1
|
Shen N, Chen Z, Sun H, Tian S, Wang Y, Huang Y, Yan R, Hua L, Yao Z, Lu Q. Altered dynamic brain activity of recent suicidal ideation and suicidal attempt in depression patients and its relationship with cognitive function. J Affect Disord 2025; 377:35-44. [PMID: 39983773 DOI: 10.1016/j.jad.2025.02.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE The "ideation-to-action" framework for suicide posited that the occurrence of suicidal ideation (SI) and suicide attempts (SA) may involve distinct neural mechanisms. However, the disparities in neurocognitive impairment between SI and SA, along with the underlying neural mechanisms, remain further investigation. METHODS A total of 730 participants were recruited, including depressed patients with recent SA (RSA group, n = 69), patients with recent SI but no history of SA (SI group, n = 327), patients without SI or SA (NSI group, n = 87) and 247 healthy controls. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans and completed cognitive function assessments. The dynamic regional homogeneity (dReHo) was measured using a sliding-window approach. Differences in dReHo and cognitive function between groups were analyzed. RESULTS The SI group demonstrated decreased verbal memory compared to the NSI group. Critically, the RSA group exhibited more pronounced verbal memory impairment than the SI group, accompanied by deficits in working memory and cognitive flexibility. Neuroimaging results revealed elevated dReHo values in the right precuneus (PCUN.R) in the RSA group, distinguishing them from the SI, NSI, and HC groups. Additionally, the increased dReHo of PCUN.R was correlated with diminished cognitive performance. CONCLUSIONS Depressed patients with SA showed elevated variability of functional activity in PCUN.R, which may be related to their more severe cognitive impairment. This may be a potential neural basis for the development of SA. Our findings offer new insights for advancing neuroscience research on the progression from SI to SA.
Collapse
Affiliation(s)
- Na Shen
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhilu Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shui Tian
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiwen Wang
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yingying Huang
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China
| | - Zhijian Yao
- Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 249 Guangzhou Road, Nanjing 210029, China; School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China.
| |
Collapse
|
2
|
Lu J, Hu H, Zhou J, Jiang W, Pu X, Chen H, Xu X, Wu F. Altered static and dynamic spontaneous brain activity in patients with dysthyroid optic neuropathy: a resting-state fMRI study. Front Neurosci 2025; 18:1530967. [PMID: 39867455 PMCID: PMC11757300 DOI: 10.3389/fnins.2024.1530967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose To investigate static and dynamic brain functional alterations in dysthyroid optic neuropathy (DON) using resting-state functional MRI (rs-fMRI) with the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo). Materials and methods Fifty-seven thyroid-associated ophthalmopathy (TAO) patients (23 DON and 34 non-DON) and 27 healthy controls (HCs) underwent rs-fMRI scans. Static and dynamic ALFF (sALFF and dALFF) and ReHo (sReHo and dReHo) values were compared between groups. The support-vector machine (SVM) classification method was used to examine the diagnostic performance of the identified models. Results Compared to non-DON patients, DON patients showed decreased sALFF in the bilateral lingual gyrus (LING) and right cuneus (CUN), alongside increased sALFF in the bilateral medial part of the superior frontal gyrus, right dorsolateral part of the superior frontal gyrus (SFGdor), and right precentral gyrus. DON patients also exhibited decreased dALFF in the left LING and right CUN, together with increased dALFF in the right orbital part of the middle frontal gyrus and right SFGdor in comparison to non-DON patients. Meanwhile, DON patients had lower sReHo in the right LING, and higher sReHo and dReHo in the right supramarginal gyrus compared to non-DON patients. When detecting DON, the dALFF model showed optimal diagnostic performance (AUC 0.9987). Conclusion Dysthyroid optic neuropathy patients exhibited both static and dynamic brain functional alterations in visual, cognitive, and emotion-related brain regions, deepening our current understanding of the underlying neural mechanisms of this disease. Rs-fMRI-based metrics, especially dALFF, may serve as relevant neuroimaging markers for diagnosing DON.
