1
|
Musser G, Clarke JA. A new Paleogene fossil and a new dataset for waterfowl (Aves: Anseriformes) clarify phylogeny, ecological evolution, and avian evolution at the K-Pg Boundary. PLoS One 2024; 19:e0278737. [PMID: 39078833 PMCID: PMC11288464 DOI: 10.1371/journal.pone.0278737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/05/2024] [Indexed: 08/02/2024] Open
Abstract
Despite making up one of the most ecologically diverse groups of living birds, comprising soaring, diving and giant flightless taxa, the evolutionary relationships and ecological evolution of Anseriformes (waterfowl) remain unresolved. Although Anseriformes have a comparatively rich, global Cretaceous and Paleogene fossil record, morphological datasets for this group that include extinct taxa report conflicting relationships for all known extinct taxa. Correct placement of extinct taxa is necessary to understand whether ancestral anseriform feeding ecology was more terrestrial or one of a set of diverse aquatic ecologies and to better understand avian evolution around the K-T boundary. Here, we present a new morphological dataset for Anseriformes that includes more extant and extinct taxa than any previous anseriform-focused dataset and describe a new anseriform species from the early Eocene Green River Formation of North America. The new taxon has a mediolaterally narrow bill which is rarely found in previously described anseriform fossils. The matrix created to assess the placement of this taxon comprises 41 taxa and 719 discrete morphological characters describing skeletal morphology, musculature, syringeal morphology, ecology, and behavior. We additionally combine the morphological dataset with published sequences using Bayesian methods and perform ancestral state reconstruction for select morphological, ecological and behavioral characters. We recover the new Eocene taxon as the sister taxon to (Anseranatidae+Anatidae) across all analyses, and find that the new taxon represents a novel ecology within known Anseriformes and the Green River taxa. Results provide insight into avian evolution during and following the K-Pg mass extinction and indicate that Anseriformes were likely ancestrally aquatic herbivores with rhamphothecal lamellae..
Collapse
Affiliation(s)
- Grace Musser
- Department of Vertebrate Zoology, Division of Birds, The Smithsonian National Museum of Natural History, Washington, District of Columbia, United States of America
- Department of Earth and Planetary Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Julia A. Clarke
- Department of Earth and Planetary Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Straight PJ, Gignac PM, Kuenzel WJ. A histological and diceCT-derived 3D reconstruction of the avian visual thalamofugal pathway. Sci Rep 2024; 14:8447. [PMID: 38600121 PMCID: PMC11006926 DOI: 10.1038/s41598-024-58788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Amniotes feature two principal visual processing systems: the tectofugal and thalamofugal pathways. In most mammals, the thalamofugal pathway predominates, routing retinal afferents through the dorsolateral geniculate complex to the visual cortex. In most birds, the thalamofugal pathway often plays the lesser role with retinal afferents projecting to the principal optic thalami, a complex of several nuclei that resides in the dorsal thalamus. This thalamic complex sends projections to a forebrain structure called the Wulst, the terminus of the thalamofugal visual system. The thalamofugal pathway in birds serves many functions such as pattern discrimination, spatial memory, and navigation/migration. A comprehensive analysis of avian species has unveiled diverse subdivisions within the thalamic and forebrain structures, contingent on species, age, and techniques utilized. In this study, we documented the thalamofugal system in three dimensions by integrating histological and contrast-enhanced computed tomography imaging of the avian brain. Sections of two-week-old chick brains were cut in either coronal, sagittal, or horizontal planes and stained with Nissl and either Gallyas silver or Luxol Fast Blue. The thalamic principal optic complex and pallial Wulst were subdivided on the basis of cell and fiber density. Additionally, we utilized the technique of diffusible iodine-based contrast-enhanced computed tomography (diceCT) on a 5-week-old chick brain, and right eyeball. By merging diceCT data, stained histological sections, and information from the existing literature, a comprehensive three-dimensional model of the avian thalamofugal pathway was constructed. The use of a 3D model provides a clearer understanding of the structural and spatial organization of the thalamofugal system. The ability to integrate histochemical sections with diceCT 3D modeling is critical to better understanding the anatomical and physiologic organization of complex pathways such as the thalamofugal visual system.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA.
