1
|
Poskanzer C, Fang M, Aglinskas A, Anzellotti S. Controlling for Spurious Nonlinear Dependence in Connectivity Analyses. Neuroinformatics 2022; 20:599-611. [PMID: 34519963 DOI: 10.1007/s12021-021-09540-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Recent analysis methods can capture nonlinear interactions between brain regions. However, noise sources might induce spurious nonlinear relationships between the responses in different regions. Previous research has demonstrated that traditional denoising techniques effectively remove noise-induced linear relationships between brain areas, but it is unknown whether these techniques can remove spurious nonlinear relationships. To address this question, we analyzed fMRI responses while participants watched the film Forrest Gump. We tested whether nonlinear Multivariate Pattern Dependence Networks (MVPN) outperform linear MVPN in non-denoised data, and whether this difference is reduced after CompCor denoising. Whereas nonlinear MVPN outperformed linear MVPN in the non-denoised data, denoising removed these nonlinear interactions. We replicated our results using different neural network architectures as the bases of MVPN, different activation functions (ReLU and sigmoid), different dimensionality reduction techniques for CompCor (PCA and ICA), and multiple datasets, demonstrating that CompCor's ability to remove nonlinear interactions is robust across these analysis choices and across different groups of participants. Finally, we asked whether information contributing to the removal of nonlinear interactions is localized to specific anatomical regions of no interest or to specific principal components. We denoised the data 8 separate times by regressing out 5 principal components extracted from combined white matter (WM) and cerebrospinal fluid (CSF), each of the 5 components separately, 5 components extracted from WM only, and 5 components extracted solely from CSF. In all cases, denoising was sufficient to remove the observed nonlinear interactions.
Collapse
Affiliation(s)
- Craig Poskanzer
- Department of Psychology and Neuroscience, Boston College, Boston, 02467, MA, USA.
| | - Mengting Fang
- Department of Psychology and Neuroscience, Boston College, Boston, 02467, MA, USA
| | - Aidas Aglinskas
- Department of Psychology and Neuroscience, Boston College, Boston, 02467, MA, USA
| | - Stefano Anzellotti
- Department of Psychology and Neuroscience, Boston College, Boston, 02467, MA, USA
| |
Collapse
|
2
|
Good TJ, Villafuerte J, Ryan JD, Grady CL, Barense MD. Resting State BOLD Variability of the Posterior Medial Temporal Lobe Correlates with Cognitive Performance in Older Adults with and without Risk for Cognitive Decline. eNeuro 2020; 7:ENEURO.0290-19.2020. [PMID: 32193364 PMCID: PMC7240288 DOI: 10.1523/eneuro.0290-19.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
Local brain signal variability [SD of the BOLD signal (SDBOLD]] correlates with age and cognitive performance, and recently differentiated Alzheimer's disease (AD) patients from healthy controls. However, it is unknown whether changes to SDBOLD precede diagnosis of AD or mild cognitive impairment. We compared ostensibly healthy older adult humans who scored below the recommended threshold on the Montreal cognitive assessment (MoCA) and who showed reduced medial temporal lobe (MTL) volume in a previous study ("at-risk" group, n = 20), with healthy older adults who scored within the normal range on the MoCA ("control" group, n = 20). Using multivariate partial least-squares analysis we assessed the correlations between SDBOLD and age, MoCA score, global fractional anisotropy, global mean diffusivity, and four cognitive factors. Greater SDBOLD in the MTL and occipital cortex positively correlated with performance on cognitive control/speed tasks but negatively correlated with memory scores in the control group. These relations were weaker in the at-risk group. A post hoc analysis assessed associations between MTL volumes and SDBOLD in both groups. This revealed a negative correlation, most robust in the at-risk group, between MTL SDBOLD and MTL subregion volumetry, particularly the entorhinal and parahippocampal regions. Together, these results suggest that the association between SDBOLD and cognition differs between the at-risk and control groups, which may be because of lower MTL volumes in the at-risk group. Our data indicate relations between MTL SDBOLD and cognition may be helpful in understanding brain differences in individuals who may be at risk for further cognitive decline.
