1
|
Gao W, Mu Q, Cui D, Zhu C, Jiao Q, Su L, Lu S, Yang R. Alterations of subcortical structural volume in pediatric bipolar disorder patients with and without psychotic symptoms. Psychiatry Res Neuroimaging 2025; 347:111948. [PMID: 39798502 DOI: 10.1016/j.pscychresns.2025.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) with psychotic symptoms may predict more severe impairment in social functioning, but the underlying biological mechanisms remain unclear. The aim of this study was to investigate alterations in subcortical structural volume in PBD with and without psychotic symptoms. METHODS We recruited 24 psychotic PBD (P-PBD) patients, 24 non-psychotic PBD (NP-PBD) patients, and 18 healthy controls (HCs). All participants underwent scanning with a 3.0 T Siemens Trio scanner. The FreeSurfer 7.4.0 software was employed to calculate the volume of each subcortical structure. An analysis of covariance (ANCOVA) was performed to identify brain regions with significant volume differences among the three groups, and then the inter-group comparisons were calculated. Partial correlation analyses were conducted to identify relationships between subcortical structural volumes and clinical features. Finally, receiver operating characteristic curve (ROC) analysis was employed to verify the capacity to distinguish between P-PBD and NP-PBD, P-PBD and HCs, and NP-PBD and HCs. RESULTS ANCOVA revealed significant differences in the volumes of bilateral lateral ventricles, third ventricle, left thalamus, and right pallidum among three groups. Compared with HC, the third ventricle volume was increased in both groups of PBD patients, whereas the left thalamus and right pallidum volumes were decreased, and the bilateral lateral ventricles were enlarged in P-PBD patients. In contrast, only the third ventricle showed further enlargement in the group of P-PBD patients compared with NP-PBD patients. Partial correlation analyses revealed that episode times were associated with the third ventricle volume in P-PBD patients. Furthermore, ROC analyses indicated that volume in the left lateral ventricle exhibited the greatest capacity to distinguish between the P-PBD and NP-PBD, and the third ventricle performed best in distinguishing both the P-PBD group from HCs and the NP-PBD group from HCs. The combined metrics demonstrated greater diagnostic value in two-by-two comparisons. CONCLUSION Current research suggests that PBD with psychotic symptoms may have more extensive lateral and third ventricular volume enlargement. Bilateral lateral ventricles may serve as potential neurobiomarkers to distinguish P- PBD patients from NP-PBD patients.
Collapse
Affiliation(s)
- Weijia Gao
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, Hangzhou, Zhejiang, China
| | - Qingli Mu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Ce Zhu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China; Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Psychiatry, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Qing Jiao
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shangdong, China
| | - Linyan Su
- Mental Health Institute, The Second Xiangya Hospital of Central South University, Key Laboratory of Psychiatry and Mental Health of Hunan Province, National Technology Institute of Psychiatry, Changsha, Hunan, China
| | - Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Key Laboratory of Precision Psychiatry, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, Zhejiang, China.
| | - Rongwang Yang
- Department of Child Psychology, The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, National Children's Regional Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Nan X, Li W, Wang L. Functional magnetic resonance imaging studies in bipolar disorder in resting state: A coordinates-based meta-analysis. Psychiatry Res Neuroimaging 2024; 344:111869. [PMID: 39146823 DOI: 10.1016/j.pscychresns.2024.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Exploring changes in the intrinsic activity of the brain in people with bipolar disorder (BD) is necessary. However, the findings have not yet led to consistent conclusions. In this regard, this paper aims to extract more obvious differential brain areas and neuroimaging markers, for the purpose of providing assistance for early clinical diagnosis and subsequent treatment. We conducted a meta-analysis of whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) studies using seed-based d-mapping software that examined differences in amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) between patients with BD and healthy controls (HCs). Seed-based d-Mapping (formerly Signed Differential Mapping) with Permutation of Subject Images, or SDM-PSI, is a statistical technique for meta-analyzing studies of differences in brain activity or structure. A total of 16 articles involving 1112 individuals were included in this study for meta-analysis. This paper confidently analyzes the correlation between the clinical scales HAMD, HAMA, and YMRS, and the area of difference. We found significant changes that increased activation in the anterior connective and left lens nucleus, the nucleus of the shell, and BA 48 in BD patients compared with HC (P < 0.05, uncorrected), as well as a significant correlation between HAMD and the left superior frontal gyrus (after FWE correction P < 0.05). Therefore, basal ganglia and frontal cortex may have important significance in the pathogenesis and pathological basis of BD, making it an important issue to be attached importance to.
Collapse
Affiliation(s)
- Xia Nan
- Baiyin City Central Hospital, Baiyin, China
| | - Wenling Li
- The NO.2 People's Hospital of Lanzhou, Lanzhou, China
| | - Lin Wang
- Department of Radiology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China; Cancer Clinical Medical Research Center, Gansu combination of traditional Chinese and Western medicine, Lanzhou, China.
| |
Collapse
|
3
|
Chen YL, Jhou JE, Bai YM, Chen MH, Tu PC, Wu YT. Brain functional networks and structures that categorize type 2 bipolar disorder and major depression. PROGRESS IN BRAIN RESEARCH 2024; 290:63-81. [PMID: 39448114 DOI: 10.1016/bs.pbr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Distinguishing between type 2 bipolar disorder (BD II) and major depressive disorder (MDD) poses a significant clinical challenge due to their overlapping symptomatology. This study aimed to investigate neurobiological markers that differentiate BD II from MDD using multimodal neuroimaging techniques. METHODS Fifty-nine individuals with BD II, 114 with MDD, and 117 healthy controls participated in the study, undergoing structural and functional magnetic resonance imaging. Functional connectivity (FC) analysis used regions from Shen's whole-brain FC-based atlas. Feature selection was carried out using independent t-tests and ReliefF algorithms, followed by classification using Support Vector Machine and wide neural network. RESULTS Significant differences in brain structure and function were observed among patients with BD II, MDD, and healthy controls. Both structural and functional alterations were more pronounced in BD II compared to MDD, particularly in regions associated with sensory processing, motor function, and the cerebellum. Classification based on neurobiological markers achieved a mean testing accuracy of 88.24%, with the t-test selected features outperforming those selected by ReliefF. Dysconnectivity patterns correlated with symptom severity and functioning in BD II but not MDD. CONCLUSION Our findings suggest that neurobiological markers derived from multimodal imaging techniques can effectively differentiate patients with BD II from those with MDD. The identified alterations in brain structure and function, particularly in sensory-motor processing networks, may serve as potential biomarkers for distinguishing between these mood disorders. However, the influence of psychotropic medications and daily functioning severity on these neurobiological markers warrants further investigation.
Collapse
Affiliation(s)
- Yen-Ling Chen
- Department of Occupational Therapy, I-Shou University, Kaohsiung, Taiwan
| | - Jia-En Jhou
- Department of Occupational Therapy, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Ding H, Zhang Q, Shu YP, Tian B, Peng J, Hou YZ, Wu G, Lin LY, Li JL. Vulnerable brain regions in adolescent major depressive disorder: A resting-state functional magnetic resonance imaging activation likelihood estimation meta-analysis. World J Psychiatry 2024; 14:456-466. [PMID: 38617984 PMCID: PMC11008390 DOI: 10.5498/wjp.v14.i3.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Adolescent major depressive disorder (MDD) is a significant mental health concern that often leads to recurrent depression in adulthood. Resting-state functional magnetic resonance imaging (rs-fMRI) offers unique insights into the neural mechanisms underlying this condition. However, despite previous research, the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated. AIM To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation (ALE) meta-analysis. METHODS We performed a comprehensive literature search through July 12, 2023, for studies investigating brain functional changes in adolescent MDD patients. We utilized regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) analyses. We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls (HCs) using ALE. RESULTS Ten studies (369 adolescent MDD patients and 313 HCs) were included. Combining the ReHo and ALFF/fALFF data, the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs (voxel size: 648 mm3, P < 0.05), and no brain region exhibited increased activity. Based on the ALFF data, we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients (voxel size: 736 mm3, P < 0.05), with no regions exhibiting increased activity. CONCLUSION Through ALE meta-analysis, we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients, increasing our understanding of the neuropathology of affected adolescents.
Collapse
Affiliation(s)
- Hui Ding
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Qin Zhang
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang 550000, Guizhou Province, China
| | - Yan-Ping Shu
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Bin Tian
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Ji Peng
- Department of Radiology, The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Yong-Zhe Hou
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Gang Wu
- Department of Psychiatry of Women and Children, The Second People's Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China
| | - Li-Yun Lin
- Department of Radiology, Zhijin County People's Hospital, Bijie 552100, Guizhou Province, China
| | - Jia-Lin Li
- Medical Humanities College, Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
6
|
Lin S, Zhang C, Zhang Y, Chen S, Lin X, Peng B, Xu Z, Hou G, Qiu Y. Shared and specific neurobiology in bipolar disorder and unipolar disorder: Evidence based on the connectome gradient and a transcriptome-connectome association study. J Affect Disord 2023; 341:304-312. [PMID: 37661059 DOI: 10.1016/j.jad.2023.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Distinguishing bipolar disorder (BD) and unipolar disorder (UD) remains challenging. To identify the common and diagnosis-specific neuropathological alterations and their potential molecular mechanisms in patients with UD and BD (with a current depressive episode). METHODS Resting-state functional magnetic resonance imaging was obtained from 279 participants (95 BD patients, 107 UD patients and 77 health controls). Connectome gradients analysis was performed to explore the shared and diagnosis-specific gradient alterations in BD and UD. The Allen Human Brain Atlas data was used to explore the potential gene mechanisms of the gradient alterations. RESULTS BD and UD had shared hierarchical disorganisation, including downgrading and contraction from the unimodal sensory networks (vision and sensorimotor) to the transmodal cognitive networks (limbic, frontoparietal, dorsal attention, and default) (all P < 0.05, FDR corrected) in gradient 1 and gradient 2. The BD patients had specific connectome gradient dysfunction in the subcortical network. Moreover, the hierarchical disorganisation was closely correlated with profiles of gene expression specific to the neuroglial cells in the prefrontal cortex in BD and UD, while the most correlated gene ontology biological processes and function were concentrated in synaptic signalling, calcium ion binding, and transmembrane transporter activity. CONCLUSION These findings reveal the shared and diagnosis-specific neurobiological mechanism underlying BD and UD patients, which advances our understanding of the neuromechanisms of these disorders.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Chao Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Ziyun Xu
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China.