Collapse
Affiliation(s)
- Jinling Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiongying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huanhuan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoquan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feiyun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Jing Y, Liu Y, Zhou Y, Li M, Gao Y, Zhang B, Li J. Inflammation-related abnormal dynamic brain activity correlates with cognitive impairment in first-episode, drug-naïve major depressive disorder. J Affect Disord 2024; 366:217-225. [PMID: 39197551 DOI: 10.1016/j.jad.2024.08.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Cognitive impairment is common in major depressive disorder (MDD) and potentially linked to inflammation-induced alterations in brain function. However, the relationship between inflammation, dynamic brain activity, and cognitive impairment in MDD remains unclear. METHODS Fifty-seven first-episode, drug-naïve MDD patients and sixty healthy controls underwent fMRI scanning. Dynamic amplitude of low-frequency fluctuations (dALFF) and dynamic functional connectivity (dFC) were measured using the sliding window method. Plasma IL - 6 levels and cognitive function were assessed using enzyme-linked immunosorbent assay (ELISA) and the Repeated Battery for Assessment of Neuropsychological Status (RBANS), respectively. RESULTS MDD patients exhibited decreased dALFF in the bilateral inferior temporal gyrus (ITG), right inferior frontal gyrus, opercular part (IFGoperc), and bilateral middle occipital gyrus (MOG). Regions of dALFF associated with IL-6 included right ITG (r = -0.400/p = 0.003), left ITG (r = -0.381/p = 0.004), right IFGoperc (r = -0.342/p = 0.011), and right MOG (r = -0.327/p = 0.016). Furthermore, IL-6-related abnormal dALFF (including right ITG: r = 0.309/p = 0.023, left ITG: r = 0.276/p = 0.044) was associated with attention impairment. These associations were absent entirely in MDD patients without suicidal ideation. Additionally, IL-6 levels were correlated with dFC of specific brain regions. LIMITATIONS Small sample size and cross-sectional study design. CONCLUSIONS Inflammation-related dALFF was associated with attention impairment in MDD patients, with variations observed among MDD subgroups. These findings contribute to the understanding of the intricate relationship between inflammation, dynamic brain activity and cognitive impairments in MDD.
Collapse
Affiliation(s)
- Yifan Jing
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Yuwen Zhou
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Meijuan Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Ying Gao
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China.
| |
Collapse
|
4
|
Jiang Y, Zhou Y, Xie Y, Zhou J, Cai M, Tang J, Liu F, Ma J, Liu H. Functional magnetic resonance imaging alternations in suicide attempts individuals and their association with gene expression. Neuroimage Clin 2024; 43:103645. [PMID: 39059208 PMCID: PMC11326948 DOI: 10.1016/j.nicl.2024.103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Functional Magnetic Resonance Imaging (fMRI) has shown brain activity alterations in individuals with a history of attempted suicide (SA) who are diagnosed with depression disorder (DD) or bipolar disorder (BD). However, patterns of spontaneous brain activity and their genetic correlations need further investigation. METHODS A voxel-based meta-analysis of 19 studies including 26 datasets, involving 742 patients with a history of SA and 978 controls (both nonsuicidal patients and healthy controls) was conducted. We examined fMRI changes in SA patients and analyzed the association between these changes and gene expression profiles using data from the Allen Human Brain Atlas by partial least squares regression analysis. RESULTS SA patients demonstrated increased spontaneous brain activity in several brain regions including the bilateral inferior temporal gyrus, hippocampus, fusiform gyrus, and right insula, and decreased activity in areas like the bilateral paracentral lobule and inferior frontal gyrus. Additionally, 5,077 genes were identified, exhibiting expression patterns associated with SA-related fMRI alterations. Functional enrichment analyses demonstrated that these SA-related genes were enriched for biological functions including glutamatergic synapse and mitochondrial structure. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons cells, and during early developmental periods. CONCLUSION Our findings suggest a neurobiological basis for fMRI abnormalities in SA patients with DD or BD, potentially guiding future genetic and therapeutic research.
Collapse
Affiliation(s)
- Yurong Jiang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yujing Zhou
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 116000 Dalian, Liaoning, China
| | - Yingying Xie
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junzi Zhou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mengjing Cai
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Juanwei Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Huaigui Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
5
|
Zhu QQ, Tian S, Zhang L, Ding HY, Gao YX, Tang Y, Yang X, Zhu Y, Qi M. Altered dynamic amplitude of low-frequency fluctuation in individuals at high risk for Alzheimer's disease. Eur J Neurosci 2024; 59:2391-2402. [PMID: 38314647 DOI: 10.1111/ejn.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
The brain's dynamic spontaneous neural activity is significant in supporting cognition; however, how brain dynamics go awry in subjective cognitive decline (SCD) and mild cognitive impairment (MCI) remains unclear. Thus, the current study aimed to investigate the dynamic amplitude of low-frequency fluctuation (dALFF) alterations in patients at high risk for Alzheimer's disease and to explore its correlation with clinical cognitive assessment scales, to identify an early imaging sign for these special populations. A total of 152 participants, including 72 SCD patients, 44 MCI patients and 36 healthy controls (HCs), underwent a resting-state functional magnetic resonance imaging and were assessed with various neuropsychological tests. The dALFF was measured using sliding-window analysis. We employed canonical correlation analysis (CCA) to examine the bi-multivariate correlations between neuropsychological scales and altered dALFF among multiple regions in SCD and MCI patients. Compared to those in the HC group, both the MCI and SCD groups showed higher dALFF values in the right opercular inferior frontal gyrus (voxel P < .001, cluster P < .05, correction). Moreover, the CCA models revealed that behavioural tests relevant to inattention correlated with the dALFF of the right middle frontal gyrus and right opercular inferior frontal gyrus, which are involved in frontoparietal networks (R = .43, P = .024). In conclusion, the brain dynamics of neural activity in frontal areas provide insights into the shared neural basis underlying SCD and MCI.