Collapse
Affiliation(s)
- Tyler J Good
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Ontario
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Ontario
| | - Joshua Villafuerte
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Ontario
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Ontario
| | - Jennifer D Ryan
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Ontario
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Ontario
- Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Ontario
| | - Cheryl L Grady
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Ontario
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Ontario
- Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Ontario
| | - Morgan D Barense
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Ontario
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Ontario
| |
Collapse
|
3
|
Gaut G, Li X, Lu ZL, Steyvers M. Experimental design modulates variance in BOLD activation: The variance design general linear model. Hum Brain Mapp 2019; 40:3918-3929. [PMID: 31148301 DOI: 10.1002/hbm.24677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023] Open
Abstract
Typical fMRI studies have focused on either the mean trend in the blood-oxygen-level-dependent (BOLD) time course or functional connectivity (FC). However, other statistics of the neuroimaging data may contain important information. Despite studies showing links between the variance in the BOLD time series (BV) and age and cognitive performance, a formal framework for testing these effects has not yet been developed. We introduce the variance design general linear model (VDGLM), a novel framework that facilitates the detection of variance effects. We designed the framework for general use in any fMRI study by modeling both mean and variance in BOLD activation as a function of experimental design. The flexibility of this approach allows the VDGLM to (a) simultaneously make inferences about a mean or variance effect while controlling for the other and (b) test for variance effects that could be associated with multiple conditions and/or noise regressors. We demonstrate the use of the VDGLM in a working memory application and show that engagement in a working memory task is associated with whole-brain decreases in BOLD variance.
Collapse
Affiliation(s)
- Garren Gaut
- Department of Cognitive Science, University of California Irvine, Irvine, California
| | - Xiangrui Li
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio.,Department of Psychology, The Ohio State University, Columbus, Ohio
| | - Zhong-Lin Lu
- Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio.,Department of Psychology, The Ohio State University, Columbus, Ohio
| | - Mark Steyvers
- Department of Cognitive Science, University of California Irvine, Irvine, California
| |
Collapse
|
4
|
Wright ME, Wise RG. Can Blood Oxygenation Level Dependent Functional Magnetic Resonance Imaging Be Used Accurately to Compare Older and Younger Populations? A Mini Literature Review. Front Aging Neurosci 2018; 10:371. [PMID: 30483117 PMCID: PMC6243068 DOI: 10.3389/fnagi.2018.00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
A wealth of research has investigated the aging brain using blood oxygenation level dependent functional MRI [Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI)]. However, many studies do not consider the aging of the cerebrovascular system, which can influence the BOLD signal independently from neural activity, limiting what can be inferred when comparing age groups. Here, we discuss the ways in which the aging neurovascular system can impact BOLD fMRI, the consequences for age-group comparisons and possible strategies for mitigation. While BOLD fMRI is a valuable tool in this context, this review highlights the importance of consideration of vascular confounds.