| |
Collapse
|
7
|
Yang R, Zhao Y, Tan Z, Lai J, Chen J, Zhang X, Sun J, Chen L, Lu K, Cao L, Liu X. Differentiation between bipolar disorder and major depressive disorder in adolescents: from clinical to biological biomarkers. Front Hum Neurosci 2023; 17:1192544. [PMID: 37780961 PMCID: PMC10540438 DOI: 10.3389/fnhum.2023.1192544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Background Mood disorders are very common among adolescents and include mainly bipolar disorder (BD) and major depressive disorder (MDD), with overlapping depressive symptoms that pose a significant challenge to realizing a rapid and accurate differential diagnosis in clinical practice. Misdiagnosis of BD as MDD can lead to inappropriate treatment and detrimental outcomes, including a poorer ultimate clinical and functional prognosis and even an increased risk of suicide. Therefore, it is of great significance for clinical management to identify clinical symptoms or features and biological markers that can accurately distinguish BD from MDD. With the aid of bibliometric analysis, we explore, visualize, and conclude the important directions of differential diagnostic studies of BD and MDD in adolescents. Materials and methods A literature search was performed for studies on differential diagnostic studies of BD and MDD among adolescents in the Web of Science Core Collection database. All studies considered for this article were published between 2004 and 2023. Bibliometric analysis and visualization were performed using the VOSviewer and CiteSpace software. Results In total, 148 publications were retrieved. The number of publications on differential diagnostic studies of BD and MDD among adolescents has been generally increasing since 2012, with the United States being an emerging hub with a growing influence in the field. Boris Birmaher is the top author in terms of the number of publications, and the Journal of Affective Disorders is the most published journal in the field. Co-occurrence analysis of keywords showed that clinical characteristics, genetic factors, and neuroimaging are current research hotspots. Ultimately, we comprehensively sorted out the current state of research in this area and proposed possible research directions in future. Conclusion This is the first-ever study of bibliometric and visual analyses of differential diagnostic studies of BD and MDD in adolescents to reveal the current research status and important directions in the field. Our research and analysis results might provide some practical sources for academic scholars and clinical practice.
Collapse
Affiliation(s)
- Ruilan Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanmeng Zhao
- Southern Medical University, Guangzhou, Guangdong, China
| | - Zewen Tan
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juan Lai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Jianshan Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofei Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaqi Sun
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Chen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kangrong Lu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Liping Cao
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuemei Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Bashford-Largo J, R Blair RJ, Blair KS, Dobbertin M, Dominguez A, Hatch M, Bajaj S. Identification of structural brain alterations in adolescents with depressive symptomatology. Brain Res Bull 2023; 201:110723. [PMID: 37536609 PMCID: PMC10451038 DOI: 10.1016/j.brainresbull.2023.110723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Depressive symptoms can emerge as early as childhood and may lead to adverse situations in adulthood. Studies have examined structural brain alternations in individuals with depressive symptoms, but findings remain inconclusive. Furthermore, previous studies have focused on adults or used a categorical approach to assess depression. The current study looks to identify grey matter volumes (GMV) that predict depressive symptomatology across a clinically concerning sample of adolescents. METHODS Structural MRI data were collected from 338 clinically concerning adolescents (mean age = 15.30 SD=2.07; mean IQ = 101.01 SD=12.43; 132 F). Depression symptoms were indexed via the Mood and Feelings Questionnaire (MFQ). Freesurfer was used to parcellate the brain into 68 cortical regions and 14 subcortical regions. GMV was extracted from all 82 brain areas. Multiple linear regression was used to look at the relationship between MFQ scores and region-specific GMV parameter. Follow up regressions were conducted to look at potential effects of psychiatric diagnoses and medication intake. RESULTS Our regression analysis produced a significant model (R2 = 0.446, F(86, 251) = 2.348, p < 0.001). Specifically, there was a negative association between GMV of the left parahippocampal (B = -0.203, p = 0.005), right rostral anterior cingulate (B = -0.162, p = 0.049), and right frontal pole (B = -0.147, p = 0.039) and a positive association between GMV of the left bank of the superior temporal sulcus (B = 0.173, p = 0.029). Follow up analyses produced results proximal to the main analysis. CONCLUSIONS Altered regional brain volumes may serve as biomarkers for the development of depressive symptoms during adolescence. These findings suggest a homogeneity of altered cortical structures in adolescents with depressive symptoms.
Collapse
Affiliation(s)
- Johannah Bashford-Largo
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Karina S Blair
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Matthew Dobbertin
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA; Child and Adolescent Inpatient Psychiatric Unit, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Ahria Dominguez
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Melissa Hatch
- Multimodal Clinical Neuroimaging Laboratory (MCNL), Center for Neurobehavioral Research, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Sahil Bajaj
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Long X, Li L, Wang X, Cao Y, Wu B, Roberts N, Gong Q, Kemp GJ, Jia Z. Gray matter alterations in adolescent major depressive disorder and adolescent bipolar disorder. J Affect Disord 2023; 325:550-563. [PMID: 36669567 DOI: 10.1016/j.jad.2023.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Gray matter volume (GMV) alterations in several emotion-related brain areas are implicated in mood disorders, but findings have been inconsistent in adolescents with major depressive disorder (MDD) or bipolar disorder (BD). METHODS We conducted a comprehensive meta-analysis of 35 region-of-interest (ROI) and 18 whole-brain voxel-based morphometry (VBM) MRI studies in adolescent MDD and adolescent BD, and indirectly compared the results in the two groups. The effects of age, sex, and other demographic and clinical scale scores were explored using meta-regression analysis. RESULTS In the ROI meta-analysis, right putamen volume was decreased in adolescents with MDD, while bilateral amygdala volume was decreased in adolescents with BD compared to healthy controls (HC). In the whole-brain VBM meta-analysis, GMV was increased in right middle frontal gyrus and decreased in left caudate in adolescents with MDD compared to HC, while in adolescents with BD, GMV was increased in left superior frontal gyrus and decreased in limbic regions compared with HC. MDD vs BD comparison revealed volume alteration in the prefrontal-limbic system. LIMITATION Different clinical features limit the comparability of the samples, and small sample size and insufficient clinical details precluded subgroup analysis or meta-regression analyses of these variables. CONCLUSIONS Distinct patterns of GMV alterations in adolescent MDD and adolescent BD could help to differentiate these two populations and provide potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Xipeng Long
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lei Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Xiuli Wang
- Department of Clinical Psychiatry, the Fourth People's Hospital of Chengdu, Chengdu 610041, Sichuan, PR China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China
| | - Baolin Wu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China; Department of Radiology, West China Xiamen Hospital of Sichuan University, 699Jinyuan Xi Road, Jimei District, 361021 Xiamen, Fujian, PR China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Center (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, Sichuan, PR China; Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
10
|
Seewoo BJ, Rodger J, Demitrack MA, Heart KL, Port JD, Strawn JR, Croarkin PE. Neurostructural Differences in Adolescents With Treatment-Resistant Depression and Treatment Effects of Transcranial Magnetic Stimulation. Int J Neuropsychopharmacol 2022; 25:619-630. [PMID: 35089358 PMCID: PMC9380715 DOI: 10.1093/ijnp/pyac007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite its morbidity and mortality, the neurobiology of treatment-resistant depression (TRD) in adolescents and the impact of treatment on this neurobiology is poorly understood. METHODS Using automatic segmentation in FreeSurfer, we examined brain magnetic resonance imaging baseline volumetric differences among healthy adolescents (n = 30), adolescents with major depressive disorder (MDD) (n = 19), and adolescents with TRD (n = 34) based on objective antidepressant treatment rating criteria. A pooled subsample of adolescents with TRD were treated with 6 weeks of active (n = 18) or sham (n = 7) 10-Hz transcranial magnetic stimulation (TMS) applied to the left dorsolateral prefrontal cortex. Ten of the adolescents treated with active TMS were part of an open-label trial. The other adolescents treated with active (n = 8) or sham (n = 7) were participants from a randomized controlled trial. RESULTS Adolescents with TRD and adolescents with MDD had decreased total amygdala (TRD and MDD: -5%, P = .032) and caudal anterior cingulate cortex volumes (TRD: -3%, P = .030; MDD: -.03%, P = .041) compared with healthy adolescents. Six weeks of active TMS increased total amygdala volumes (+4%, P < .001) and the volume of the stimulated left dorsolateral prefrontal cortex (+.4%, P = .026) in adolescents with TRD. CONCLUSIONS Amygdala volumes were reduced in this sample of adolescents with MDD and TRD. TMS may normalize this volumetric finding, raising the possibility that TMS has neurostructural frontolimbic effects in adolescents with TRD. TMS also appears to have positive effects proximal to the site of stimulation.