Collapse
Affiliation(s)
- Qin-Qin Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Yuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Xin Gao
- Rehabilitation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Yin Tang
- Department of Medical imaging, Jingjiang People's Hospital, Jingjiang, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Schantell M, Taylor BK, Mansouri A, Arif Y, Coutant AT, Rice DL, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Theta oscillatory dynamics serving cognitive control index psychosocial distress in youth. Neurobiol Stress 2024; 29:100599. [PMID: 38213830 PMCID: PMC10776433 DOI: 10.1016/j.ynstr.2023.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/09/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024] Open
Abstract
Background Psychosocial distress among youth is a major public health issue characterized by disruptions in cognitive control processing. Using the National Institute of Mental Health's Research Domain Criteria (RDoC) framework, we quantified multidimensional neural oscillatory markers of psychosocial distress serving cognitive control in youth. Methods The sample consisted of 39 peri-adolescent participants who completed the NIH Toolbox Emotion Battery (NIHTB-EB) and the Eriksen flanker task during magnetoencephalography (MEG). A psychosocial distress index was computed with exploratory factor analysis using assessments from the NIHTB-EB. MEG data were analyzed in the time-frequency domain and peak voxels from oscillatory maps depicting the neural cognitive interference effect were extracted for voxel time series analyses to identify spontaneous and oscillatory aberrations in dynamics serving cognitive control as a function of psychosocial distress. Further, we quantified the relationship between psychosocial distress and dynamic functional connectivity between regions supporting cognitive control. Results The continuous psychosocial distress index was strongly associated with validated measures of pediatric psychopathology. Theta-band neural cognitive interference was identified in the left dorsolateral prefrontal cortex (dlPFC) and middle cingulate cortex (MCC). Time series analyses of these regions indicated that greater psychosocial distress was associated with elevated spontaneous activity in both the dlPFC and MCC and blunted theta oscillations in the MCC. Finally, we found that stronger phase coherence between the dlPFC and MCC was associated with greater psychosocial distress. Conclusions Greater psychosocial distress was marked by alterations in spontaneous and oscillatory theta activity serving cognitive control, along with hyperconnectivity between the dlPFC and MCC.
Collapse
Affiliation(s)
- Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Amirsalar Mansouri
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T. Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Danielle L. Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging & Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
7
|
Wang H, Zhu R, Dai Z, Shao J, Xue L, Sun Y, Wang T, Liao Q, Yao Z, Lu Q. The altered temporal properties of dynamic functional connectivity associated with suicide attempt in bipolar disorders. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110898. [PMID: 38030032 DOI: 10.1016/j.pnpbp.2023.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE The suicide risk in bipolar disorder (BD) is the highest among psychiatric disorders, and the neurobiological mechanism of suicide in BD remains unclear. The study aimed to investigate the underlying relevance between the implicated abnormalities of dynamic functional connectivity (FC) and suicide attempt (SA) in BD. METHODS We used the sliding window method to analyze the dynamic FC patterns from resting-state functional MRI data in 81 healthy controls (HC) and 114 BD patients (50 with SA and 64 with none SA). Then, the temporal properties of dynamic FC and the relationship between altered measures and clinical variables were explored. RESULTS We found that one of the five captured brain functional states was more associated with SA. The SA patients showed significantly increased fractional window and dwell time in the suicide-related state, along with increased number of state transitions compared with none SA (NSA). In addition, the connections within subcortical network-subcortical network (SubC-SubC), default mode network-subcortical network (DMN-SubC), and attention network-subcortical network (AN-SubC) were significantly changed in SA patients relative to NSA and HC in the suicide-related state. Crucially, the above-altered measures were significantly correlated with suicide risk. CONCLUSIONS Our findings suggested that the impaired dynamic FC within SubC-SubC, DMN-SubC, and AN-SubC were the important underlying mechanism in understanding SA for BD patients. It highlights the temporal properties of whole-brain dynamic FC could serve as the valuable biomarker for suicide risk assessment in BD.