Collapse
Affiliation(s)
- Melissa E Wright
- Cardiff University Brain Imaging Research Center, School of Psychology, Cardiff University, Cardiff, United Kingdom.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Richard G Wise
- Cardiff University Brain Imaging Research Center, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Mutch WAC, Ellis MJ, Ryner LN, McDonald PJ, Morissette MP, Pries P, Essig M, Mikulis DJ, Duffin J, Fisher JA. Patient-Specific Alterations in CO 2 Cerebrovascular Responsiveness in Acute and Sub-Acute Sports-Related Concussion. Front Neurol 2018; 9:23. [PMID: 29416525 PMCID: PMC5787575 DOI: 10.3389/fneur.2018.00023] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/11/2018] [Indexed: 01/06/2023] Open
Abstract
Background Preliminary studies suggest that sports-related concussion (SRC) is associated with alterations in cerebral blood flow (CBF) regulation. Here, we use advanced magnetic resonance imaging (MRI) techniques to measure CBF and cerebrovascular responsiveness (CVR) in individual SRC patients and healthy control subjects. Methods 15 SRC patients (mean age = 16.3, range 14–20 years) and 27 healthy control subjects (mean age = 17.6, range 13–21 years) underwent anatomical MRI, pseudo-continuous arterial spin labeling (pCASL) MRI and model-based prospective end-tidal targeting (MPET) of CO2 during blood oxygenation level-dependent (BOLD) MRI. Group differences in global mean resting CBF were examined. Voxel-by-voxel group and individual differences in regional CVR were examined using statistical parametric mapping (SPM). Leave-one-out receiver operating characteristic curve analysis was used to evaluate the utility of brain MRI CO2 stress testing biomarkers to correctly discriminate between SRC patients and healthy control subjects. Results All studies were tolerated with no complications. Traumatic structural findings were identified in one SRC patient. No significant group differences in global mean resting CBF were observed. There were no significant differences in the CO2 stimulus and O2 targeting during BOLD MRI. Significant group and patient-specific differences in CVR were observed with SRC patients demonstrating a predominant pattern of increased CVR. Leave-one-out ROC analysis for voxels demonstrating a significant increase in CVR was found to reliably discriminate between SRC patients and healthy control subjects (AUC of 0.879, p = 0.0001). The optimal cutoff for increased CVR declarative for SRC was 1,899 voxels resulting in a sensitivity of 0.867 and a specificity of 0.778 for this specific ROC analysis. There was no correlation between abnormal voxel counts and Postconcussion Symptom Scale scores among SRC patients. Conclusion Acute and subacute SRCs are associated with alterations in CVR that can be reliably detected by brain MRI CO2 stress testing in individual patients.
Collapse
Affiliation(s)
- W Alan C Mutch
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada
| | - Michael J Ellis
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Department of Surgery and Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada.,Pan Am Concussion Program, University of Manitoba, Winnipeg, MB, Canada.,Childrens Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Lawrence N Ryner
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Department of Radiology Diagnostic Imaging, University of Manitoba, Winnipeg, MB, Canada
| | - Patrick J McDonald
- Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurosurgery, BC Children's Hospital, National Core for Neuroethics, University of British Columbia, Vancouver, BC, Canada
| | | | - Philip Pries
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Marco Essig
- University of Manitoba, Winnipeg, MB, Canada.,Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada.,Pan Am Concussion Program, University of Manitoba, Winnipeg, MB, Canada.,Department of Radiology Diagnostic Imaging, University of Manitoba, Winnipeg, MB, Canada
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada
| | - James Duffin
- University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- University of Toronto, Toronto, ON, Canada.,University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada.,Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Identifying and characterizing systematic temporally-lagged BOLD artifacts. Neuroimage 2017; 171:376-392. [PMID: 29288128 DOI: 10.1016/j.neuroimage.2017.12.082] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
Residual noise in the BOLD signal remains problematic for fMRI - particularly for techniques such as functional connectivity, where findings can be spuriously influenced by noise sources that can covary with individual differences. Many such potential noise sources - for instance, motion and respiration - can have a temporally lagged effect on the BOLD signal. Thus, here we present a tool for assessing residual lagged structure in the BOLD signal that is associated with nuisance signals, using a construction similar to a peri-event time histogram. Using this method, we find that framewise displacements - both large and very small - were followed by structured, prolonged, and global changes in the BOLD signal that depend on the magnitude of the preceding displacement and extend for tens of seconds. This residual lagged BOLD structure was consistent across datasets, and independently predicted considerable variance in the global cortical signal (as much as 30-40% in some subjects). Mean functional connectivity estimates varied similarly as a function of displacements occurring many seconds in the past, even after strict censoring. Similar patterns of residual lagged BOLD structure were apparent following respiratory fluctuations (which covaried with framewise displacements), implicating respiration as one likely mechanism underlying the displacement-linked structure observed. Global signal regression largely attenuates this artifactual structure. These findings suggest the need for caution in interpreting results of individual difference studies where noise sources might covary with the individual differences of interest, and highlight the need for further development of preprocessing techniques for mitigating such structure in a more nuanced and targeted manner.