Collapse
Affiliation(s)
- Bhedita J Seewoo
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, WA, Australia
- Centre for Microscopy, Characterisation and Analysis, Research Infrastructure Centre, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, WA, Australia
- Brain Plasticity Group, Perron Institute for Neurological and Translational Science, WA, Australia
| | - Mark A Demitrack
- Mayo Clinic, Rochester, Minnesota, USA; Trevena, Inc. Chesterbrook, Pennsylvania, USA
| | | | - John D Port
- Department of Radiology
Chesterbrook, Pennsylvania, USA
- Department of Psychiatry and Psychology
Chesterbrook, Pennsylvania, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul E Croarkin
- Department of Psychiatry and Psychology
Chesterbrook, Pennsylvania, USA
| |
Collapse
|
11
|
Wu X, Niu Z, Zhu Y, Shi Y, Qiu H, Gu W, Liu H, Zhao J, Yang L, Wang Y, Liu T, Xia Y, Yang Y, Chen J, Fang Y. Peripheral biomarkers to predict the diagnosis of bipolar disorder from major depressive disorder in adolescents. Eur Arch Psychiatry Clin Neurosci 2022; 272:817-826. [PMID: 34432143 DOI: 10.1007/s00406-021-01321-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
The onset of bipolar disorder (BD) occurs in childhood or adolescence in half of the patients. Early stages of BD usually present depressive episodes, which makes it difficult to be distinguished from major depressive disorder (MDD). Objective biomarkers for discriminating BD from MDD in adolescent patients are limited. We collected basic demographic data and the information of the first blood examination performed after the admission to psychiatry unit of BD and MDD inpatients during 2009-2018. We recruited 261 adolescents (aged from 10 to 18), including 160 MDD and 101 BD. Forward-Stepwise Selection of binary logistic regression was used to construct predictive models for the total sample and subgroups by gender. Independent external validation was made by 255 matched patients from another hospital in China. Regression models of total adolescents, male and female subgroups showed accuracy of 73.3%, 70.6% and 75.2%, with area under curves (AUC) as 0.785, 0.816 and 0.793, respectively. Age, direct bilirubin (DBIL), lactic dehydrogenase (LDH), free triiodothyronine (FT3) and C-reactive protein (CRP) were final factors included into the models. The discrimination was well at external validation (AUC = 0.714). This study offers the evidence that accessible information of common clinical laboratory examination might be valuable in distinguishing BD form MDD in adolescents. With good diagnostic accuracies and external validation, the total regression equation might potentially be applied to individualized clinical inferences on adolescent BD patients.
Collapse
Affiliation(s)
- Xiaohui Wu
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhiang Niu
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yuncheng Zhu
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yifan Shi
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hong Qiu
- Information and Statistical Department, Shanghai Mental Health Center, Shanghai, 200030, China
| | - Wenjie Gu
- Information and Statistical Department, Shanghai Mental Health Center, Shanghai, 200030, China
| | - Hongmei Liu
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jie Zhao
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lu Yang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yun Wang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tiebang Liu
- Shenzhen Mental Health Center, Shenzhen, 518003, China
| | - Yong Xia
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
| | - Yan Yang
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
| | - Jun Chen
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yiru Fang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, 200031, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 200118, China.
| |
Collapse
|
12
|
Chan JH, Chen HC, Chen IM, Wang TY, Chien YL, Wu SI, Kuo PH. Personality mediates the association between juvenile conduct problems and adulthood mood disorders. Sci Rep 2022; 12:8866. [PMID: 35614306 PMCID: PMC9132998 DOI: 10.1038/s41598-022-12939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to examine the association between conduct problems and mood disorders, and to evaluate the mediating roles of personality traits in it. Adult participants (N = 309), for which patients with major depressive disorder (MDD) or bipolar disorder (BD), and controls without major psychiatric history were recruited. Juvenile conduct problem was defined by the items in Composite International Diagnosis Interview. We assessed personality traits of extraversion and neuroticism. Multiple mediation model was performed to investigate the intervening effect of personality traits between juvenile conduct problems and adulthood mood disorders. Participants had on average 2.7 symptoms of conduct problems, and 43.4% had conduct problems. Having more symptoms of conduct problems was associated with a higher likelihood of BD (OR = 1.20). Higher neuroticism was associated with elevated risks of both MDD and BD. There was no direct effect of binary conduct problems on the risk of BD, and showed significant total indirect effect mediated by neuroticism for BD (OR = 1.49; bias-corrected and accelerated 95% CI = 1.10–2.05), but not through extraversion. Conduct problems defined as a continuous variable had a direct effect on the risk of adult MDD (OR = 1.36; bias-corrected and accelerated 95% CI = 1.05–1.76), while had an indirect effect on the risk of BD via the mediation of neuroticism (OR = 1.08; bias-corrected and accelerated 95% CI = 1.02–1.14). Neuroticism mediates between the association of juvenile conduct problems and adult BD. This finding raises our attention to assess personality traits in individuals with juvenile conduct problems for timely intervention strategies of reducing the vulnerability for developing mood disorders.
Collapse
Affiliation(s)
- Jen-Hui Chan
- National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Hsi-Chung Chen
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Ming Chen
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Yang Wang
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-I Wu
- Department of Medicine, Mackay Memorial Hospital, New Taipei City, Taiwan.,Department of Psychiatry, Mackay Memorial Hospital, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan. .,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Room 501, No. 17, Xu-Zhou Road, Taipei, 100, Taiwan.
| |
Collapse
|
13
|
Picci G, Taylor BK, Killanin AD, Eastman JA, Frenzel MR, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Left amygdala structure mediates longitudinal associations between exposure to threat and long-term psychiatric symptomatology in youth. Hum Brain Mapp 2022; 43:4091-4102. [PMID: 35583310 PMCID: PMC9374891 DOI: 10.1002/hbm.25904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/04/2022] Open
Abstract
Traumatic experiences during childhood can have profound effects on stress sensitive brain structures (e.g., amygdala and hippocampus) and the emergence of psychiatric symptoms. Recent theoretical and empirical work has delineated dimensions of trauma (i.e., threat and deprivation) as having distinct neural and behavioral effects, although there are few longitudinal examinations. A sample of 243 children and adolescents were followed for three time points, with each assessment approximately 1 year apart (ages 9–15 years at Time 1; 120 males). Participants or their caregiver reported on youths' threat exposure, perceived stress (Time 1), underwent a T1‐weighted structural high‐resolution MRI scan (Time 2), and documented their subsequent psychiatric symptoms later in development (Time 3). The primary findings indicate that left amygdala volume, in particular, mediated the longitudinal association between threat exposure and subsequent internalizing and externalizing symptomatology. Greater threat exposure related to reduced left amygdala volume, which in turn differentially predicted internalizing and externalizing symptoms. Decreased bilateral hippocampal volume was related to subsequently elevated internalizing symptoms. These findings suggest that the left amygdala is highly threat‐sensitive and that stress‐related alterations may partially explain elevated psychopathology in stress‐exposed adolescents. Uncovering potential subclinical and/or preclinical predictive biomarkers is essential to understanding the emergence, progression, and eventual targeted treatment of psychopathology following trauma exposure.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA.,Department of Pharmacology & Neuroscience, Creighton University, Omaha, Nebraska, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | - Vince D Calhoun
- Mind Research Network, Albuquerque, New Mexico, USA.,Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA.,Department of Pharmacology & Neuroscience, Creighton University, Omaha, Nebraska, USA
| |
Collapse
|
14
|
Chen G, Chen P, Gong J, Jia Y, Zhong S, Chen F, Wang J, Luo Z, Qi Z, Huang L, Wang Y. Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders. Psychol Med 2022; 52:747-756. [PMID: 32648539 DOI: 10.1017/s0033291720002378] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD. METHODS Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed. RESULTS Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs. CONCLUSIONS The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - JiaYing Gong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
15
|
A neural network approach to optimising treatments for depression using data from specialist and community psychiatric services in Australia, New Zealand and Japan. Neural Comput Appl 2022; 35:11497-11516. [PMID: 35039718 PMCID: PMC8754538 DOI: 10.1007/s00521-021-06710-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
This study investigated the application of a recurrent neural network for optimising pharmacological treatment for depression. A clinical dataset of 458 participants from specialist and community psychiatric services in Australia, New Zealand and Japan were extracted from an existing custom-built, web-based tool called Psynary . This data, which included baseline and self-completed reviews, was used to train and refine a novel algorithm which was a fully connected network feature extractor and long short-term memory algorithm was firstly trained in isolation and then integrated and annealed using slow learning rates due to the low dimensionality of the data. The accuracy of predicting depression remission before processing patient review data was 49.8%. After processing only 2 reviews, the accuracy was 76.5%. When considering a change in medication, the precision of changing medications was 97.4% and the recall was 71.4% . The medications with predicted best results were antipsychotics (88%) and selective serotonin reuptake inhibitors (87.9%). This is the first study that has created an all-in-one algorithm for optimising treatments for all subtypes of depression. Reducing treatment optimisation time for patients suffering with depression may lead to earlier remission and hence reduce the high levels of disability associated with the condition. Furthermore, in a setting where mental health conditions are increasing strain on mental health services, the utilisation of web-based tools for remote monitoring and machine/deep learning algorithms may assist clinicians in both specialist and primary care in extending specialist mental healthcare to a larger patient community.
Collapse
|
16
|
Ibrahim HM, Kulikova A, Ly H, Rush AJ, Sherwood Brown E. Anterior cingulate cortex in individuals with depressive symptoms: A structural MRI study. Psychiatry Res Neuroimaging 2022; 319:111420. [PMID: 34856454 PMCID: PMC8724389 DOI: 10.1016/j.pscychresns.2021.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023]
Abstract
Several magnetic resonance imaging (MRI) studies have reported reduction in anterior cingulate cortex (ACC) volume in individuals with major depressive disorder (MDD). However, some MRI studies did not find significant ACC volumetric changes in MDD, and sample sizes were generally small. This cross-sectional structural MRI study examined the relationship between current depressive symptoms and ACC volume in a large community sample of 1803 adults. A series of multiple linear regression analyses were conducted to predict right and left ACC volumes using Quick Inventory of Depressive Symptomatology Self-Report (QIDS-SR) scores, intracranial volume, age, sex, race/ethnicity, alcohol use, tobacco use, and psychotropic medications as predictor variables. Right ACC volume was significantly negatively associated with QIDS-SR scores, while no significant association was found between left ACC volume and QIDS-SR scores. In addition, there was a significant negative association between QIDS-SR scores and right but not left ACC volumes in males, and no significant association between QIDS-SR scores and right or left ACC volumes in females. These findings suggest that right ACC volume is reduced in people with greater self-reported depressive symptom severity, and that this association is only significant in men.