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, AZ, USA
- MicroCT Imaging Consortium for Research and Outreach, University of Arkansas, Fayetteville, AR, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Bels V, Le Floch G, Kirchhoff F, Gastebois G, Davenport J, Baguette M. Food transport in Reptilia: a comparative viewpoint. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220542. [PMID: 37839442 PMCID: PMC10577028 DOI: 10.1098/rstb.2022.0542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023] Open
Abstract
Reptilia exploit a large diversity of food resources from plant materials to living mobile prey. They are among the first tetrapods that needed to drink to maintain their water homeostasis. Here were compare the feeding and drinking mechanisms in Reptilia through an empirical approach based on the available data to open perspectives in our understanding of the evolution of the various mechanisms determined in these Tetrapoda for exploiting solid and liquid food resources. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Vincent Bels
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | - Glenn Le Floch
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | - Florence Kirchhoff
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
| | | | - John Davenport
- School of Biological, Earth and Environmental Sciences, Distillery Fields, North Mall, University College Cork, Ireland T23 N73K
| | - Michel Baguette
- Institut Systématique, Evolution, et Biodiversité (ISYEB), UMR 7205 Museum d'Histoire Naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005 Paris, France
- Station d'Ecologie Théorique et Expérimentale, CNRS UAR 2029, Route du CNRS, F-09200 Moulis, France
| |
Collapse
|
4
|
Widrig KE, Bhullar BS, Field DJ. 3D atlas of tinamou (Neornithes: Tinamidae) pectoral morphology: Implications for reconstructing the ancestral neornithine flight apparatus. J Anat 2023; 243:729-757. [PMID: 37358291 PMCID: PMC10557402 DOI: 10.1111/joa.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Palaeognathae, the extant avian clade comprising the flightless ratites and flight-capable tinamous (Tinamidae), is the sister group to all other living birds, and recent phylogenetic studies illustrate that tinamous are phylogenetically nested within a paraphyletic assemblage of ratites. As the only extant palaeognaths that have retained the ability to fly, tinamous may provide key information on the nature of the flight apparatus of ancestral crown palaeognaths-and, in turn, crown birds-as well as insight into convergent modifications to the wing apparatus among extant ratite lineages. To reveal new information about the musculoskeletal anatomy of tinamous and facilitate development of computational biomechanical models of tinamou wing function, we generated a three-dimensional musculoskeletal model of the flight apparatus of the extant Andean tinamou (Nothoprocta pentlandii) using diffusible iodine-based contrast-enhanced computed tomography (diceCT). Origins and insertions of the pectoral flight musculature of N. pentlandii are generally consistent with those of other extant volant birds specialized for burst flight, and the entire suite of presumed ancestral neornithine flight muscles are present in N. pentlandii with the exception of the biceps slip. The pectoralis and supracoracoideus muscles are robust, similar to the condition in other extant burst-flying birds such as many extant Galliformes. Contrary to the condition in most extant Neognathae (the sister clade to Palaeognathae), the insertion of the pronator superficialis has a greater distal extent than the pronator profundus, although most other anatomical observations are broadly consistent with the conditions observed in extant neognaths. This work will help form a basis for future comparative studies of the avian musculoskeletal system, with implications for reconstructing the flight apparatus of ancestral crown birds and clarifying musculoskeletal modifications underlying the convergent origins of ratite flightlessness.