Collapse
Affiliation(s)
- Huan Wang
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Yurong Sun
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Ting Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Qian Liao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
8
|
Meda N, Miola A, Cattarinussi G, Sambataro F. Whole-brain structural and functional neuroimaging of individuals who attempted suicide and people who did not: A systematic review and exploratory coordinate-based meta-analysis. Eur Neuropsychopharmacol 2024; 79:66-77. [PMID: 38237538 DOI: 10.1016/j.euroneuro.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 02/06/2024]
Abstract
Suicide is the cause of death of approximately 800,000 people a year. Despite the relevance of this behaviour, risk assessment tools rely on clinician experience and subjective ratings. Given that previous suicide attempts are the single strongest predictors of future attempts, we designed a systematic review and coordinate-based meta-analysis to demonstrate whether neuroimaging features can help distinguish individuals who attempted suicide from subjects who did not. Out of 5,659 publications from PubMed, Scopus, and Web of Science, we summarised 102 experiments and meta-analysed 23 of them. A cluster in the right superior temporal gyrus, a region implicated in emotional processing, might be functionally hyperactive in individuals who attempted suicide. No statistically significant differences in brain morphometry were evidenced. Furthermore, we used JuSpace to show that this cluster is enriched in 5-HT1A heteroreceptors in the general population. This exploratory meta-analysis provides a putative neural substrate linked to previous suicide attempts. Heterogeneity in the analytical techniques and weak or absent power analysis of the studies included in this review currently limit the applicability of the findings, the replication of which should be prioritised.
Collapse
Affiliation(s)
- Nicola Meda
- Department of Neuroscience, University of Padova, Via Giustiniani, 3, Padua, Italy; Padova University Hospital, Padua, Italy
| | - Alessandro Miola
- Department of Neuroscience, University of Padova, Via Giustiniani, 3, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy; Casa di Cura Parco dei Tigli, Padova, Italy
| | - Giulia Cattarinussi
- Department of Neuroscience, University of Padova, Via Giustiniani, 3, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience, University of Padova, Via Giustiniani, 3, Padua, Italy; Padova University Hospital, Padua, Italy; Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
9
|
Tian S, Zhu R, Chen Z, Wang H, Chattun MR, Zhang S, Shao J, Wang X, Yao Z, Lu Q. Prediction of suicidality in bipolar disorder using variability of intrinsic brain activity and machine learning. Hum Brain Mapp 2023; 44:2767-2777. [PMID: 36852459 PMCID: PMC10089096 DOI: 10.1002/hbm.26243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Bipolar disorder (BD) is associated with marked suicidal susceptibility, particularly during a major depressive episode. However, the evaluation of suicidal risk remains challenging since it relies mainly on self-reported information from patients. Hence, it is necessary to complement neuroimaging features with advanced machine learning techniques in order to predict suicidal behavior in BD patients. In this study, a total of 288 participants, including 75 BD suicide attempters, 101 BD nonattempters and 112 healthy controls, underwent a resting-state functional magnetic resonance imaging (rs-fMRI). Intrinsic brain activity was measured by amplitude of low-frequency fluctuation (ALFF). We trained and tested a two-level k-nearest neighbors (k-NN) model based on resting-state variability of ALFF with fivefold cross-validation. BD suicide attempters had increased dynamic ALFF values in the right anterior cingulate cortex, left thalamus and right precuneus. Compared to other machine learning methods, our proposed framework had a promising performance with 83.52% accuracy, 78.75% sensitivity and 87.50% specificity. The trained models could also replicate and validate the results in an independent cohort with 72.72% accuracy. These findings based on a relatively large data set, provide a promising way of combining fMRI data with machine learning technique to reliably predict suicide attempt at an individual level in bipolar depression. Overall, this work might enhance our understanding of the neurobiology of suicidal behavior by detecting clinically defined disruptions in the dynamics of instinct brain activity.
Collapse
Affiliation(s)
- Shui Tian
- Department of RadiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Laboratory for Artificial Intelligence in Medical Imaging (LAIMI)Nanjing Medical UniversityNanjingChina
| | - Rongxin Zhu
- Department of PsychiatryThe Affiliated Nanjing Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhilu Chen
- Department of PsychiatryThe Affiliated Nanjing Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Huan Wang
- School of Biological Sciences and Medical EngineeringSoutheast UniversityNanjingChina
- Child Development and Learning ScienceKey Laboratory of Ministry of EducationBeijingChina
| | - Mohammad Ridwan Chattun
- Department of PsychiatryThe Affiliated Nanjing Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Siqi Zhang
- School of Biological Sciences and Medical EngineeringSoutheast UniversityNanjingChina
- Child Development and Learning ScienceKey Laboratory of Ministry of EducationBeijingChina
| | - Junneng Shao
- School of Biological Sciences and Medical EngineeringSoutheast UniversityNanjingChina
- Child Development and Learning ScienceKey Laboratory of Ministry of EducationBeijingChina
| | - Xinyi Wang