Collapse
Affiliation(s)
- Hicham M Ibrahim
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra Kulikova
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huy Ly
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A John Rush
- Curbstone Consultant, LLC, Santa Fe, NM, USA
| | - E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Hilbert K. Aim in Depression and Anxiety. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Aim in Depression and Anxiety. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-58080-3_212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Ponton E, Turecki G, Nagy C. Sex Differences in the Behavioral, Molecular, and Structural Effects of Ketamine Treatment in Depression. Int J Neuropsychopharmacol 2021; 25:75-84. [PMID: 34894233 PMCID: PMC8756094 DOI: 10.1093/ijnp/pyab082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric illness that manifests in sex-influenced ways. Men and women may experience depression differently and also respond to various antidepressant treatments in sex-influenced ways. Ketamine, which is now being used as a rapid-acting antidepressant, is likely the same. To date, the majority of studies investigating treatment outcomes in MDD do not disaggregate the findings in males and females, and this is also true for ketamine. This review aims to highlight that gap by exploring pre-clinical data-at a behavioral, molecular, and structural level-and recent clinical trials. Sex hormones, particularly estrogen and progesterone, influence the response at all levels examined, and sex is therefore a critical factor to examine when looking at ketamine response. Taken together, the data show females are more sensitive to ketamine than males, and it might be possible to monitor the phase of the menstrual cycle to mitigate some risks associated with the use of ketamine for females with MDD. Based on the studies reviewed in this article, we suggest that ketamine should be administered adhering to sex-specific considerations.
Collapse
Affiliation(s)
- Ethan Ponton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Correspondence: Corina Nagy, PhD, 6875 LaSalle Blvd, Verdun, Québec, Canada H4H 1R3 ()
| |
Collapse
|
20
|
Li H, Song S, Wang D, Tan Z, Lian Z, Wang Y, Zhou X, Pan C. Individualized diagnosis of major depressive disorder via multivariate pattern analysis of thalamic sMRI features. BMC Psychiatry 2021; 21:415. [PMID: 34416848 PMCID: PMC8377985 DOI: 10.1186/s12888-021-03414-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 08/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies have found thalamic abnormalities in major depressive disorder (MDD). Although there are significant differences in the structure and function of the thalamus between MDD patients and healthy controls (HCs) at the group level, it is not clear whether the structural and functional features of the thalamus are suitable for use as diagnostic prediction aids at the individual level. Here, we were to test the predictive value of gray matter density (GMD), gray matter volume (GMV), amplitude of low-frequency fluctuations (ALFF), and fractional amplitude of low-frequency fluctuations (fALFF) in the thalamus using multivariate pattern analysis (MVPA). METHODS Seventy-four MDD patients and 44 HC subjects were recruited. The Gaussian process classifier (GPC) was trained to separate MDD patients from HCs, Gaussian process regression (GPR) was trained to predict depression scores, and Multiple Kernel Learning (MKL) was applied to explore the contribution of each subregion of the thalamus. RESULTS The primary findings were as follows: [1] The balanced accuracy of the GPC trained with thalamic GMD was 96.59% (P < 0.001). The accuracy of the GPC trained with thalamic GMV was 93.18% (P < 0.001). The correlation between Hamilton Depression Scale (HAMD) score targets and predictions in the GPR trained with GMD was 0.90 (P < 0.001, r2 = 0.82), and in the GPR trained with GMV, the correlation between HAMD score targets and predictions was 0.89 (P < 0.001, r2 = 0.79). [2] The models trained with ALFF and fALFF in the thalamus failed to discriminate MDD patients from HC participants. [3] The MKL model showed that the left lateral prefrontal thalamus, the right caudal temporal thalamus, and the right sensory thalamus contribute more to the diagnostic classification. CONCLUSIONS The results suggested that GMD and GMV, but not functional indicators of the thalamus, have good potential for the individualized diagnosis of MDD. Furthermore, the thalamus shows the heterogeneity in the structural features of thalamic subregions for predicting MDD. To our knowledge, this is the first study to focus on the thalamus for the prediction of MDD using machine learning methods at the individual level.
Collapse
Affiliation(s)
- Hanxiaoran Li
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| | - Sutao Song
- School of Information Science and Engineering, Shandong Normal University, 1#, University Rd, Changqing District, Jinan, 250358, China.
| | - Donglin Wang
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China.
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.
- Department of Psychiatry, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Zhonglin Tan
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, 310013, China
| | - Zhenzhen Lian
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| | - Yan Wang
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
- Department of Psychiatry, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Xin Zhou
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| | - Chenyuan Pan
- Institutes of Psychological Sciences, College of Education, Hangzhou Normal University, 2318#, Yuhangtang Rd, Hangzhou, 311121, China
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, 311121, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| |
Collapse
|
21
|
Reckziegel D, Abdullah T, Wu B, Wu B, Huang L, Schnitzer TJ, Apkarian AV. Hippocampus shape deformation: a potential diagnostic biomarker for chronic back pain in women. Pain 2021; 162:1457-1467. [PMID: 33181581 PMCID: PMC8049947 DOI: 10.1097/j.pain.0000000000002143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
ABSTRACT Sex differences in the quality and prevalence of chronic pain are manifold, with women generally presenting higher incidence and severity. Uncovering chronic pain-related sex differences inform neural mechanisms and may lead to novel treatment routes. In a multicenter morphological study (total n = 374), we investigated whether the shape of subcortical regions would reflect sex differences in back pain. Given the hormone-dependent functions of the hippocampus, and its role in the transition to chronic pain, this region constituted our primary candidate. We found that the anterior part of the left hippocampus (alHP) presented outer deformation in women with chronic back pain (CBP), identified in CBP in the United States (n = 77 women vs n = 78 men) and validated in a Chinese data set (n = 29 women vs n = 58 men with CBP, in contrast to n = 53 female and n = 43 male healthy controls). Next, we examined this region in subacute back pain who persisted with back pain a year later (SBPp; n = 18 women vs n = 18 men) and in a subgroup with persistent back pain for 3 years. Weeks after onset of back pain, there was no deformation within alHP, but at 1 and 3 years women exhibited a trend for outer deformation. The alHP partly overlapped with the subiculum and entorhinal cortex, whose functional connectivity, in healthy subjects, was associated with emotional and episodic memory related terms (Neurosynth, reverse inference). These findings suggest that in women the alHP undergoes anatomical changes with pain persistence, highlighting sexually dimorphic involvement of emotional and episodic memory-related circuitry with chronic pain.
Collapse
Affiliation(s)
- Diane Reckziegel
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Taha Abdullah
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Touro College of Osteopathic Medicine, New York, USA
| | - Binbin Wu
- Department of Pain Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo Wu
- Department of Information, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lejian Huang
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas J Schnitzer
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - A Vania Apkarian
- Center for Chronic Pain and Drug Abuse, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
22
|
Temporal trajectory of brain tissue property changes induced by electroconvulsive therapy. Neuroimage 2021; 232:117895. [PMID: 33617994 DOI: 10.1016/j.neuroimage.2021.117895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND After more than eight decades of electroconvulsive therapy (ECT) for pharmaco-resistant depression, the mechanisms governing its anti-depressant effects remain poorly understood. Computational anatomy studies using longitudinal T1-weighted magnetic resonance imaging (MRI) data have demonstrated ECT effects on hippocampus volume and cortical thickness, but they lack the interpretational specificity about underlying neurobiological processes. METHODS We sought to fill in the gap of knowledge by acquiring quantitative MRI indicative for brain's myelin, iron and tissue water content at multiple time-points before, during and after ECT treatment. We adapted established tools for longitudinal spatial registration of MRI data to the relaxometry-based multi-parameter maps aiming to preserve the initial total signal amount and introduced a dedicated multivariate analytical framework. RESULTS The whole-brain voxel-based analysis based on a multivariate general linear model showed that there is no brain tissue oedema contributing to the predicted ECT-induced hippocampus volume increase neither in the short, nor in the long-term observations. Improvements in depression symptom severity over time were associated with changes in both volume estimates and brain tissue properties expanding beyond mesial temporal lobe structures to anterior cingulate cortex, precuneus and striatum. CONCLUSION The obtained results stemming from multi-contrast MRI quantitative data provided a fingerprint of ECT-induced brain tissue changes over time that are contrasted against the background of established morphometry findings. The introduced data processing and statistical testing algorithms provided a reliable analytical framework for longitudinal multi-parameter brain maps. The results, particularly the evidence of lack of ECT impact on brain tissue water, should be considered preliminary considering the small sample size of the study.
Collapse
|
23
|
Kelberman C, Biederman J, Green A, Spera V, Maiello M, Uchida M. Differentiating bipolar disorder from unipolar depression in youth: A systematic literature review of neuroimaging research studies. Psychiatry Res Neuroimaging 2021; 307:111201. [PMID: 33046342 PMCID: PMC8021005 DOI: 10.1016/j.pscychresns.2020.111201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 01/14/2023]
Abstract
Differentiating bipolar disorder from unipolar depression is one of the most difficult clinical questions posed in pediatric psychiatric practices, as misdiagnosis can lead to severe repercussions for the affected child. This study aimed to examine the existing literature that investigates brain differences between bipolar and unipolar mood disorders in children directly, across all neuroimaging modalities. We performed a systematic literature search through PubMed, PsycINFO, Embase, and Medline databases with defined inclusion and exclusion criteria. Nine research studies were included in the systematic qualitative review, including three structural MRI studies, five functional MRI studies, and one MR spectroscopy study. Relevant variables were extracted and brain differences between bipolar and unipolar mood disorders in children as well as healthy controls were qualitatively analyzed. Across the nine studies, our review included 228 subjects diagnosed with bipolar disorder, 268 diagnosed with major depressive disorder, and 299 healthy controls. Six of the reviewed studies differentiated between bipolar and unipolar mood disorders. Differentiation was most commonly found in the anterior cingulate cortex (ACC), insula, and dorsal striatum (putamen and caudate) brain areas. Despite its importance, the current neuroimaging literature on this topic is scarce and presents minimal generalizability.