Collapse
Affiliation(s)
- Klara E. Widrig
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary SciencesYale UniversityNew HavenConnecticutUSA
- Peabody Museum of Natural HistoryYale UniversityNew HavenConnecticutUSA
| | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
5
|
Krishnan A. Biomechanics illuminates form-function relationships in bird bills. J Exp Biol 2023; 226:297128. [PMID: 36912385 DOI: 10.1242/jeb.245171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The field of comparative biomechanics examines how form, mechanical properties and environmental interactions shape the function of biological structures. Biomechanics has advanced by leaps and bounds as rapid technological progress opens up new research horizons. In this Review, I describe how our understanding of the avian bill, a morphologically diverse multifunctional appendage, has been transformed by employing a biomechanical perspective. Across functions from feeding to excavating hollows in trees and as a vocal apparatus, the study of the bill spans both solid and fluid biomechanics, rendering it useful to understand general principles across disciplines. The different shapes of the bill across bird species result in functional and mechanical trade-offs, thus representing a microcosm of many broader form-function questions. Using examples from diverse studies, I discuss how research into bird bills has been shaped over recent decades, and its influence on our understanding of avian ecology and evolution. Next, I examine how bill material properties and geometry influence performance in dietary and non-dietary contexts, simultaneously imposing trade-offs on other functions. Following an examination of the interactions of bills with fluids and their role as part of the vocal apparatus, I end with a discussion of the sensory biomechanics of the bill, focusing specifically on the bill-tip mechanosensory organ. With these case studies, I highlight how this burgeoning and consequential field represents a roadmap for our understanding of the function and evolution of biological structures.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri 462066, Madhya Pradesh, India
| |
Collapse
|
6
|
Nabavizadeh A. How Triceratops got its face: An update on the functional evolution of the ceratopsian head. Anat Rec (Hoboken) 2023. [PMID: 36883781 DOI: 10.1002/ar.25196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
Ceratopsian dinosaurs arguably show some of the most extravagant external cranial morphology across all Dinosauria. For over a century, ceratopsian dinosaurs have inspired a multitude of cranial functional studies as more discoveries continued to depict a larger picture of the enormous diversity of these animals. The iconic horns and bony frills in many ceratopsians portray a plethora of shapes, sizes, and arrangements across taxa, and their overall feeding apparatus show the development of unique specializations previously unseen in large herbivores. Here, I give a brief updated review of the many functional studies investigating different aspects of the ceratopsian head. The functional role of the horns and bony frills is explored, with an overview of studies investigating their potential for weaponization or defense in either intraspecific or anti-predatory combat, among other things. A review of studies pertaining to the ceratopsian feeding apparatus is also presented here, with analyses of studies exploring their beak and snout morphology, dentition and tooth wear, cranial musculature with associated skull anatomy, and feeding biomechanics.
Collapse
Affiliation(s)
- Ali Nabavizadeh
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Li Z, Wang M, Stidham TA, Zhou Z, Clarke J. Novel evolution of a hyper-elongated tongue in a Cretaceous enantiornithine from China and the evolution of the hyolingual apparatus and feeding in birds. J Anat 2022; 240:627-638. [PMID: 34854094 PMCID: PMC8930807 DOI: 10.1111/joa.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
The globally distributed extinct clade Enantiornithes comprises the most diverse early radiation of birds in the Mesozoic with species exhibiting a wide range of body sizes, morphologies, and ecologies. The fossil of a new enantiornithine bird, Brevirostruavis macrohyoideus gen. et sp. nov., from the Lower Cretaceous Jiufotang Formation in Liaoning Province, northeastern China, preserves a few important skeletal features previously unknown among early stem and extant birds, including an extremely elongate bony hyoid element (only slightly shorter than the skull), combined with a short cranial rostrum. The long hyoid provides direct evidence for the evolution of specialized feeding in this extinct species, and appears similar to the highly mobile tongue that is mobilized by the paired epibranchials present in living hummingbirds, honeyeaters, and woodpeckers. The likely linkage between food acquisition and tongue protrusion might have been a key factor in the independent evolution of particularly elongate hyobranchials in early birds.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Min Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Thomas A. Stidham
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Julia Clarke
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
8
|