- School of Biological Sciences and Medical EngineeringSoutheast UniversityNanjingChina
- Child Development and Learning ScienceKey Laboratory of Ministry of EducationBeijingChina
| | - Zhijian Yao
- Department of PsychiatryThe Affiliated Nanjing Brain Hospital of Nanjing Medical UniversityNanjingChina
- Nanjing Brain HospitalMedical School of Nanjing UniversityNanjingChina
| | - Qing Lu
- School of Biological Sciences and Medical EngineeringSoutheast UniversityNanjingChina
- Child Development and Learning ScienceKey Laboratory of Ministry of EducationBeijingChina
| |
Collapse
|
10
|
Xue C, Zhang X, Cao P, Yuan Q, Liang X, Zhang D, Qi W, Hu J, Xiao C. Evidence of functional abnormalities in the default mode network in bipolar depression: A coordinate-based activation likelihood estimation meta-analysis. J Affect Disord 2023; 326:96-104. [PMID: 36717032 DOI: 10.1016/j.jad.2023.01.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND The default mode network (DMN) is thought to be involved in the pathophysiology of bipolar depression (BD). However, the findings of prior studies on DMN alterations in BD are inconsistent. Thus, this study aimed to systematically investigate functional abnormalities of the DMN in BD patients. METHODS We systematically searched PubMed, Ovid, and Web of Science for functional neuroimaging studies on regional homogeneity, amplitude of low frequency fluctuations (ALFF), and functional connectivity of the DMN in BD patients published before March 18, 2022. The stereotactic coordinates of the reported altered brain regions were extracted and incorporated into a brain map using the coordinate-based activation likelihood estimation approach. RESULTS A total of 43 original research studies were included in the meta-analysis. BD patients showed specific changes in the DMN including decreased ALFF/fractional ALFF in the left cingulate gyrus (CG) and bilateral precuneus (PCUN); increased functional connectivity (FC) in the left CG, left posterior CG, left PCUN, bilateral medial frontal gyrus, and bilateral superior frontal gyrus; and decreased FC in the left CG, left PCUN, left inferior parietal lobule, and left postcentral gyrus. LIMITATIONS Conclusions are limited by the small number of studies, additional meta-analyses are needed to obtain more data in BD subgroup. CONCLUSION This meta-analysis supports specific changes in DMN activity and FC in BD patients, which may be powerful biomarkers for the diagnosis of BD. The CG and PCUN were the most affected regions and are thus potential targets for clinical interventions to delay BD progression.
Collapse
Affiliation(s)
- Chen Xue
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xulian Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ping Cao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianqian Yuan
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuhong Liang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Da Zhang
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wenzhang Qi
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
11
|
Dai Z, Zhou H, Zhang W, Tang H, Wang T, Chen Z, Yao Z, Lu Q. Alpha-beta decoupling relevant to inhibition deficits leads to suicide attempt in major depressive disorder. J Affect Disord 2022; 314:168-175. [PMID: 35820473 DOI: 10.1016/j.jad.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND One devastating outcome of major depressive disorder (MDD) is high suicidality, especially for patients with suicide attempt (SA). Evidence indicated that SA may be strongly associated with inhibitory control deficits. We hypothesized that the inhibition function deficits of patient with SA might be underpinned by abnormal neuronal oscillations. METHODS Our study recruited 111 subjects including 74 patients and 37 controls, who performed a GO/NOGO task during magnetoencephalography recording. Time-frequency-representations and phase-amplitude-coupling were measured for the brain circuits involved in the inhibitory function. Phase-slope-indexes were calculated between regions to determine the direction of power flow. RESULTS Significant increased reaction time and decreased judgment accuracy were observed in SA group. During the perception stage of GO task (approximately 125 ms), SA group manifested elevated alpha power in ventral prefrontal cortex (VPFC) and attenuated beta power in dorsal anterior cingulate (dACC) compared with other groups (p < 0.01). In the processing stage of NOGO task (approximately 300 ms), they showed decreased beta power in VPFC and increased alpha power in dACC (p < 0.01). Alpha-beta decoupling during both tasks was observed in SA group. Furthermore, the decoupling from VPFC to dACC under NOGO tasks was significantly correlated with suicide risk level. LIMITATIONS The number of participants was relatively small, and psychological elements were not involved in current study. CONCLUSION Dysregulated oscillatory activities of dACC and VPFC suggested deficits in execution and inhibition functions triggering high suicide risks. The alpha-beta decoupling from VPFC to dACC could be served as a neuro-electrophysiological biomarker for identifying potential suicide risk.
Collapse
Affiliation(s)
- Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Hongliang Zhou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Wei Zhang
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Hao Tang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Ting Wang
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Zhilu Chen
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China; Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Child Development and Learning Science, Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China.
