1
|
Luo Y, Li X, Zhou C, Liu G, Jia X, Yang X, Li A, Gong H, Feng Z. Mapping sagittal-plane reference brain atlas of the cynomolgus macaque (Macaca fascicularis) based on consecutive cytoarchitectonic images. Brain Struct Funct 2024; 229:2045-2057. [PMID: 39192084 PMCID: PMC11485111 DOI: 10.1007/s00429-024-02851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The brain atlas is essential for exploring the anatomical structure and function of the brain. Non-human primates, such as cynomolgus macaque, have received increasing attention due to their genetic similarity to humans. However, current macaque brain atlases only offer coarse sections with intervals along the coronal direction, failing to meet the needs of single-cell resolution studies in functional and multi-omics research of the macaque brain. To address this issue, we utilized fluorescence micro-optical sectioning tomography to obtain sub-micron resolution cytoarchitectonic images of the macaque brain at the sagittal plane. Based on the obtained 8000 image sequences, a reference brain atlas comprising 45 sagittal sections was created, delineating 270 brain regions other than the cortex. Additionally, a website was established to share the reference atlas corresponding image data. This study is expected to provide an essential dataset and tool for scientists studying the macaque brain.
Collapse
Affiliation(s)
- Yue Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangning Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Can Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangcai Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Zhao Feng
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Lu Y, Cui Y, Cao L, Dong Z, Cheng L, Wu W, Wang C, Liu X, Liu Y, Zhang B, Li D, Zhao B, Wang H, Li K, Ma L, Shi W, Li W, Ma Y, Du Z, Zhang J, Xiong H, Luo N, Liu Y, Hou X, Han J, Sun H, Cai T, Peng Q, Feng L, Wang J, Paxinos G, Yang Z, Fan L, Jiang T. Macaque Brainnetome Atlas: A multifaceted brain map with parcellation, connection, and histology. Sci Bull (Beijing) 2024; 69:2241-2259. [PMID: 38580551 DOI: 10.1016/j.scib.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.
Collapse
Affiliation(s)
- Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Cao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou 450001, China; Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhenwei Dong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luqi Cheng
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Wen Wu
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Xinyi Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youtong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bokai Zhao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixin Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Zongchang Du
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xiong
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoxiao Hou
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinglu Han
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Science, Beijing 100049, China
| | - Hongji Sun
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Cai
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Qiang Peng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Linqing Feng
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - George Paxinos
- Neuroscience Research Australia and The University of New South Wales, Sydney NSW 2031, Australia
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China.
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China; Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China.
| |
Collapse
|
3
|
Makris N, Rushmore R, Yeterian E. A proposed structural connectivity matrices approach for the superior fronto-occipital fascicle in the Harvard-Oxford Atlas comparative framework following the Pandya comparative extrapolation principle. J Comp Neurol 2023; 531:2172-2184. [PMID: 38010231 PMCID: PMC11019921 DOI: 10.1002/cne.25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023]
Abstract
A key set of connections necessary for the most complex brain functions are the long association cortico-cortical fiber tracts. These pathways have been described by the Dejerines and others using post mortem histological or brain dissection techniques. Given methodological limitations, these fiber connections have not been delineated completely in humans. Although the stem portions of fiber tracts have been identified in humans, their precise origins and terminations remain to be determined. By contrast, the origins and terminations as well as the stems of long cortico-cortical association fiber pathways in monkeys have been detailed in the macaque monkey brain using experimental tract tracing methods. Deepak Pandya made major contributions to the delineation of fiber tracts in the monkey brain. In the early 1990s, he compared his observations in monkeys with the original descriptions in humans by the Dejerines. With the advent of diffusion-weighted imaging, Dr. Pandya extended this line of investigation to the human brain with Dr. Nikos Makris. In this translational analysis of long association cortico-cortical fiber tracts, they applied a principle of extrapolation from monkey to human. In the present study, we addressed the reasoning and the complex methodology in translating brain structural connectivity from monkey to human in one cortico-cortical fiber tract, namely the superior fronto-occipital fascicle, which was delineated in both species by Dr. Pandya and colleagues. Furthermore, we represented this information in the form of connectional matrices in the context of the HOA2.0-ComPaRe framework, a homological monkey-to-human translational system used in neuroimaging.