Demuth OE, Wiseman ALA, van Beesel J, Mallison H, Hutchinson JR. Three-dimensional polygonal muscle modelling and line of action estimation in living and extinct taxa. Sci Rep 2022; 12:3358. [PMID: 35233027 PMCID: PMC8888607 DOI: 10.1038/s41598-022-07074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Biomechanical models and simulations of musculoskeletal function rely on accurate muscle parameters, such as muscle masses and lines of action, to estimate force production potential and moment arms. These parameters are often obtained through destructive techniques (i.e., dissection) in living taxa, frequently hindering the measurement of other relevant parameters from a single individual, thus making it necessary to combine multiple specimens and/or sources. Estimating these parameters in extinct taxa is even more challenging as soft tissues are rarely preserved in fossil taxa and the skeletal remains contain relatively little information about the size or exact path of a muscle. Here we describe a new protocol that facilitates the estimation of missing muscle parameters (i.e., muscle volume and path) for extant and extinct taxa. We created three-dimensional volumetric reconstructions for the hindlimb muscles of the extant Nile crocodile and extinct stem-archosaur Euparkeria, and the shoulder muscles of an extant gorilla to demonstrate the broad applicability of this methodology across living and extinct animal clades. Additionally, our method can be combined with surface geometry data digitally captured during dissection, thus facilitating downstream analyses. We evaluated the estimated muscle masses against physical measurements to test their accuracy in estimating missing parameters. Our estimated muscle masses generally compare favourably with segmented iodine-stained muscles and almost all fall within or close to the range of observed muscle masses, thus indicating that our estimates are reliable and the resulting lines of action calculated sufficiently accurately. This method has potential for diverse applications in evolutionary morphology and biomechanics.
Collapse
Affiliation(s)
- Oliver E Demuth
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK.
- Department of Earth Sciences, University of Cambridge, Cambridge, UK.
| | - Ashleigh L A Wiseman
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Julia van Beesel
- Department of Human Evolution, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Heinrich Mallison
- Zoological Museum, University of Hamburg, Hamburg, Germany
- Palaeo3D, Rain am Lech, Germany
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|
9
|
Almeida BA, Lukács BA, Lovas-Kiss Á, Reynolds C, Green AJ. Functional Traits Drive Dispersal Interactions Between European Waterfowl and Seeds. FRONTIERS IN PLANT SCIENCE 2022; 12:795288. [PMID: 35173751 PMCID: PMC8843038 DOI: 10.3389/fpls.2021.795288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Endozoochory by waterfowl is important for a broad range of angiosperms, most of which lack a fleshy fruit. This dispersal function contributes to the formation and maintenance of plant communities and may allow range shifts for plant species under global change. However, our current understanding of what seed or plant traits are important for this dispersal mechanism, and how they relate to variation in waterbird traits, is extremely limited. We addressed this question using a unique dataset identifying the plant species whose seeds are ingested by 31 different waterfowl species in Europe. We used RLQ and fourth-corner analyses to explore relationships between (1) bird morphological and foraging strategy traits, and (2) plant traits related to seed morphology, environmental preferences, and growth form. We then used Generalized Additive Models to identify relationships between plant/seed traits and the number of waterfowl species that disperse them. Although many waterfowl feed intentionally on seeds, available seed trait data provided little explanation for patterns compared to plant traits such as Ellenberg indicators of habitat preference and life form. Geese were associated with terrestrial plants, ingesting seeds as they graze on land. Diving ducks were associated with strictly aquatic plants, ingesting seeds as they feed at greater depths. Dabbling ducks ingest seeds from plants with high light and temperature requirements, especially shoreline and ruderal species growing in or around the dynamic and shallow microhabitats favored by these birds. Overall, the number of waterfowl vector species (up to 13 per plant species) increases for plants with greater soil moisture requirements and salinity tolerance, reflecting the inclination of most waterfowl species to feed in coastal wetlands. Our findings underline the importance of waterfowl dispersal for plants that are not strictly aquatic, as well as for plants associated with high salinities. Furthermore, our results reveal a soil moisture gradient that drives seed-bird interactions, in line with differences between waterfowl groups in their microhabitat preferences along the land-water continuum. This study provides an important advance in our understanding of the interactions that define plant dispersal in wetlands and their surroundings, and of what plants might be affected by ongoing changes in the distributions of waterfowl species.