| |
Collapse
|
12
|
Zhang ZF, Bo QJ, Li F, Zhao L, Gao P, Wang Y, Liu R, Chen XY, Wang CY, Zhou Y. Altered frequency-specific/universal amplitude characteristics of spontaneous brain oscillations in patients with bipolar disorder. Neuroimage Clin 2022; 36:103207. [PMID: 36162237 PMCID: PMC9668601 DOI: 10.1016/j.nicl.2022.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
The human brain is a dynamic system with intrinsic oscillations in spontaneous neural activity. Whether the dynamic characteristics of these spontaneous oscillations are differentially altered across different frequency bands in patients with bipolar disorder (BD) remains unclear. This study recruited 65 patients with BD and 85 healthy controls (HCs). The entire frequency range of resting-state fMRI data was decomposed into four frequency intervals. Two-way repeated-measures ANCOVA was employed to detect frequency-specific/universal alterations in the dynamic oscillation amplitude in BD. The patients were then divided into two subgroups according to their mood states to explore whether these alterations were independent of their mood states. Finally, other window sizes, step sizes, and window types were tested to replicate all analyses. Frequency-specific abnormality of the dynamic oscillation amplitude was detected within the posterior medial parietal cortex (centered at the precuneus extending to the posterior cingulate cortex). This specific profile indicates decreased amplitudes in the lower frequency bands (slow-5/4) and no amplitude changes in the higher frequency bands (slow-3/2) compared with HCs. Frequency-universal abnormalities of the dynamic oscillation amplitude were also detectable, indicating increased amplitudes in the thalamus and left cerebellum anterior lobe but decreased amplitudes in the medial superior frontal gyrus. These alterations were independent of the patients' mood states and replicable across multiple analytic and parametric settings. In short, frequency-specific/universal amplitude characteristics of spontaneous oscillations were observed in patients with BD. These abnormal characteristics have important implications for specific functional changes in BD from multiple frequency and dynamic perspectives.
Collapse
Affiliation(s)
- Zhi-Fang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Qi-Jing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Feng Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Peng Gao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiong-Ying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chuan-Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China,Corresponding authors at: The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, China (C.-Y. Wang). CAS Key Laboratory of Behavioral Science, Institute of Psychology, No. 16 Lincui Road, Chaoyang District, Beijing, PR China (Y. Zhou).
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, No. 5 Ankang Lane, Dewai Avenue, Xicheng District, Beijing, China (C.-Y. Wang). CAS Key Laboratory of Behavioral Science, Institute of Psychology, No. 16 Lincui Road, Chaoyang District, Beijing, PR China (Y. Zhou).
| |
Collapse
|
13
|
Altered dynamic amplitude of low-frequency fluctuation between bipolar type I and type II in the depressive state. Neuroimage Clin 2022; 36:103184. [PMID: 36095891 PMCID: PMC9472068 DOI: 10.1016/j.nicl.2022.103184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bipolar disorder is a chronic and highly recurrent mental disorder that can be classified as bipolar type I (BD I) and bipolar type II (BD II). BD II is sometimes taken as a milder form of BD I or even doubted as an independent subtype. However, the fact that symptoms and severity differ in patients with BD I and BD II suggests different pathophysiologies and underlying neurobiological mechanisms. In this study, we aimed to explore the shared and unique functional abnormalities between subtypes. METHODS The dynamic amplitude of low-frequency fluctuation (dALFF) was performed to compare 31 patients with BD I, 32 with BD II, and 79 healthy controls (HCs). Global dALFF was calculated using sliding-window analysis. Group differences in dALFF among the 3 groups were compared using analysis of covariance (ANCOVA), with covariates of age, sex, years of education, and mean FD, and Bonferroni correction was applied for post hoc analysis. Pearson and Spearman's correlations were conducted between clusters with significant differences and clinical features in the BD I and BD II groups, after which false error rate (FDR) was used for correction. RESULTS We found a significant decrease in dALFF values in BD patients compared with HCs in the following brain regions: the bilateral-side inferior frontal gyrus (including the triangular, orbital, and opercular parts), inferior temporal gyrus, the medial part of the superior frontal gyrus, middle frontal gyrus, anterior cingulum, insula gyrus, lingual gyrus, calcarine gyrus, precuneus gyrus, cuneus gyrus, left-side precentral gyrus, postcentral gyrus, inferior parietal gyrus, superior temporal pole gyrus, middle temporal gyrus, middle occipital gyrus, superior occipital gyrus and right-side fusiform gyrus, parahippocampal gyrus, hippocampus, middle cingulum, orbital part of the medial frontal gyrus and superior frontal gyrus. Unique alterations in BD I were observed in the right-side supramarginal gyrus and postcentral gyrus. In addition, dALFF values in BD II were significantly higher than those in BD I in the right superior temporal gyrus and middle temporal gyrus. The variables of dALFF correlated with clinical characteristics differently according to the subtypes, but no correlations survived after FDR correction. LIMITATIONS Our study was cross-sectional. Most of our patients were on medication, and the sample was limited. CONCLUSIONS Our findings demonstrated neurobiological characteristics of BD subtypes, providing evidence for BD II as an independent existence, which could be the underlying explanation for the specific symptoms and/or severity and point to potential biomarkers for the differential diagnosis of bipolar subtypes.