Collapse
Affiliation(s)
- Nikos Makris
- Center for Morphometric Analysis, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Richard Rushmore
- Center for Morphometric Analysis, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Edward Yeterian
- Center for Morphometric Analysis, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychology, Colby College, Waterville, ME, USA
| |
Collapse
|
4
|
Makris N, Rushmore R, Kaiser J, Albaugh M, Kubicki M, Rathi Y, Zhang F, O’Donnell LJ, Yeterian E, Caviness VS, Kennedy DN. A Proposed Human Structural Brain Connectivity Matrix in the Center for Morphometric Analysis Harvard-Oxford Atlas Framework: A Historical Perspective and Future Direction for Enhancing the Precision of Human Structural Connectivity with a Novel Neuroanatomical Typology. Dev Neurosci 2023; 45:161-180. [PMID: 36977393 PMCID: PMC10526721 DOI: 10.1159/000530358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
A complete structural definition of the human nervous system must include delineation of its wiring diagram (e.g., Swanson LW. Brain architecture: understanding the basic plan, 2012). The complete formulation of the human brain circuit diagram (BCD [Front Neuroanat. 2020;14:18]) has been hampered by an inability to determine connections in their entirety (i.e., not only pathway stems but also origins and terminations). From a structural point of view, a neuroanatomic formulation of the BCD should include the origins and terminations of each fiber tract as well as the topographic course of the fiber tract in three dimensions. Classic neuroanatomical studies have provided trajectory information for pathway stems and their speculative origins and terminations [Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux, 1901; Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux: Méthodes générales d'étude-embryologie-histogénèse et histologie. Anatomie du cerveau, 1895; Ludwig E and Klingler J. Atlas cerebri humani, 1956; Makris N. Delineation of human association fiber pathways using histologic and magnetic resonance methodologies; 1999; Neuroimage. 1999 Jan;9(1):18-45]. We have summarized these studies previously [Neuroimage. 1999 Jan;9(1):18-45] and present them here in a macroscale-level human cerebral structural connectivity matrix. A matrix in the present context is an organizational construct that embodies anatomical knowledge about cortical areas and their connections. This is represented in relation to parcellation units according to the Harvard-Oxford Atlas neuroanatomical framework established by the Center for Morphometric Analysis at Massachusetts General Hospital in the early 2000s, which is based on the MRI volumetrics paradigm of Dr. Verne Caviness and colleagues [Brain Dev. 1999 Jul;21(5):289-95]. This is a classic connectional matrix based mainly on data predating the advent of DTI tractography, which we refer to as the "pre-DTI era" human structural connectivity matrix. In addition, we present representative examples that incorporate validated structural connectivity information from nonhuman primates and more recent information on human structural connectivity emerging from DTI tractography studies. We refer to this as the "DTI era" human structural connectivity matrix. This newer matrix represents a work in progress and is necessarily incomplete due to the lack of validated human connectivity findings on origins and terminations as well as pathway stems. Importantly, we use a neuroanatomical typology to characterize different types of connections in the human brain, which is critical for organizing the matrices and the prospective database. Although substantial in detail, the present matrices may be assumed to be only partially complete because the sources of data relating to human fiber system organization are limited largely to inferences from gross dissections of anatomic specimens or extrapolations of pathway tracing information from nonhuman primate experiments [Front Neuroanat. 2020;14:18, Front Neuroanat. 2022;16:1035420, and Brain Imaging Behav. 2021;15(3):1589-1621]. These matrices, which embody a systematic description of cerebral connectivity, can be used in cognitive and clinical studies in neuroscience and, importantly, to guide research efforts for further elucidating, validating, and completing the human BCD [Front Neuroanat. 2020;14:18].