Collapse
Affiliation(s)
- Bia A. Almeida
- Department of Wetland Ecology, Doñana Biological Station EBD-CSIC, Seville, Spain
| | - Balázs A. Lukács
- Wetland Ecology Research Group, Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
| | - Ádám Lovas-Kiss
- Wetland Ecology Research Group, Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
| | - Chevonne Reynolds
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Andy J. Green
- Department of Wetland Ecology, Doñana Biological Station EBD-CSIC, Seville, Spain
| |
Collapse
|
10
|
Miller CV, Pittman M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biol Rev Camb Philos Soc 2021; 96:2058-2112. [PMID: 34240530 PMCID: PMC8519158 DOI: 10.1111/brv.12743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Birds are some of the most diverse organisms on Earth, with species inhabiting a wide variety of niches across every major biome. As such, birds are vital to our understanding of modern ecosystems. Unfortunately, our understanding of the evolutionary history of modern ecosystems is hampered by knowledge gaps in the origin of modern bird diversity and ecosystem ecology. A crucial part of addressing these shortcomings is improving our understanding of the earliest birds, the non-avian avialans (i.e. non-crown birds), particularly of their diet. The diet of non-avian avialans has been a matter of debate, in large part because of the ambiguous qualitative approaches that have been used to reconstruct it. Here we review methods for determining diet in modern and fossil avians (i.e. crown birds) as well as non-avian theropods, and comment on their usefulness when applied to non-avian avialans. We use this to propose a set of comparable, quantitative approaches to ascertain fossil bird diet and on this basis provide a consensus of what we currently know about fossil bird diet. While no single approach can precisely predict diet in birds, each can exclude some diets and narrow the dietary possibilities. We recommend combining (i) dental microwear, (ii) landmark-based muscular reconstruction, (iii) stable isotope geochemistry, (iv) body mass estimations, (v) traditional and/or geometric morphometric analysis, (vi) lever modelling, and (vii) finite element analysis to reconstruct fossil bird diet accurately. Our review provides specific methodologies to implement each approach and discusses complications future researchers should keep in mind. We note that current forms of assessment of dental mesowear, skull traditional morphometrics, geometric morphometrics, and certain stable isotope systems have yet to be proven effective at discerning fossil bird diet. On this basis we report the current state of knowledge of non-avian avialan diet which remains very incomplete. The ancestral dietary condition in non-avian avialans remains unclear due to scarce data and contradictory evidence in Archaeopteryx. Among early non-avian pygostylians, Confuciusornis has finite element analysis and mechanical advantage evidence pointing to herbivory, whilst Sapeornis only has mechanical advantage evidence indicating granivory, agreeing with fossilised ingested material known for this taxon. The enantiornithine ornithothoracine Shenqiornis has mechanical advantage and pedal morphometric evidence pointing to carnivory. In the hongshanornithid ornithuromorph Hongshanornis only mechanical advantage evidence indicates granivory, but this agrees with evidence of gastrolith ingestion in this taxon. Mechanical advantage and ingested fish support carnivory in the songlingornithid ornithuromorph Yanornis. Due to the sparsity of robust dietary assignments, no clear trends in non-avian avialan dietary evolution have yet emerged. Dietary diversity seems to increase through time, but this is a preservational bias associated with a predominance of data from the Early Cretaceous Jehol Lagerstätte. With this new framework and our synthesis of the current knowledge of non-avian avialan diet, we expect dietary knowledge and evolutionary trends to become much clearer in the coming years, especially as fossils from other locations and climates are found. This will allow for a deeper and more robust understanding of the role birds played in Mesozoic ecosystems and how this developed into their pivotal role in modern ecosystems.