Collapse
|
14
|
Static and temporal dynamic changes of intrinsic brain activity in pediatric and adults OCD. J Affect Disord 2022; 311:416-424. [PMID: 35618169 DOI: 10.1016/j.jad.2022.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Epidemiological and clinical age differences in obsessive-compulsive disorder (OCD) have been reported in clinical symptoms and morphometry changes; however, age differences in amplitude of low-frequency fluctuation and the relationship between ALFF imaging and clinical symptoms has not been thoroughly studied in OCD. Age may be an important feature associated with distinct subtypes of OCD. To examine the effect of age on OCD, the current study enrolled 92 OCD patients (32 pediatrics and 60 adults) and matched HCs (33 pediatrics and 84 adults), undergoing resting-state functional magnetic resonance imaging. The spontaneous brain activity was measured by static and dynamic amplitude of low-frequency fluctuation (ALFF) followed by two-way ANOVA. In pediatric OCD patients versus adult patients, we observed a significantly higher ALFF in the default mode network (DMN), including posterior cingulate, precuneus and superior frontal gyrus, and extending to cuneus, lingual gyrus. Additionally, the increased ALFF and dynamic ALFF in the precentral gyrus were found in pediatric patients. In OCD patients compared with controls, we found a significantly increased ALFF in hippocampal gyrus, cerebellum network (CN), and the dALFF in middle and inferior occipital gyrus, bilateral paracentral lobule and sensorimotor network. The findings emphasized the different patterns of static and dynamic intrinsic brain activity alterations associated with pediatric and adult OCD patients. These results provide unique insights into constructing evidenced-based distinct OCD subtypes based on brain activity and point the need of specified management for pediatric and adult OCD patients in clinical setting.
Collapse
|
15
|
Wang H, Zhu R, Tian S, Zhang S, Dai Z, Shao J, Xue L, Yao Z, Lu Q. Dynamic connectivity alterations in anterior cingulate cortex associated with suicide attempts in bipolar disorders with a current major depressive episode. J Psychiatr Res 2022; 149:307-314. [PMID: 35325759 DOI: 10.1016/j.jpsychires.2022.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Considering that the physiological mechanism of the anterior cingulate cortex (ACC) in suicide brain remains elusive for bipolar disorder (BD) patients. The study aims to investigate the intrinsic relevance between ACC and suicide attempts (SA) through transient functional connectivity (FC). METHODS We enrolled 50 un-medicated BD patients with at least one SA, 67 none-suicide attempt patients (NSA) and 75 healthy controls (HCs). The sliding window approach was utilized to study the dynamic FC of ACC via resting-state functional MRI data. Subsequently, we probed into the temporal properties of dynamic FC and then estimated the relationship between dynamic characteristics and clinical variables using the Pearson correlation. RESULTS We found six distinct FC states in all populations, with one of them being more associated with SA. Compared with NSA and HCs, the suicide-related functional state showed significantly reduced dwell time in SA patients, accompanied by a significantly increased FC strength between the right ACC and the regions within the subcortical (SubC) network. In addition, the number of transitions was significantly increased in SA patients relative to other groups. All these altered indicators were significantly correlated with the suicide risk. CONCLUSIONS The results suggested that the dysfunction of ACC was relevant to SA from a dynamic FC perspective in BD patients. It highlights the temporal properties in dynamic FC of ACC that could be used as a putative target of suicide risk assessment for BD patients.
Collapse
Affiliation(s)
- Huan Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Rongxin Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Junneng Shao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Li Xue
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Zhijian Yao
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
16
|
Sosa-Moscoso B, Ullauri C, Chiriboga JD, Silva P, Haro F, Leon-Rojas JE. Magnetic Resonance Spectroscopy and Bipolar Disorder: How Feasible Is This Pairing? Cureus 2022; 14:e23690. [PMID: 35505758 PMCID: PMC9056012 DOI: 10.7759/cureus.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Bipolar disorder is a psychiatric disorder that affects a significant part of the world's population; however, its diagnosis is difficult, mainly because of the lack of biomarkers and objective tests that aid the clinical evaluation. Proton magnetic resonance spectroscopy (MRS) is a tool that is relatively unused in the medical field. Its application arises from conventional magnetic resonance, and allows non-invasive, in vivo, the study of various metabolites and compounds in the human brain. This method may allow the assessment of neurobiochemical alterations in bipolar patients. One of the main advantages of this study type is the simplicity in its use since it only needs a standard magnetic resonator. All these characteristics make it an attractive diagnostic tool that can be used anywhere, including in low-middle-income countries. In conclusion, MRS has potential as a diagnostic tool for bipolar disorder; nevertheless, using it for this purpose still requires additional steps.