Collapse
Affiliation(s)
- Nikos Makris
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Richard Rushmore
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan Kaiser
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew Albaugh
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Marek Kubicki
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yogesh Rathi
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren J. O’Donnell
- Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward Yeterian
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychology, Colby College, Waterville, ME, USA
| | - Verne S. Caviness
- Center for Morphometric Analysis, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - David N. Kennedy
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
Rushmore RJ, Bouix S, Kubicki M, Rathi Y, Yeterian E, Makris N. HOA2.0-ComPaRe: A next generation Harvard-Oxford Atlas comparative parcellation reasoning method for human and macaque individual brain parcellation and atlases of the cerebral cortex. Front Neuroanat 2022; 16:1035420. [PMID: 36439195 PMCID: PMC9684647 DOI: 10.3389/fnana.2022.1035420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2023] Open
Abstract
Comparative structural neuroanatomy is a cornerstone for understanding human brain structure and function. A parcellation framework that relates systematically to fundamental principles of histological organization is an essential step in generating structural comparisons between species. In the present investigation, we developed a comparative parcellation reasoning system (ComPaRe), which is a formal ontological system in human and non-human primate brains based on the cortical cytoarchitectonic mapping used for both species as detailed by Brodmann. ComPaRe provides a theoretical foundation for mapping neural systems in humans and other species using neuroimaging. Based on this approach, we revised the methodology of the original Harvard-Oxford Atlas (HOA) system of brain parcellation to produce a comparative framework for the human (hHOA) and the rhesus monkey (mHOA) brains, which we refer to as HOA2.0-ComPaRe. In addition, we used dedicated segmentation software in the publicly available 3D Slicer platform to parcellate an individual human and rhesus monkey brain. This method produces quantitative morphometric parcellations in the individual brains. Based on these parcellations we created a representative template and 3D brain atlas for the two species, each based on a single subject. Thus, HOA2.0-ComPaRe provides a theoretical foundation for mapping neural systems in humans and other species using neuroimaging, while also representing a significant revision of the original human and macaque monkey HOA parcellation schemas. The methodology and atlases presented here can be used in basic and clinical neuroimaging for morphometric (volumetric) analysis, further generation of atlases, as well as localization of function and structural lesions.
Collapse
Affiliation(s)
- Richard Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Software Engineering and Information Technology, École de Technologie Supérieure, Montreal, QC, Canada
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| | - Edward Yeterian
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Nikos Makris
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
6
|
Rushmore RJ, Sunderland K, Carrington H, Chen J, Halle M, Lasso A, Papadimitriou G, Prunier N, Rizzoni E, Vessey B, Wilson-Braun P, Rathi Y, Kubicki M, Bouix S, Yeterian E, Makris N. Anatomically curated segmentation of human subcortical structures in high resolution magnetic resonance imaging: An open science approach. Front Neuroanat 2022; 16:894606. [PMID: 36249866 PMCID: PMC9562126 DOI: 10.3389/fnana.2022.894606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022] Open
Abstract
Magnetic resonance imaging (MRI)-based brain segmentation has recently been revolutionized by deep learning methods. These methods use large numbers of annotated segmentations to train algorithms that have the potential to perform brain segmentations reliably and quickly. However, training data for these algorithms are frequently obtained from automated brain segmentation systems, which may contain inaccurate neuroanatomy. Thus, the neuroimaging community would benefit from an open source database of high quality, neuroanatomically curated and manually edited MRI brain images, as well as the publicly available tools and detailed procedures for generating these curated data. Manual segmentation approaches are regarded as the gold standard for brain segmentation and parcellation. These approaches underpin the construction of neuroanatomically accurate human brain atlases. In addition, neuroanatomically precise definitions of MRI-based regions of interest (ROIs) derived from manual brain segmentation are essential for accuracy in structural connectivity studies and in surgical planning for procedures such as deep brain stimulation. However, manual segmentation procedures are time and labor intensive, and not practical in studies utilizing very large datasets, large cohorts, or multimodal imaging. Automated segmentation methods were developed to overcome these issues, and provide high data throughput, increased reliability, and multimodal imaging capability. These methods utilize manually labeled brain atlases to automatically parcellate the brain into different ROIs, but do not have the anatomical accuracy of skilled manual segmentation approaches. In the present study, we developed a custom software module for manual editing of brain structures in the freely available 3D Slicer software platform that employs principles and tools based on pioneering work from the Center for Morphometric Analysis (CMA) at Massachusetts General Hospital. We used these novel 3D Slicer segmentation tools and techniques in conjunction with well-established neuroanatomical definitions of subcortical brain structures to manually segment 50 high resolution T1w MRI brains from the Human Connectome Project (HCP) Young Adult database. The structural definitions used herein are associated with specific neuroanatomical ontologies to systematically interrelate histological and MRI-based morphometric definitions. The resulting brain datasets are publicly available and will provide the basis for a larger database of anatomically curated brains as an open science resource.