Collapse
Affiliation(s)
- Case Vincent Miller
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Research Division for Earth and Planetary ScienceThe University of Hong KongPokfulamHong Kong SARChina
| |
Collapse
|
11
|
Bailleul AM, Lu J, Li Z. DiceCT applied to fossilized hard tissues: A preliminary case study using a miocene bird. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:364-375. [PMID: 33666331 DOI: 10.1002/jez.b.23037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/02/2021] [Accepted: 02/14/2021] [Indexed: 11/12/2022]
Abstract
Iodine-based contrasting agents for computed tomography (CT) have been used for decades in medicine. Agents like Lugol's iodine enhance the contrasts between soft tissues and mineralized (skeletal) tissues. Because a recent study on extant avian heads showed that iodine-ethanol (I2 E) is a better contrast enhancer overall than the standard Lugol's iodine, here, we tested if I2 E could also enhance the CT contrasts of two fossilized skeletal tissues: bone and calcified cartilage. For this, we used a partial ankle joint from an extinct pheasant from the Late Miocene of Northwest China (Linxia Basin). The pre-staining CT scans showed no microstructural details of the sample. After being immersed into a solution of 1% I2 E for 8 days and scanned a second time, the contrasts were drastically enhanced between the mineralized tissues (bony trabeculae and calcified cartilage) and the sediments and minerals inside vascular spaces. After three other staining-scanning cycles in 2%, 3%, and 6% I2 E solutions, the best contrasts were obtained after immersion in 6% I2 E for 7 days. Energy Dispersive Spectroscopy showed that iodine was preferentially absorbed by the mineralized tissues and the minerals in the vascular spaces, but not by the sediments. This method not only effectively increased the contrasts of two different fossilized skeletal tissues, it was also non-destructive and reversible because part of the fossil was successfully de-stained after a few days in pure ethanol. These preliminary results indicate that iodine-ethanol has the potential to be used widely in vertebrate paleontology to improve CT imaging of fossilized tissues.
Collapse
Affiliation(s)
- Alida M Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jing Lu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| |
Collapse
|
12
|
Jiang S, Li Z, Cheng X, Wang X. The first pterosaur basihyal, shedding light on the evolution and function of pterosaur hyoid apparatuses. PeerJ 2020; 8:e8292. [PMID: 31934505 PMCID: PMC6951291 DOI: 10.7717/peerj.8292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/25/2019] [Indexed: 11/25/2022] Open
Abstract
The pterosaur is the first known vertebrate clade to achieve powered flight. Its hyoid apparatus shows a simplification similar to that of birds, although samples of the apparatus are rare, limiting the ability to make an accurate determination. In this study we reveal a new pterosaur specimen, including the first definite basihyal. Through the comparison of pterosaur hyoids, a trend has been discovered for the shortened hyoid relative to the length of the skull, indicating a diminished role of lingual retraction during the evolution of the pterosaur. The new material, possibly from a gallodactylid Gladocephaloideus, represents one of the least effective lingual retractions in all pterosaurs. Based on the structure of an elongated ceratobranchial and retroarticular process on mandibles, the function of the Y-shaped istiodactylid tongue bone is similar to those of scavenger crows rather than chameleons, which is consistent with the interpretation of the scavenging behavior of this taxon. More fossil samples are needed for further study on the function of other pterosaur hyoids.