Collapse
|
17
|
Ma H, Huang G, Li M, Han Y, Sun J, Zhan L, Wang Q, Jia X, Han X, Li H, Song Y, Lv Y. The Predictive Value of Dynamic Intrinsic Local Metrics in Transient Ischemic Attack. Front Aging Neurosci 2022; 13:808094. [PMID: 35221984 PMCID: PMC8868122 DOI: 10.3389/fnagi.2021.808094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Transient ischemic attack (TIA) is known as "small stroke." However, the diagnosis of TIA is currently difficult due to the transient symptoms. Therefore, objective and reliable biomarkers are urgently needed in clinical practice. OBJECTIVE The purpose of this study was to investigate whether dynamic alterations in resting-state local metrics could differentiate patients with TIA from healthy controls (HCs) using the support-vector machine (SVM) classification method. METHODS By analyzing resting-state functional MRI (rs-fMRI) data from 48 patients with and 41 demographically matched HCs, we compared the group differences in three dynamic local metrics: dynamic amplitude of low-frequency fluctuation (d-ALFF), dynamic fractional amplitude of low-frequency fluctuation (d-fALFF), and dynamic regional homogeneity (d-ReHo). Furthermore, we selected the observed alterations in three dynamic local metrics as classification features to distinguish patients with TIA from HCs through SVM classifier. RESULTS We found that TIA was associated with disruptions in dynamic local intrinsic brain activities. Compared with HCs, the patients with TIA exhibited increased d-fALFF, d-fALFF, and d-ReHo in vermis, right calcarine, right middle temporal gyrus, opercular part of right inferior frontal gyrus, left calcarine, left occipital, and left temporal and cerebellum. These alternations in the dynamic local metrics exhibited an accuracy of 80.90%, sensitivity of 77.08%, specificity of 85.37%, precision of 86.05%, and area under curve of 0.8501 for distinguishing the patients from HCs. CONCLUSION Our findings may provide important evidence for understanding the neuropathology underlying TIA and strong support for the hypothesis that these local metrics have potential value in clinical diagnosis.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
- Integrated Medical School, Jiamusi University, Jiamusi, China
| | - Guofeng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Yu Han
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Qianqian Wang
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiujie Han
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Huayun Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Yulin Song
- Department of Neurology, Anshan Changda Hospital, Anshan, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
18
|
Deng Z, Jiang X, Liu W, Zhao W, Jia L, Sun Q, Xie Y, Zhou Y, Sun T, Wu F, Kong L, Tang Y. The aberrant dynamic amplitude of low-frequency fluctuations in melancholic major depressive disorder with insomnia. Front Psychiatry 2022; 13:958994. [PMID: 36072459 PMCID: PMC9441487 DOI: 10.3389/fpsyt.2022.958994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Insomnia is considered one of the manifestations of sleep disorders, and its intensity is linked to the treatment effect or suicidal thoughts. Major depressive disorder (MDD) is classified into various subtypes due to heterogeneous symptoms. Melancholic MDD has been considered one of the most common subtypes with special sleep features. However, the brain functional mechanisms in melancholic MDD with insomnia remain unclear. MATERIALS AND METHODS Melancholic MDD and healthy controls (HCs, n = 46) were recruited for the study. Patients were divided into patients with melancholic MDD with low insomnia (mMDD-LI, n = 23) and patients with melancholic MDD with high insomnia (mMDD-HI, n = 30), according to the sleep disturbance subscale of the 17-item Hamilton Depression Rating Scale. The dynamic amplitude of low-frequency fluctuation was employed to investigate the alterations of brain activity among the three groups. Then, the correlations between abnormal dALFF values of brain regions and the severity of symptoms were investigated. RESULTS Lower dALFF values were found in the mMDD-HI group in the right middle temporal gyrus (MTG)/superior temporal gyrus (STG) than in the mMDD-LI (p = 0.014) and HC groups (p < 0.001). Melancholic MDD groups showed decreased dALFF values than HC in the right middle occipital gyri (MOG)/superior occipital gyri (SOG), the right cuneus, the bilateral lingual gyrus, and the bilateral calcarine (p < 0.05). Lower dALFF values than HC in the left MOG/SOG and the left cuneus in melancholic MDD groups were found, but no significant difference was found between the mMDD-LI group and HC group (p = 0.079). Positive correlations between the dALFF values in the right MTG/STG and HAMD-SD scores (the sleep disturbance subscale of the HAMD-17) in the mMDD-HI group (r = 0.41, p = 0.042) were found. In the pooled melancholic MDD, the dALFF values in the right MOG/SOG and the right cuneus (r = 0.338, p = 0.019), the left MOG/SOG and the left cuneus (r = 0.299, p = 0.039), and the bilateral lingual gyrus and the bilateral calcarine (r = 0.288, p = 0.047) were positively correlated with adjusted HAMD scores. CONCLUSION The occipital cortex may be related to depressive symptoms in melancholic MDD. Importantly, the right MTG/STG may play a critical role in patients with melancholic MDD with more severe insomnia.
Collapse
Affiliation(s)
- Zijing Deng
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wen Liu
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenhui Zhao
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Jia
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qikun Sun
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu Xie
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Sun
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Wu
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingtao Kong
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Gerontology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|