Collapse
Affiliation(s)
- Caroline Kelberman
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Joseph Biederman
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States
| | - Allison Green
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Vincenza Spera
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa 56100, Italy
| | - Marco Maiello
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, Pisa 56100, Italy
| | - Mai Uchida
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA 02114, United States; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
24
|
Nielsen JD, Mennies RJ, Olino TM. Application of a diathesis-stress model to the interplay of cortical structural development and emerging depression in youth. Clin Psychol Rev 2020; 82:101922. [PMID: 33038741 PMCID: PMC8594424 DOI: 10.1016/j.cpr.2020.101922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 08/28/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Cross-sectional studies in adults have long identified differences in cortical structure in adults with depression compared to healthy adults, with most studies identifying reductions in grey matter volume, cortical thickness, and surface area in primarily frontal cortical regions including the OFC, ACC, and variable sub-regions of the PFC. However, when, why, and for whom these neural correlates of depression emerge remains poorly understood, necessitating developmental study of associations between depression and cortical structure. We systematically reviewed studies examining these associations in child/adolescent samples, and applied a developmentally-focused diathesis-stress model to understand the impacts of depressogenic risk-factors and stressors on the development of structural neural correlates of depression. Cross-sectional findings in youth are generally similar to those found in adults, but vary in magnitude and direction of effects. Preliminary evidence suggests that age, sex, severity, and comorbidity moderate these associations. Longitudinal studies show depression prospectively predicting cortical structure and structure predicting emerging depression. Consistent with a diathesis-stress model, associations have been noted between risk-factors for depression (e.g., genetic risk, family risk) and environmental stressors (e.g., early life stress) and structural neural correlates. Further investigation of these associations across development with attention to vulnerability factors and stressors is indicated.
Collapse
Affiliation(s)
- Johanna D Nielsen
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA..
| | - Rebekah J Mennies
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA..
| | - Thomas M Olino
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA..
| |
Collapse
|
25
|
EEG Frontal Asymmetry and Theta Power in Unipolar and Bipolar Depression. J Affect Disord 2020; 276:501-510. [PMID: 32871681 DOI: 10.1016/j.jad.2020.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Distinguishing between unipolar and bipolar depression is of high clinical relevance. However, there is sparse research directly comparing these groups in terms of EEG activity. METHOD We investigated 87 participants' left and right EEG frontal alpha-1, alpha-2, and theta activity related to happy and sad face stimuli in unipolar (UD, n=33) and bipolar (BD, n=22) depressed participants, and controls without depression (HC, n=32). RESULTS Post-hoc analysis of an observed hemisphere x group interaction (p< .037) showed significant differences in alpha-1 asymmetry only for the comparison of UD and HC (p< .006). Further analysis of a significant emotion x group interaction (p= .001) revealed a differential impact of stimulus valence on theta power between the groups (p< .001). The valence dependent theta power of the BD differed from that of the UD (p< .0002) and the HC (p< .004). Alpha-1 asymmetry classified HC and both depressed groups with an accuracy of .69. Valence-related theta classified BD from UD with an accuracy of .83. Leave-one-out cross validation resulted in slightly reduced accuracy. LIMITATIONS Important limitations were the small sample size and that subjects were not medication-free. CONCLUSIONS Our results demonstrate the value of simple, task related EEG activity for differentiating not only healthy individuals from those with depression, but also individuals with unipolar depression from those with bipolar depression.
Collapse
|
26
|
Kortam MA, Ali BM, Fathy N. The deleterious effect of stress-induced depression on rat liver: Protective role of resveratrol and dimethyl fumarate via inhibiting the MAPK/ERK/JNK pathway. J Biochem Mol Toxicol 2020; 35:e22627. [PMID: 32905656 DOI: 10.1002/jbt.22627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/22/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to uncover the protective potentiality of resveratrol and dimethyl fumarate (DMF) in the liver of a chronic unpredictable mild stress (CUMS)-induced depression animal model. Resveratrol and DMF significantly alleviated CUMS-induced behavioral abnormalities in stressed rats through improving sucrose preference in sucrose preference test and decreasing immobility time in a forced swimming test. They also mitigated serum corticosterone levels and elevated serum serotonin levels, which were formerly disturbed in CUMS rats. The hepatoprotective effect is evidenced by improvement in hepatic histopathological examinations, as well as normalized serum alanine aminotransferase and aspartate aminotransferase activities. Molecular signaling of resveratrol and DMF was estimated by diminishing hepatic expression of phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK). Consequently, they improved the hepatic antioxidant and anti-inflammatory activities as elaborated by the normalization of total antioxidant capacity, glutathione, malondialdehyde, nuclear factor-κB, tumor necrosis factor-α, and myeloperoxidase levels. In addition, they inhibited hepatocyte apoptosis as evidenced by the increased expression of B-cell lymphoma 2, the decreased expression of Bax, as well as the suppressed activity of caspase-3. In conclusion, resveratrol and DMF purveyed a significant anti-depressant effect, which may be mediated, at least in part, via inhibiting the MAPK/ERK/JNK pathway in the CUMS rat model.
Collapse
Affiliation(s)
- Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bassam Mohamed Ali
- Department of Biochemistry, Faculty of Pharmacy, 6th of October University, Cairo, Egypt
| | - Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp 2020; 41:3468-3535. [PMID: 32374075 PMCID: PMC7375108 DOI: 10.1002/hbm.25013] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Neuroimaging-based approaches have been extensively applied to study mental illness in recent years and have deepened our understanding of both cognitively healthy and disordered brain structure and function. Recent advancements in machine learning techniques have shown promising outcomes for individualized prediction and characterization of patients with psychiatric disorders. Studies have utilized features from a variety of neuroimaging modalities, including structural, functional, and diffusion magnetic resonance imaging data, as well as jointly estimated features from multiple modalities, to assess patients with heterogeneous mental disorders, such as schizophrenia and autism. We use the term "predictome" to describe the use of multivariate brain network features from one or more neuroimaging modalities to predict mental illness. In the predictome, multiple brain network-based features (either from the same modality or multiple modalities) are incorporated into a predictive model to jointly estimate features that are unique to a disorder and predict subjects accordingly. To date, more than 650 studies have been published on subject-level prediction focusing on psychiatric disorders. We have surveyed about 250 studies including schizophrenia, major depression, bipolar disorder, autism spectrum disorder, attention-deficit hyperactivity disorder, obsessive-compulsive disorder, social anxiety disorder, posttraumatic stress disorder, and substance dependence. In this review, we present a comprehensive review of recent neuroimaging-based predictomic approaches, current trends, and common shortcomings and share our vision for future directions.
Collapse
Affiliation(s)
- Barnaly Rashid
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Vince Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, and Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
28
|
Vai B, Parenti L, Bollettini I, Cara C, Verga C, Melloni E, Mazza E, Poletti S, Colombo C, Benedetti F. Predicting differential diagnosis between bipolar and unipolar depression with multiple kernel learning on multimodal structural neuroimaging. Eur Neuropsychopharmacol 2020; 34:28-38. [PMID: 32238313 DOI: 10.1016/j.euroneuro.2020.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 01/10/2023]
Abstract
One of the greatest challenges in providing early effective treatment in mood disorders is the early differential diagnosis between major depression (MDD) and bipolar disorder (BD). A remarkable need exists to identify reliable biomarkers for these disorders. We integrate structural neuroimaging techniques (i.e. Tract-based Spatial Statistics, TBSS, and Voxel-based morphometry) in a multiple kernel learning procedure in order to define a predictive function of BD against MDD diagnosis in a sample of 148 patients. We achieved a balanced accuracy of 73.65% with a sensitivity for BD of 74.32% and specificity for MDD of 72.97%. Mass-univariates analyses showed reduced grey matter volume in right hippocampus, amygdala, parahippocampal, fusiform gyrus, insula, rolandic and frontal operculum and cerebellum, in BD compared to MDD. Volumes in these regions and in anterior cingulate cortex were also reduced in BD compared to healthy controls (n = 74). TBSS analyses revealed widespread significant effects of diagnosis on fractional anisotropy, axial, radial, and mean diffusivity in several white matter tracts, suggesting disruption of white matter microstructure in depressed patients compared to healthy controls, with worse pattern for MDD. To best of our knowledge, this is the first study combining grey matter and diffusion tensor imaging in predicting BD and MDD diagnosis. Our results prompt brain quantitative biomarkers and multiple kernel learning as promising tool for personalized treatment in mood disorders.
Collapse
Affiliation(s)
- Benedetta Vai
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Fondazione Centro San Raffaele, Milano, Italy.
| | - Lorenzo Parenti
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Irene Bollettini
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Cara
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Verga
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Melloni
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elena Mazza
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Cristina Colombo
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
29
|
van Rooij SJ, Smith RD, Stenson AF, Ely TD, Yang X, Tottenham N, Stevens JS, Jovanovic T. Increased activation of the fear neurocircuitry in children exposed to violence. Depress Anxiety 2020; 37:303-312. [PMID: 31951308 PMCID: PMC7145742 DOI: 10.1002/da.22994] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/08/2019] [Accepted: 12/22/2019] [Indexed: 01/22/2023] Open
Abstract
Most studies investigating the effect of childhood trauma on the brain are retrospective and mainly focus on maltreatment, whereas different types of trauma exposure such as growing up in a violent neighborhood, as well as developmental stage, could have differential effects on brain structure and function. The current magnetic resonance imaging study assessed the effect of trauma exposure broadly and violence exposure more specifically, as well as developmental stage on the fear neurocircuitry in 8- to 14-year-old children and adolescents (N = 69). We observed reduced hippocampal and increased amygdala volume with increasing levels of trauma exposure. Second, higher levels of violence exposure were associated with increased activation in the amygdala, hippocampus, and ventromedial prefrontal cortex during emotional response inhibition. This association was specifically observed in children younger than 10 years. Finally, increased functional connectivity between the amygdala and brainstem was associated with higher levels of violence exposure. Based on the current findings, it could be hypothesized that trauma exposure during childhood results in structural changes that are associated with later risk for psychiatric disorders. At the same time, it could be postulated that growing up in an unsafe environment leads the brain to functionally adapt to this situation in a way that promotes survival, where the long-term costs or consequences of these adaptations are largely unknown and an area for future investigations.
