the μF-on-SAW towards integrated, rapid-analysis, multi-sample biosensing microsystem development.
Collapse
Affiliation(s)
- Konstantinos Mitsakakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Crete, Greece.
| | | | | | | | | |
Collapse
|
40
|
Schlapak R, Danzberger J, Haselgrübler T, Hinterdorfer P, Schäffler F, Howorka S. Painting with biomolecules at the nanoscale: biofunctionalization with tunable surface densities. NANO LETTERS 2012; 12:1983-1989. [PMID: 22376238 DOI: 10.1021/nl2045414] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present a generic and flexible method to nanopattern biomolecules on surfaces. Carbon-containing nanofeatures are written at variable diameter and spacing by a focused electron beam on a poly(ethylene glycol) (PEG)-coated glass substrate. Proteins physisorb to the nanofeatures with remarkably high contrast factors of more than 1000 compared to the surrounding PEG surfaces. The biological activity of model proteins can be retained as shown by decorating avidin spots with biotinylated DNA, thereby underscoring the universality of the nano-biofunctionalized platform for the binding of other biotinylated ligands. In addition, biomolecule densities can be tuned over several orders of magnitude within the same array, as demonstrated by painting a microscale image with nanoscale pixels. We expect that these unique advantages open up entirely new ways to design biophysical experiments, for instance, on cells that respond to the nanoscale densities of activating molecules.
Collapse
|
41
|
Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study. Colloids Surf B Biointerfaces 2012; 94:213-9. [PMID: 22341519 DOI: 10.1016/j.colsurfb.2012.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/20/2011] [Accepted: 01/23/2012] [Indexed: 11/24/2022]
Abstract
Air nanobubbles and nanopancakes were investigated in situ by both tapping mode atomic force microscopy (TM AFM) and atomic force nanolithography techniques employing bovine serum albumin (BSA) film supported by highly oriented pyrolytic graphite (HOPG). The BSA denaturation induced by the water-to-ethanol exchange served for conservation of nanobubble and nanopancake sites appearing as imprints in BSA film left by gaseous cavities formerly present on the interface in the aqueous environment. Once the BSA film was gently removed by the nanoshaving technique applied in ethanol, a clean basal plane HOPG area with well-defined dimensions was regenerated. The subsequent reverse ethanol-to-water exchange led to the re-formation of nanopancakes specifically at the nanoshaved area. Our approach paves the way for the study of gaseous nanostructures with defined dimensions, formed at solid-liquid interface under controlled conditions.
Collapse
|
42
|
Stadermann J, Riedel M, Komber H, Simon F, Voit B. Functionalized block copolymers for preparation of reactive self-assembled surface patterns. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.25901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
De Cat I, Gobbo C, Van Averbeke B, Lazzaroni R, De Feyter S, van Esch J. Controlling the Position of Functional Groups at the Liquid/Solid Interface: Impact of Molecular Symmetry and Chirality. J Am Chem Soc 2011; 133:20942-50. [DOI: 10.1021/ja209018u] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Inge De Cat
- Department of Chemistry, Division of Molecular Imaging and Photonics, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Cristian Gobbo
- Department of Chemistry, Laboratory of Self-assembling Systems, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Bernard Van Averbeke
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jan van Esch
- Department of Chemistry, Laboratory of Self-assembling Systems, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| |
Collapse
|
44
|
Interactions of nanobubbles with bovine serum albumin and papain films on gold surfaces. Biointerphases 2011; 6:164-70. [DOI: 10.1116/1.3650300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Li M, Gobbo C, De Cat I, Eelkema R, Vanaverbeke B, Lazzaroni R, De Feyter S, van Esch J. Molecular patterning at a liquid/solid interface: the foldamer approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13598-13605. [PMID: 22011112 DOI: 10.1021/la203410k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Molecular patterning has received a lot of attention in the past decade; however, the functionalization of these surface-confined 2D patterns on the nanoscale level remains a challenge. Assembling 2D patterns from oligomeric foldamers turns out to be an interesting approach to accomplishing the controlled positioning of functional elements. We designed a family of peptidomimetic foldamers bearing a 2D turn element folding at the liquid/solid interface. The turning element was developed while studying derivatives with one turning unit. Furthermore, folding was found to be induced by the confinement of the surface. This achievement paves the way for the design of foldamers with multiple turns, providing a higher versatility in the functionalization of nanopatterns.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry, Division of Molecular Imaging and Photonics, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kolivoška V, Gál M, Lachmanová Š, Janda P, Sokolová R, Hromadová M. Nanoshaving of bovine serum albumin films adsorbed on monocrystalline surfaces and interfaces. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We apply the ex situ and in situ atomic force microscopy (AFM) nanoshaving technique to investigate the bovine serum albumin (BSA) films on Au(111) and highly oriented pyrolytic graphite (HOPG) surfaces. The both substrates were found to support the BSA films. The section analysis performed before and after the AFM nanoshaving allowed the determination of the film thickness. On Au(111) surface, both ex situ and in situ nanoshaving revealed that the film is formed by strongly denatured BSA molecules, with the average thickness 2.3 ± 0.2 and 2.0 ± 0.2 nm, respectively. On the other hand, the HOPG substrate was found to support less denatured BSA films, with the average film thickness 4.7 ± 0.3 and 5.2 ± 0.3 nm, based on the ex situ and in situ measurements, respectively.