Collapse
|
7
|
van de Ven V, Rotarska Jagiela A, Oertel-Knöchel V, Linden DEJ. Reduced intrinsic visual cortical connectivity is associated with impaired perceptual closure in schizophrenia. NEUROIMAGE-CLINICAL 2017; 15:45-52. [PMID: 28480163 PMCID: PMC5407639 DOI: 10.1016/j.nicl.2017.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 11/24/2022]
Abstract
Sensory perceptual processing deficits, such as impaired visual object identification and perceptual closure, have been reported in schizophrenia. These perceptual impairments may be associated with neural deficits in visual association areas, including lateral occipital cortex and inferior temporal areas. However, it remains unknown if such deficits can be found in the intrinsic architecture of the visual system. In the current study, we measured perceptual closure performance and resting-state functional connectivity using functional magnetic resonance imaging (FMRI) in 16 schizophrenia patients and 16 matched healthy controls. We estimated intrinsic functional connectivity using self-organized grouping spatial ICA, which clusters component maps in the subject space according to spatial similarity. Patients performed worse than controls in the perceptual closure task. This impaired closure performance of patients was correlated with increased severity of psychotic symptoms. We also found that intrinsic connectivity of the visual processing system was diminished in patients compared to controls. Lower perceptual closure performance was correlated to lower visual cortical intrinsic connectivity overall. We suggest that schizophrenia is associated with impaired intrinsic connectivity of the visual system, and that it is a potential mechanism leading to impaired visual object perception. These findings contribute to increasing evidence for impairments of higher visual functions in schizophrenia. We found reduced visual resting-state network connectivity in schizophrenia. Reduced connectivity correlated with impaired perceptual closure performance Schizophrenia is associated with impaired intrinsic connectivity of the visual system.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands.
| | - Anna Rotarska Jagiela
- Laboratory of Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany
| | - Viola Oertel-Knöchel
- Laboratory of Neuroimaging, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt/Main 60528, Germany
| | - David E J Linden
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, United Kingdom
| |
Collapse
|
8
|
Schlesinger KJ, Turner BO, Lopez BA, Miller MB, Carlson JM. Age-dependent changes in task-based modular organization of the human brain. Neuroimage 2017; 146:741-762. [DOI: 10.1016/j.neuroimage.2016.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/14/2016] [Accepted: 09/01/2016] [Indexed: 02/08/2023] Open
|
9
|
Davison EN, Turner BO, Schlesinger KJ, Miller MB, Grafton ST, Bassett DS, Carlson JM. Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan. PLoS Comput Biol 2016; 12:e1005178. [PMID: 27880785 PMCID: PMC5120784 DOI: 10.1371/journal.pcbi.1005178] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022] Open
Abstract
Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism-hypergraph cardinality-we investigate individual variations in two separate, complementary data sets. The first data set ("multi-task") consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set ("age-memory"), in which 95 individuals, aged 18-75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain.
Collapse
Affiliation(s)
- Elizabeth N. Davison
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Benjamin O. Turner
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Kimberly J. Schlesinger
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Michael B. Miller
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Scott T. Grafton
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Danielle S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jean M. Carlson
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| |
Collapse
|
10
|
Dubois J, Adolphs R. Building a Science of Individual Differences from fMRI. Trends Cogn Sci 2016; 20:425-443. [PMID: 27138646 DOI: 10.1016/j.tics.2016.03.014] [Citation(s) in RCA: 399] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/19/2022]
Abstract
To date, fMRI research has been concerned primarily with evincing generic principles of brain function through averaging data from multiple subjects. Given rapid developments in both hardware and analysis tools, the field is now poised to study fMRI-derived measures in individual subjects, and to relate these to psychological traits or genetic variations. We discuss issues of validity, reliability and statistical assessment that arise when the focus shifts to individual subjects and that are applicable also to other imaging modalities. We emphasize that individual assessment of neural function with fMRI presents specific challenges and necessitates careful consideration of anatomical and vascular between-subject variability as well as sources of within-subject variability.
Collapse
Affiliation(s)
- Julien Dubois
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|