Collapse
Affiliation(s)
- R. Jarrett Rushmore
- Department of Psychiatry, Department of Neurology, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Kyle Sunderland
- School of Computing, Queen’s University, Kingston, ON, Canada
| | - Holly Carrington
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Justine Chen
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Michael Halle
- Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Andras Lasso
- School of Computing, Queen’s University, Kingston, ON, Canada
| | - G. Papadimitriou
- Department of Psychiatry, Department of Neurology, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - N. Prunier
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Elizabeth Rizzoni
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Brynn Vessey
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Peter Wilson-Braun
- Department of Psychiatry, Department of Neurology, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Yogesh Rathi
- Department of Psychiatry, Department of Neurology, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Marek Kubicki
- Department of Psychiatry, Department of Neurology, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward Yeterian
- Department of Psychiatry, Department of Neurology, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Nikos Makris
- Department of Psychiatry, Department of Neurology, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Long Z, Li J, Liao H, Deng L, Du Y, Fan J, Li X, Miao J, Qiu S, Long C, Jing B. A Multi-Modal and Multi-Atlas Integrated Framework for Identification of Mild Cognitive Impairment. Brain Sci 2022; 12:751. [PMID: 35741636 PMCID: PMC9221217 DOI: 10.3390/brainsci12060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multi-modal neuroimaging with appropriate atlas is vital for effectively differentiating mild cognitive impairment (MCI) from healthy controls (HC). METHODS The resting-state functional magnetic resonance imaging (rs-fMRI) and structural MRI (sMRI) of 69 MCI patients and 61 HC subjects were collected. Then, the gray matter volumes obtained from the sMRI and Hurst exponent (HE) values calculated from rs-fMRI data in the Automated Anatomical Labeling (AAL-90), Brainnetome (BN-246), Harvard-Oxford (HOA-112) and AAL3-170 atlases were extracted, respectively. Next, these characteristics were selected with a minimal redundancy maximal relevance algorithm and a sequential feature collection method in single or multi-modalities, and only the optimal features were retained after this procedure. Lastly, the retained characteristics were served as the input features for the support vector machine (SVM)-based method to classify MCI patients, and the performance was estimated with a leave-one-out cross-validation (LOOCV). RESULTS Our proposed method obtained the best 92.00% accuracy, 94.92% specificity and 89.39% sensitivity with the sMRI in AAL-90 and the fMRI in HOA-112 atlas, which was much better than using the single-modal or single-atlas features. CONCLUSION The results demonstrated that the multi-modal and multi-atlas integrated method could effectively recognize MCI patients, which could be extended into various neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zhuqing Long
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Haitao Liao
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Li Deng
- Department of Data Assessment and Examination, Hunan Children’s Hospital, Changsha 410007, China;
| | - Yukeng Du
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Jianghua Fan
- Department of Pediatric Emergency Center, Emergency Generally Department I, Hunan Children’s Hospital, Changsha 410007, China;
| | - Xiaofeng Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410006, China;
| | - Jichang Miao
- Department of Medical Devices, Nanfang Hospital, Guangzhou 510515, China;
| | - Shuang Qiu
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Chaojie Long
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| |
Collapse
|