Collapse
|
47
|
Wu CC, Reinhoudt DN, Otto C, Subramaniam V, Velders AH. Strategies for patterning biomolecules with dip-pen nanolithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:989-1002. [PMID: 21400657 DOI: 10.1002/smll.201001749] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Indexed: 05/30/2023]
Abstract
Dip-pen nanolithography (DPN) is an atomic force microscopy (AFM)-based lithography technique, which has the ability to fabricate patterns with a feature size down to approximately 15 nm using both top-down and bottom-up approaches. DPN utilizes the water meniscus formed between an AFM tip and a substrate to transfer ink molecules onto surfaces. A major application of this technique is the fabrication of micro- and nano-arrays of patterned biomolecules. To achieve this goal, a variety of chemical approaches has been used. This review concisely describes the development of DPN in the past decade and presents the related chemical strategies that have been reported to fabricate biomolecular patterns with DPN at micrometer and nanometer scale, classified into direct- and indirect DPN methodologies, discussing tip-functionalization strategies as well.
Collapse
Affiliation(s)
- Chien-Ching Wu
- Laboratory for Supramolecular Chemistry and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Costello C, Kreft JU, Thomas CM, Mendes PM. Protein nanoarrays for high-resolution patterning of bacteria on gold surfaces. Methods Mol Biol 2011; 790:191-200. [PMID: 21948416 DOI: 10.1007/978-1-61779-319-6_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In recent years, the majority of research on surface patterning, as a means of precisely controlling cell -positioning and adhesion on surfaces, has focused on eukaryotic cells. Such research has led to new insights into cell biology, advances in tissue engineering, and cell motility. In contrast, considerably less work has been reported on tightly controlled patterning of bacteria, despite its potential in a wide variety of applications, including fabrication of in vitro model systems for studies of bacterial processes, such as quorum sensing and horizontal gene transfer. This is partly due to their small size - often 1-3 μm or less. To study these processes, microscale and nanoscale engineered material surfaces must be developed to create in vitro bacteria arrays, which can allow valuable insights into natural systems such as the soil or the human gut, and are often complex and spatially structured habitats. Here, we outline a protocol to create defined patterns of bacteria to study such systems at the single cell level that is based on the formation of protein nanoarrays on mannoside-terminated self-assembled monolayers via nanocontact printing and the subsequent deposition of bacteria from solution on the unpatterned regions of the mannoside-terminated substrate.
Collapse
Affiliation(s)
- Cait Costello
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | |
Collapse
|
49
|
Lee BK, Kawai T, Chung BH. Direct Nanopatterning of Silsesquioxane/Poly(ethylene glycol) Blends with High Stability and Nonfouling Properties. Macromol Biosci 2010; 11:600-6. [PMID: 21188687 DOI: 10.1002/mabi.201000362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 09/20/2010] [Indexed: 11/10/2022]
Affiliation(s)
- Bong Kuk Lee
- BioNanotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology, Yuseong-gu, Daejeon, Korea
| | | | | |
Collapse
|
50
|
Naik AD, Stappers L, Snauwaert J, Fransaer J, Garcia Y. A biomembrane stencil for crystal growth and soft lithography of a thermochromic molecular sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2842-2846. [PMID: 21080388 DOI: 10.1002/smll.201001527] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Anil D Naik
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|