Collapse
Affiliation(s)
- Shunxing Jiang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Xin Cheng
- College of Earth Sciences, Jilin University, Changchun, China.,Laboratório de Paleontologia, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Xiaolin Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing, China.,College of Earth and Planetary Sciences, University of CAS, Beijing, China
| |
Collapse
|
13
|
The phylogenetic significance of the morphology of the syrinx, hyoid and larynx, of the southern cassowary, Casuarius casuarius (Aves, Palaeognathae). BMC Evol Biol 2019; 19:233. [PMID: 31881941 PMCID: PMC6935130 DOI: 10.1186/s12862-019-1544-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Palaeognathae is a basal clade within Aves and include the large and flightless ratites and the smaller, volant tinamous. Although much research has been conducted on various aspects of palaeognath morphology, ecology, and evolutionary history, there are still areas which require investigation. This study aimed to fill gaps in our knowledge of the Southern Cassowary, Casuarius casuarius, for which information on the skeletal systems of the syrinx, hyoid and larynx is lacking - despite these structures having been recognised as performing key functional roles associated with vocalisation, respiration and feeding. Previous research into the syrinx and hyoid have also indicated these structures to be valuable for determining evolutionary relationships among neognath taxa, and thus suggest they would also be informative for palaeognath phylogenetic analyses, which still exhibits strong conflict between morphological and molecular trees. RESULTS The morphology of the syrinx, hyoid and larynx of C. casuarius is described from CT scans. The syrinx is of the simple tracheo-bronchial syrinx type, lacking specialised elements such as the pessulus; the hyoid is relatively short with longer ceratobranchials compared to epibranchials; and the larynx is comprised of entirely cartilaginous, standard avian anatomical elements including a concave, basin-like cricoid and fused cricoid wings. As in the larynx, both the syrinx and hyoid lack ossification and all three structures were most similar to Dromaius. We documented substantial variation across palaeognaths in the skeletal character states of the syrinx, hyoid, and larynx, using both the literature and novel observations (e.g. of C. casuarius). Notably, new synapomorphies linking Dinornithiformes and Tinamidae are identified, consistent with the molecular evidence for this clade. These shared morphological character traits include the ossification of the cricoid and arytenoid cartilages, and an additional cranial character, the articulation between the maxillary process of the nasal and the maxilla. CONCLUSION Syrinx, hyoid and larynx characters of palaeognaths display greater concordance with molecular trees than do other morphological traits. These structures might therefore be less prone to homoplasy related to flightlessness and gigantism, compared to typical morphological traits emphasised in previous phylogenetic studies.
Collapse
|
14
|
Zubkova EN. Functional Morphology of the Hyoid Apparatus in Old World Suboscines (Eurylaimides): 1. Anatomical Description. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019070136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Gordon IJ, Prins HHT, Mallon J, Puk LD, Miranda EBP, Starling-Manne C, van der Wal R, Moore B, Foley W, Lush L, Maestri R, Matsuda I, Clauss M. The Ecology of Browsing and Grazing in Other Vertebrate Taxa. THE ECOLOGY OF BROWSING AND GRAZING II 2019. [DOI: 10.1007/978-3-030-25865-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
16
|
Schmitt CJ, Cook JA, Zamudio KR, Edwards SV. Museum specimens of terrestrial vertebrates are sensitive indicators of environmental change in the Anthropocene. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170387. [PMID: 30455205 PMCID: PMC6282080 DOI: 10.1098/rstb.2017.0387] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 11/12/2022] Open
Abstract
Natural history museums and the specimen collections they curate are vital scientific infrastructure, a fact as true today as it was when biologists began collecting and preserving specimens over 200 years ago. The importance of museum specimens in studies of taxonomy, systematics, ecology and evolutionary biology is evidenced by a rich and abundant literature, yet creative and novel uses of specimens are constantly broadening the impact of natural history collections on biodiversity science and global sustainability. Excellent examples of the critical importance of specimens come from their use in documenting the consequences of environmental change, which is particularly relevant considering the alarming rate at which we now modify our planet in the Anthropocene. In this review, we highlight the important role of bird, mammal and amphibian specimens in documenting the Anthropocene and provide examples that underscore the need for continued collection of museum specimens.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.