Collapse
Affiliation(s)
- Sanne J.H. van Rooij
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences
| | - Ryan D. Smith
- Emory University School of Medicine, Department of Family and Preventive Medicine
| | - Anaïs F. Stenson
- Wayne State University, Department of Psychiatry and Neuroscience
| | - Timothy D. Ely
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences
| | - Xinyi Yang
- Colorado School of Public Health, Department of Biostatistics and Informatics
| | | | - Jennifer S. Stevens
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences
| | - Tanja Jovanovic
- Wayne State University, Department of Psychiatry and Neuroscience
| |
Collapse
|
30
|
Chen C, Yin Q, Tian J, Gao X, Qin X, Du G, Zhou Y. Studies on the potential link between antidepressant effect of Xiaoyao San and its pharmacological activity of hepatoprotection based on multi-platform metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112432. [PMID: 31790818 DOI: 10.1016/j.jep.2019.112432] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM) theory, depression is considered to be "liver qi stagnation", and relieving "liver qi stagnation" is regarded as an effective method for treating depression. Xiaoyao San (XYS) is a well-known TCM formula for the treatment of depression by relieving "liver qi stagnation". This formula consists of Radix Paeoniae Alba (Paeonia lactiflora Pall.), Radix Bupleuri (Bupleurum chinense DC.), Poria (Poria cocos (Schw.) Wolf), Rhizoma Atractylodis Macrocephalae (Atractylodes macrocephala Koidz.), Radix Angelicae Sinensis (Angelica sinensis (Oliv.) Diels), Radix Glycyrrhizae (Glycyrrhiza uralensis Fisch.), Rhizoma Zingiberis Recens (Zingiber officinale Roscoe) and Herba Menthae Haplocalycis (Mentha haplocalyx Briq.). AIM OF THE STUDY Several studies have suggested that depression is associated with liver injury. XYS was a well-known TCM formula for the treatment of depression and liver stagnancy. However, it was still unknown whether the antidepressant effect of XYS is related to the pharmacological activity of hepatoprotection. The aim of this study was to elucidate the potential link between the antidepressant and hepatoprotective effect of XYS. MATERIALS AND METHODS A depression rat model was established by the CUMS (chronic unpredictable mild stress) procedure. The antidepressant effect of XYS was assessed by the behavioral indicators, and the hepatoprotective effect of XYS was evaluated through biochemical assays. 1H-NMR and LC/MS-based liver metabolomics were performed to discover key metabolic pathways involved in the antidepressant and hepatoprotective effects of XYS. Further, the key pathway was validated using commercial kits. RESULTS The results demonstrated that XYS pretreatment could significantly improve the depressive symptom induced by CUMS. More importantly, the results demonstrated that liver injury was observed in the CUMS model rats, and XYS had a hepatoprotective effect by reducing the activities of AST and ALT in serum, increasing the levels of SOD and GSH-Px and reducing the contents of MDA, IL-6, and IL-1β in the liver. In addition, the NMR and LC/MS-based metabolomics results indicated that XYS improved 23 of the 35 perturbed potential liver biomarkers that were induced by CUMS. Among them, 9 biomarkers were significantly correlated with both depression and liver pathology, according to Pearson correlation analysis. Metabolic pathway analyses of these 9 biomarkers showed that glutamine and glutamate metabolism were the most important metabolic pathways. Furthermore, to verify glutamine and glutamate metabolism, the levels of glutamine and glutamate, and the activity of glutamine synthetase (GS) and glutaminase (GLS) were quantitatively determined in the liver by commercial kits, and these results were consistent with the metabolomics results. CONCLUSIONS XYS could significantly improve the depressive and liver injury symptoms induced by CUMS. The metabolomics results indicate that the regulation of glutamine and glutamate metabolism to maintain the balance of ammonia and promote energy metabolism is a potential junction between the antidepressant and hepatoprotective effects of XYS.
Collapse
Affiliation(s)
- Congcong Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Qicai Yin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; College of Chemistry and Chemical Engineering, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, PR China
| | - Junshen Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.92, Wucheng Road, Taiyuan, 030006, PR China.
| |
Collapse
|
31
|
Lai S, Zhong S, Shan Y, Wang Y, Chen G, Luo X, Chen F, Zhang Y, Shen S, Huang H, Ning Y, Jia Y. Altered biochemical metabolism and its lateralization in the cortico-striato-cerebellar circuit of unmedicated bipolar II depression. J Affect Disord 2019; 259:82-90. [PMID: 31442883 DOI: 10.1016/j.jad.2019.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Evidence of the relationship between neurometabolic changes in the cortico-striato-cerebellar (CSC) circuit and bipolar disorder (BD) is still limited. To elucidate the pathogenesis of BD, we investigated the underlying neurometabolic changes and their effect on CSC lateralization circuits in unmedicated patients with bipolar II depression. METHODS Forty unmedicated participants with bipolar II depression and forty healthy controls underwent proton magnetic resonance spectroscopy (1H-MRS). We obtained bilateral metabolic ratios of N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr in the prefrontal white matter (PWM), anterior cingulate cortex (ACC), basal ganglia (BG) and the cerebellum. Metabolic ratios were characterized using a laterality index (LI) for left-right asymmetry. RESULTS Overall, aberrant lateralization in the CSC circuit was characteristic in patients with bipolar II depression. Patients with bipolar II depression showed significantly lower NAA/Cr ratios in the left PWM, right ACC, left BG and left cerebellum when compared with the healthy controls. For bipolar II depression, we found lower NAA/Cr LI in the PWM, BG, and cerebellum, higher NAA/Cr LI in the ACC, and higher Cho/Cr LI in the BG and cerebellum when compared to the standard value (1.0). For healthy controls, we found lower NAA/Cr LI only in the BG and higher Cho/Cr LI in the cerebellum when compared to 1.0. LIMITATIONS As a cross-sectional study with a small sample size, progressive changes and complex metabolic interactions with treatment were not observed. CONCLUSIONS Our findings suggest that abnormal biochemical metabolism with aberrant lateralization in the CSC circuit may be an underlying pathophysiology of bipolar II depression.
Collapse
Affiliation(s)
- Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yanyan Shan
- School of Management, Jinan University, Guangzhou 510316, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiaomei Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shiyi Shen
- School of Management, Jinan University, Guangzhou 510316, China
| | - Hui Huang
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
32
|
Hillerer KM, Slattery DA, Pletzer B. Neurobiological mechanisms underlying sex-related differences in stress-related disorders: Effects of neuroactive steroids on the hippocampus. Front Neuroendocrinol 2019; 55:100796. [PMID: 31580837 PMCID: PMC7115954 DOI: 10.1016/j.yfrne.2019.100796] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
Abstract
Men and women differ in their vulnerability to a variety of stress-related illnesses, but the underlying neurobiological mechanisms are not well understood. This is likely due to a comparative dearth of neurobiological studies that assess male and female rodents at the same time, while human neuroimaging studies often don't model sex as a variable of interest. These sex differences are often attributed to the actions of sex hormones, i.e. estrogens, progestogens and androgens. In this review, we summarize the results on sex hormone actions in the hippocampus and seek to bridge the gap between animal models and findings in humans. However, while effects of sex hormones on the hippocampus are largely consistent in animals and humans, methodological differences challenge the comparability of animal and human studies on stress effects. We summarise our current understanding of the neurobiological mechanisms that underlie sex-related differences in behavior and discuss implications for stress-related illnesses.
Collapse
Affiliation(s)
- Katharina M Hillerer
- Department of Obstetrics and Gynaecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University (PMU), Clinical Research Center Salzburg (CRCS), Salzburg, Austria.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Belinda Pletzer
- Department of Psychology, University of Salzburg, Salzburg, Austria; Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| |
Collapse
|
33
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
34
|
Liu C, Pu W, Wu G, Zhao J, Xue Z. Abnormal resting-state cerebral-limbic functional connectivity in bipolar depression and unipolar depression. BMC Neurosci 2019; 20:30. [PMID: 31208340 PMCID: PMC6580561 DOI: 10.1186/s12868-019-0508-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background Distinctive patterns of functional connectivity (FC) abnormalities in neural circuitry has been reported in patients with bipolar depression (BD) and unipolar depression (UD). However, it is unclear that whether this distinct functional connectivity patterns are diagnosis specific between BD and UD. This study aimed to compare patterns of functional connectivity among BD, UD and healthy controls (HC) and determine the distinct functional connectivity patterns which can differentiate BD from UD. Method Totally 23 BD, 22 UD, and 24 HC were recruited to undergo resting-state fMRI scanning. FC between each pair of brain regions was calculated and compared among the three groups, the associations of FC with depressive symptom were also analyzed. Results Both patient groups showed significantly decreased cerebral-limbic FC located between the default mode network [posterior cingulated gyrus (PCG) and precuneus] and limbic regions (hippocampus, amygdala and thalamus) than HC. Moreover, the BD group exhibited more decreased FC mainly in the cortical regions (middle temporal gyrus, PCG, medial superior frontal gyrus, inferior occipital gyrus and superior temporal gyrus), but the UD group is more associated with limbic alterations. These decreased FCs were negatively correlated with HAMD scores in both BD and UD patients. Conclusions BD and UD patients demonstrate different patterns of abnormal cerebral-limbic FC, reflected by decreased FC within cerebral cortex and limbic regions in BD and UD, respectively. The distinct FC abnormal pattern of the cerebral-limbic circuit might be applied as biomarkers to differentiate these two depressive patient groups.
Collapse
Affiliation(s)
- Chang Liu
- Department of Psychiatry, Brains Hospital of Hunan Province, Changsha, Hunan, People's Republic of China.,Post-Doctoral Research Mobile Station, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Weidan Pu
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Guowei Wu
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, People's Republic of China.,The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Jie Zhao
- Department of Psychiatry, Brains Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Zhimin Xue
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, People's Republic of China.,The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, 139 Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
35
|
Fernandes J, Gupta GL. N-acetylcysteine attenuates neuroinflammation associated depressive behavior induced by chronic unpredictable mild stress in rat. Behav Brain Res 2019; 364:356-365. [DOI: 10.1016/j.bbr.2019.02.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/29/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
|
36
|
Differentiating between bipolar and unipolar depression in functional and structural MRI studies. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:20-27. [PMID: 29601896 DOI: 10.1016/j.pnpbp.2018.03.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/25/2018] [Accepted: 03/25/2018] [Indexed: 01/10/2023]
Abstract
Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification.
Collapse
|
37
|
Toma S, Islam AH, Metcalfe AWS, Mitchell RHB, Fiksenbaum L, MacIntosh BJ, Goldstein BI. Cortical Volume and Thickness Across Bipolar Disorder Subtypes in Adolescents: A Preliminary Study. J Child Adolesc Psychopharmacol 2019; 29:141-151. [PMID: 30359542 DOI: 10.1089/cap.2017.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Neuroimaging studies of adults with bipolar disorder (BD) have identified several BD subtype distinctions, including greater deficits in prefrontal gray matter volumes in BD-I (bipolar I disorder) compared to BD-II (bipolar II disorder). We sought to investigate BD subtype differences in brain structure among adolescents and young adults. METHODS Forty-four youth with BD (14 BD-I, 16 BD-II, and 14 BD-not otherwise specified [NOS], mean age 17) underwent 3T-MRI and images were analyzed using FreeSurfer software. Cortical volume and thickness were analyzed for region of interest (ROI): ventrolateral prefrontal cortex, ventromedial prefrontal cortex, anterior cingulate cortex (ACC), subgenual cingulate cortex, and amygdala, controlling for age, sex, and total intracranial volume. ROIs were selected as found to be implicated in BD in prior studies. A whole brain vertex-wise exploratory analysis was also performed. Uncorrected results are presented. RESULTS There were group differences in ACC thickness (F = 3.88, p = 0.03, η2 = 0.173 uncorrected), which was reduced in BD-II in comparison to BD-I (p = 0.027 uncorrected) and BD-NOS (p = 0.019 uncorrected). These results did not survive correction for multiple comparisons and no other group differences were observed. The exploratory vertex-wise analysis found a similar pattern of lower cortical thickness in BD-II in the left and right superior frontal gyrus and left caudal middle frontal gyrus. CONCLUSIONS This study found reduced cortical thickness for youth with BD-II, relative to BD-I, in regions associated with cognitive control. Further neurostructural differences between subtypes may emerge later during the course of illness.
Collapse
Affiliation(s)
- Simina Toma
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Alvi H Islam
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Arron W S Metcalfe
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,3 Brain Sciences , Sunnybrook Health Sciences Centre, Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Rachel H B Mitchell
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada
| | - Lisa Fiksenbaum
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Bradley J MacIntosh
- 3 Brain Sciences , Sunnybrook Health Sciences Centre, Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada .,5 Department of Medical Biophysics, University of Toronto , Toronto, Canada .,6 Department of Physical Sciences, Sunnybrook Health Sciences Centre , Toronto, Canada
| | - Benjamin I Goldstein
- 1 Centre for Youth Bipolar Disorder , Sunnybrook Health Sciences Centre, Toronto, Canada .,2 Department of Psychiatry, University of Toronto , Toronto, Canada .,4 Heart and Stroke Foundation Canadian Partnership for Stroke Recovery , Sunnybrook Health Sciences Centre, Toronto, Canada .,7 Department of Pharmacology, University of Toronto , Toronto, Canada
| |
Collapse
|
38
|
Gupta GL, Fernandes J. Protective effect of Convolvulus pluricaulis against neuroinflammation associated depressive behavior induced by chronic unpredictable mild stress in rat. Biomed Pharmacother 2019; 109:1698-1708. [DOI: 10.1016/j.biopha.2018.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 02/08/2023] Open
|
39
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
40
|
Gao S, Calhoun VD, Sui J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci Ther 2018; 24:1037-1052. [PMID: 30136381 DOI: 10.1111/cns.13048] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 01/10/2023] Open
Abstract
AIMS Major depression disorder (MDD) is the single greatest cause of disability and morbidity, and affects about 10% of the population worldwide. Currently, there are no clinically useful diagnostic biomarkers that are able to confirm a diagnosis of MDD from bipolar disorder (BD) in the early depressive episode. Therefore, exploring translational biomarkers of mood disorders based on machine learning is in pressing need, though it is challenging, but with great potential to improve our understanding of these disorders. DISCUSSIONS In this study, we review popular machine-learning methods used for brain imaging classification and predictions, and provide an overview of studies, specifically for MDD, that have used magnetic resonance imaging data to either (a) classify MDDs from controls or other mood disorders or (b) investigate treatment outcome predictors for individual patients. Finally, challenges, future directions, and potential limitations related to MDD biomarker identification are also discussed, with a goal of offering a comprehensive overview that may help readers to better understand the applications of neuroimaging data mining in depression. CONCLUSIONS We hope such efforts may highlight the need for an urgently needed paradigm shift in treatment, to guide personalized optimal clinical care.
Collapse
Affiliation(s)
- Shuang Gao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Centre for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
41
|
Merz EC, He X, Noble KG. Anxiety, depression, impulsivity, and brain structure in children and adolescents. NEUROIMAGE-CLINICAL 2018; 20:243-251. [PMID: 30094172 PMCID: PMC6080576 DOI: 10.1016/j.nicl.2018.07.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 07/21/2018] [Indexed: 01/03/2023]
Abstract
The unique neuroanatomical underpinnings of internalizing symptoms and impulsivity during childhood are not well understood. In this study, we examined associations of brain structure with anxiety, depression, and impulsivity in children and adolescents. Participants were 7- to 21-year-olds (N = 328) from the Pediatric Imaging, Neurocognition, and Genetics (PING) study who completed high-resolution, 3-Tesla, T1-weighted MRI and self-report measures of anxiety, depression, and/or impulsivity. Cortical thickness and surface area were examined across cortical regions-of-interest (ROIs), and exploratory whole-brain analyses were also conducted. Gray matter volume (GMV) was examined in subcortical ROIs. When considered separately, higher depressive symptoms and impulsivity were each significantly associated with reduced cortical thickness in ventromedial PFC/medial OFC, but when considered simultaneously, only depressive symptoms remained significant. Higher impulsivity, but not depressive symptoms, was associated with reduced cortical thickness in the frontal pole, rostral middle frontal gyrus, and pars orbitalis. No differences were found for regional surface area. Higher depressive symptoms, but not impulsivity, were significantly associated with smaller hippocampal GMV and larger pallidal GMV. There were no significant associations between anxiety symptoms and brain structure. Depressive symptoms and impulsivity may be linked with cortical thinning in overlapping and distinct regions during childhood and adolescence. Internalizing problems and impulsivity may have shared and distinct neuroanatomical substrates in childhood. Higher depressive symptoms were uniquely associated with reduced cortical thickness in vmPFC/medial OFC. Higher impulsivity was uniquely associated with reduced cortical thickness in lateral PFC regions. Higher depressive symptoms were associated with smaller hippocampal volume and larger pallidal volume. These shared and distinct neuroanatomical correlates may inform the design of prevention and intervention strategies.
Collapse
Affiliation(s)
- Emily C Merz
- Department of Biobehavioral Sciences, Teachers College, Columbia University, 525 W. 120th St., New York, NY 10027, United States.
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 43, Rm. 5221, New York, NY 10032, United States.
| | - Kimberly G Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, 525 W. 120th St., New York, NY 10027, United States.
| | | |
Collapse
|
42
|
Gray Matter Volume Abnormalities in the Reward System in First-Episode Patients with Major Depressive Disorder. THE INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018) 2018. [DOI: 10.1007/978-3-319-74690-6_69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
43
|
Jiang X, Dai X, Kale Edmiston E, Zhou Q, Xu K, Zhou Y, Wu F, Kong L, Wei S, Zhou Y, Chang M, Geng H, Wang D, Wang Y, Cui W, Wang F, Tang Y. Alteration of cortico-limbic-striatal neural system in major depressive disorder and bipolar disorder. J Affect Disord 2017; 221:297-303. [PMID: 28668591 DOI: 10.1016/j.jad.2017.05.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/17/2017] [Accepted: 05/09/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND It is often difficult to differentiate major depressive disorder (MDD) and bipolar disorder (BD) merely according to clinical symptoms. Similarities and differences in neural activity between the two disorders remain unclear. In current study, we use amplitude of low-frequency fluctuations (ALFF) to compare neural activation changes between MDD and BD patients. METHODS One hundred and eighty-three adolescents and young adults (57 MDD, 46 BD and 80 healthy controls, HC) were scanned during resting state. The ALFF for each participant was calculated, and were then compared among all groups using voxel-based analysis. RESULTS There was a significant effect of diagnosis in the core regions of cortico-limbic-striatal neural system. Furthermore, MDD showed left-sided abnormal neural activity while BD showed a bilateral abnormality in this neural system. LIMITATIONS This study was underpowered to consider medications, mood states and neural developmental effects on the neural activation. CONCLUSIONS Differences in lateralization of ALFF alterations were found. Alterations predominated in the left hemisphere for MDD, whereas alterations were bilateral for BD.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Dai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Elliot Kale Edmiston
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Qian Zhou
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Xu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yifang Zhou
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Wu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lingtao Kong
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuning Zhou
- Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyang Geng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dahai Wang
- Shenyang Mental Health Center, Shenyang, Liaoning, China
| | - Ye Wang
- Shenyang Mental Health Center, Shenyang, Liaoning, China
| | - Wenhui Cui
- Shenyang Mental Health Center, Shenyang, Liaoning, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
44
|
Zhao L, Wang Y, Jia Y, Zhong S, Sun Y, Zhou Z, Zhang Z, Huang L. Microstructural Abnormalities of Basal Ganglia and Thalamus in Bipolar and Unipolar Disorders: A Diffusion Kurtosis and Perfusion Imaging Study. Psychiatry Investig 2017; 14:471-482. [PMID: 28845175 PMCID: PMC5561406 DOI: 10.4306/pi.2017.14.4.471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is often misdiagnosed as unipolar depression (UD), leading to mistreatment and poor clinical outcomes. However, little is known about the similarities and differences in subcorticalgray matter regions between BD and UD. METHODS Thirty-five BD patients, 30 UD patients and 40 healthy controls underwent diffusional kurtosis imaging (DKI) and three dimensional arterial spin labeling (3D ASL). The parameters including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr) and cerebral blood flow (CBF) were measured by using regions-of-interest analysis in the caudate, putamen and thalamus of the subcortical gray matter regions. RESULTS UD exhibited differences from controls for DKI measures and CBF in the left putamen and caudate. BD showed differences from controls for DKI measures in the left caudate. Additionally, BD showed lower Ka in right putamen, higher MD in right caudate compared with UD. Receiver operating characteristic analysis revealed the Kr of left caudate had the highest predictive power for distinguishing UD from controls. CONCLUSION The two disorders may have overlaps in microstructural abnormality in basal ganglia. The change of caudate may serve as a potential biomarker for UD.