Collapse
Affiliation(s)
- C Jonathan Schmitt
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joseph A Cook
- Museum of Southwestern Biology & Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kelly R Zamudio
- Museum of Vertebrates and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Scott V Edwards
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Li Z, Zhou Z, Clarke JA. Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs. PLoS One 2018; 13:e0198078. [PMID: 29924798 PMCID: PMC6010247 DOI: 10.1371/journal.pone.0198078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 05/14/2018] [Indexed: 11/18/2022] Open
Abstract
The tongue, with fleshy, muscular, and bony components, is an innovation of the earliest land-dwelling vertebrates with key functions in both feeding and respiration. Here, we bring together evidence from preserved hyoid elements from dinosaurs and outgroup archosaurs, including pterosaurs, with enhanced contrast x-ray computed tomography data from extant taxa. Midline ossification is a key component of the origin of an avian hyoid. The elaboration of the avian tongue includes the evolution of multiple novel midline hyoid bones and a larynx suspended caudal to these midline elements. While variable in dentition and skull shape, most bird-line archosaurs show a simple hyoid structure. Bony, or well-mineralized, hyoid structures in dinosaurs show limited modification in response to dietary shifts and across significant changes in body-size. In Dinosauria, at least one such narrow, midline element is variably mineralized in some basal paravian theropods. Only in derived ornithischians, pterosaurs and birds is further significant hyoid elaboration recorded. Furthermore, only in the latter two taxa does the bony tongue structure include elongation of paired hyobranchial elements that have been associated in functional studies with hyolingual mobility. Pterosaurs and enantiornithine birds achieve similar elongation and inferred mobility via elongation of ceratobranchial elements while within ornithurine birds, including living Aves, ossified and separate paired epibranchial elements (caudal to the ceratobranchials) confer an increase in hyobranchial length. The mobile tongues seen in living birds may be present in other flighted archosaurs showing a similar elongation. Shifts from hypercarnivory to more diverse feeding ecologies and diets, with the evolution of novel locomotor strategies like flight, may explain the evolution of more complex tongue function.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Julia A. Clarke
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
18
|
Avilova KV. Spatial Organization of the Epithelial Structures in the Bill Tip Organ of Waterfowl (Anseriformes, Aves). ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s2079086418030027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Avilova KV, Fedorenko AG, Lebedeva NV. The Mechanoreceptor Organs of the Lamellirostral Birds (Anseriformes, Aves). BIOL BULL+ 2018. [DOI: 10.1134/s1062359017060036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Affiliation(s)
- Aaron M. Olsen
- Department of Organismal Biology and Anatomy University of Chicago Chicago IL USA
- Bird Division The Field Museum of Natural History Chicago IL USA
| |
Collapse
|
21
|
Li Z, Clarke JA, Ketcham RA, Colbert MW, Yan F. An investigation of the efficacy and mechanism of contrast-enhanced X-ray computed tomography utilizing iodine for large specimens through experimental and simulation approaches. BMC PHYSIOLOGY 2015; 15:5. [PMID: 26691327 PMCID: PMC4687389 DOI: 10.1186/s12899-015-0019-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/02/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iodine-based solutions have long been known to be effective in aiding the differentiation among soft tissues in both fundamental anatomical research and for clinical diagnoses. Recently the combination of this particular contrasting agent with micro-computed tomography (micro-CT) has resulted in an array of high-quality image data, in which anatomical structures not visible in conventional CT can be identified and quantified. However, there has been only limited data available to inform detailed protocols for staining large specimens. Further, modeling of the staining mechanism has focused on simple diffusion processes. RESULTS A low concentration of iodine-based buffered formalin solution with a long staining period was used to visualize soft-tissue structures in a large goose head. The staining effect was analyzed by serially measuring the micro-CT profiles across coronal sections throughout the staining period. Regular replacement of the staining solution combined with a longer staining period significantly improved contrast within tissues. A simplified one-dimensional Diffusion-Sorption model with a three-zone domain was used to simulate the diffusion process by calculating the concentration profile of iodine across the adductor region, which fits well with the experiment data. Observations of changes in the concentration of the staining agent and simulation results suggest that the sorption of iodine by tissues significantly affects the effective diffusion coefficient for the contrasting agent. CONCLUSIONS The Diffusion-Sorption model better explains previously reported difficulties in staining large samples comprised of tissues with high partition coefficients (K d ). Differences in partition coefficient (K d ), bulk density (ρ b ), and porosity (θ) could further explain the observed variation in staining rate and maximal staining effect among different tissues. Recommended protocols for staining large specimens are detailed.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA.
| | - Julia A Clarke
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA.
| | - Richard A Ketcham
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA.
| | - Matthew W Colbert
- Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA.
| | - Fei Yan
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|