Collapse
Affiliation(s)
- Lianping Zhao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Gansu Provincial Hospital, Gansu, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yao Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhifeng Zhou
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | | | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
45
|
A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause? Mol Neurobiol 2017; 55:3592-3609. [PMID: 28516431 PMCID: PMC5842501 DOI: 10.1007/s12035-017-0598-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/03/2017] [Indexed: 01/23/2023]
Abstract
There is copious evidence of abnormalities in resting-state functional network connectivity states, grey and white matter pathology and impaired cerebral perfusion in patients afforded a diagnosis of multiple sclerosis, major depression or chronic fatigue syndrome (CFS) (myalgic encephalomyelitis). Systemic inflammation may well be a major element explaining such findings. Inter-patient and inter-illness variations in neuroimaging findings may arise at least in part from regional genetic, epigenetic and environmental variations in the functions of microglia and astrocytes. Regional differences in neuronal resistance to oxidative and inflammatory insults and in the performance of antioxidant defences in the central nervous system may also play a role. Importantly, replicated experimental findings suggest that the use of high-resolution SPECT imaging may have the capacity to differentiate patients afforded a diagnosis of CFS from those with a diagnosis of depression. Further research involving this form of neuroimaging appears warranted in an attempt to overcome the problem of aetiologically heterogeneous cohorts which probably explain conflicting findings produced by investigative teams active in this field. However, the ionising radiation and relative lack of sensitivity involved probably preclude its use as a routine diagnostic tool.
Collapse
|
46
|
Amplitude of low-frequency fluctuations in first-episode, drug-naïve depressive patients: A 5-year retrospective study. PLoS One 2017; 12:e0174564. [PMID: 28384269 PMCID: PMC5383053 DOI: 10.1371/journal.pone.0174564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/12/2017] [Indexed: 11/19/2022] Open
Abstract
Despite different treatments and courses of illness, depressive symptoms appear similar in bipolar disorder (BD) and major depressive disorder (MDD), causing BD with an onset of depressive episode being frequently misdiagnosed as MDD, and leading to inappropriate treatment and poor clinical outcomes. Therefore, there is an urgent need to explore underlying neural basis to distinguish BD from MDD. The medical records of 80 first-episode, drug-naïve depressive patients with an initial diagnosis of MDD and illness duration of at least 5 years were reviewed retrospectively for this study. Fourteen bipolar depressed patients with a diagnosis conversion from MDD to BD, 14 patients with diagnosis of MDD, and 14 healthy subjects demographically matched with the BD group, were selected to participate in the study. Firstly, we examined whether there were differences among the three groups in whole brain fALFF during resting state. Secondly, clusters showing group differences in fALFF in any two groups were chosen as regions of interest (ROI) and then correlation between clinical features and fALFF values of ROIs were calculated. The BD group showed increased fALFF in bilateral putamen relative to both the MDD group and controls, while the MDD group exhibited decreased fALFF in left superior frontal gyrus (SFG) relative to both the BD group and controls (p < 0.05, corrected). Positive correlations between abnormality in the putamen and symptom severity were observed (significant for the MDD group, p = 0.043; marginally significant for the BD group, p = 0.060/0.076). These results implicate that abnormalities of key regions in the striatum and prefrontal areas may be trait markers for BD and MDD.
Collapse
|
47
|
Hilbert K, Lueken U, Muehlhan M, Beesdo-Baum K. Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: A multimodal machine learning study. Brain Behav 2017; 7:e00633. [PMID: 28293473 PMCID: PMC5346520 DOI: 10.1002/brb3.633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/11/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is difficult to recognize and hard to separate from major depression (MD) in clinical settings. Biomarkers might support diagnostic decisions. This study used machine learning on multimodal biobehavioral data from a sample of GAD, MD and healthy subjects to differentiate subjects with a disorder from healthy subjects (case-classification) and to differentiate GAD from MD (disorder-classification). METHODS Subjects with GAD (n = 19), MD without GAD (n = 14), and healthy comparison subjects (n = 24) were included. The sample was matched regarding age, sex, handedness and education and free of psychopharmacological medication. Binary support vector machines were used within a nested leave-one-out cross-validation framework. Clinical questionnaires, cortisol release, gray matter (GM), and white matter (WM) volumes were used as input data separately and in combination. RESULTS Questionnaire data were well-suited for case-classification but not disorder-classification (accuracies: 96.40%, p < .001; 56.58%, p > .22). The opposite pattern was found for imaging data (case-classification GM/WM: 58.71%, p = .09/43.18%, p > .66; disorder-classification GM/WM: 68.05%, p = .034/58.27%, p > .15) and for cortisol data (38.02%, p = .84; 74.60%, p = .009). All data combined achieved 90.10% accuracy (p < .001) for case-classification and 67.46% accuracy (p = .0268) for disorder-classification. CONCLUSIONS In line with previous evidence, classification of GAD was difficult using clinical questionnaire data alone. Particularly cortisol and GM volume data were able to provide incremental value for the classification of GAD. Findings suggest that neurobiological biomarkers are a useful target for further research to delineate their potential contribution to diagnostic processes.
Collapse
Affiliation(s)
- Kevin Hilbert
- Institute of Clinical Psychology and Psychotherapy Technische Universität Dresden Dresden Germany; Behavioral Epidemiology Technische Universität Dresden Dresden Germany; Department of Psychology Neuroimaging CenterTechnische Universität Dresden Dresden Germany
| | - Ulrike Lueken
- Institute of Clinical Psychology and Psychotherapy Technische Universität Dresden Dresden Germany; Department of Psychology Neuroimaging Center Technische Universität Dresden Dresden Germany; Department of Psychiatry, Psychosomatics, and Psychotherapy University Hospital Wuerzburg Wuerzburg Germany
| | - Markus Muehlhan
- Institute of Clinical Psychology and Psychotherapy Technische Universität Dresden Dresden Germany; Department of Psychology Neuroimaging Center Technische Universität Dresden Dresden Germany
| | - Katja Beesdo-Baum
- Institute of Clinical Psychology and Psychotherapy Technische Universität Dresden Dresden Germany; Behavioral Epidemiology Technische Universität Dresden Dresden Germany; Department of Psychology Neuroimaging CenterTechnische Universität Dresden Dresden Germany
| |
Collapse
|
48
|
MacMaster FP. Finding the Stripes: Distinguishing Bipolar Disorder From Major Depressive Disorder. EBioMedicine 2017; 16:16-17. [PMID: 28131748 PMCID: PMC5474501 DOI: 10.1016/j.ebiom.2017.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 01/22/2017] [Indexed: 10/26/2022] Open
|
49
|
Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 2017; 145:137-165. [PMID: 27012503 PMCID: PMC5031516 DOI: 10.1016/j.neuroimage.2016.02.079] [Citation(s) in RCA: 546] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/03/2016] [Accepted: 02/25/2016] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need for accurate, robust and generalizable single subject prediction of brain disorders during an exciting time. In this report, we survey the past and offer some opinions regarding the road ahead.
Collapse
Affiliation(s)
- Mohammad R Arbabshirani
- The Mind Research Network, Albuquerque, NM 87106, USA; Geisinger Health System, Danville, PA 17822, USA
| | - Sergey Plis
- The Mind Research Network, Albuquerque, NM 87106, USA
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM 87106, USA; Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM 87106, USA; Department of ECE, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
50
|
A pilot study of hippocampal N-acetyl-aspartate in youth with treatment resistant major depression. J Affect Disord 2017; 207:110-113. [PMID: 27721183 DOI: 10.1016/j.jad.2016.05.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Smaller hippocampal volumes, as assessed by magnetic resonance imaging (MRI), and proton magnetic resonance spectroscopy (1H-MRS) indexed alterations in brain metabolites have been identified in adults with major depressive disorder (MDD). Our group has found similar effects in MDD youth. However, this has not been studied in youth with treatment resistant MDD (TRD), nor has the interaction between regional N-acetyl-aspartate and volume deficits. N-acetyl-aspartate is an amino acid in the synthesis pathway of glutamate, and serves a marker of neuronal viability/number. METHODS Fifteen typically developing youth (16-22 years of age; 7 males, 8 females) and eighteen youth with TRD (14-22 years of age; 8 males, 10 females) underwent 1H-MRS and MRI on a 3T scanner. A short echo PRESS protocol was used with voxels in the right and left hippocampi (6mL each). Hippocampal volume was evaluated using FreeSurfer. RESULTS Compared with the typically developing group, youth with TRD had lower concentrations of N-acetyl-aspartate in the left hippocampus (p=0.004), and a trend for smaller left hippocampal volume (p=0.067). In TRD subjects, hippocampal N-acetyl-aspartate was inversely correlated with left (r=-0.68, p=0.003) but not right hippocampal volume. Right hippocampal glutamate+glutamine was greater in TRD youth compared to typically developing controls (p=0.007). CONCLUSIONS These results suggest a neurochemical and structural deficit in the hippocampi of youth with TRD. These findings fit with the role of N-acetyl-aspartate in glutamate neurotransmission and the effect of glutamate on brain morphology.
Collapse
|