1
|
Nemeth C, Hoskens H, Wilson G, Jones M, DiPietrantonio J, Salami B, Harnish D, Claes P, Weinberg SM, Shriver MD, Hallgrímsson B. Quantitative analysis of facial shape in children to support respirator design. APPLIED ERGONOMICS 2025; 122:104375. [PMID: 39454317 DOI: 10.1016/j.apergo.2024.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/28/2024]
Abstract
The COVID-19 pandemic demonstrated the need for respiratory protection against airborne pathogens. Respirator options for children are limited, and existing designs do not consider differences in facial shape or size. We created a dataset of children's facial images from three cohorts, then used geometric morphometric analyses of dense and sparse facial landmark representations to quantify age, sex and ancestry-related variation in shape. We found facial shape and size in children vary significantly with age from ages 2 to 18, particularly in dimensions relevant to respirator design. Sex differences are small throughout most of the age range of our sample. Ancestry is associated with significant facial shape variation in dimensions that may affect respirator fit. We offer guidance on how to our results can be used for the appropriate design of devices such as respirators for pediatric populations. We also highlight the need to consider ancestry-related variation in facial morphology to promote equitable, inclusive products.
Collapse
Affiliation(s)
| | - Hanne Hoskens
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham Wilson
- Design Reality Ltd, St. Asaph, LL17 0JE, United Kingdom
| | - Mike Jones
- Design Reality Ltd, St. Asaph, LL17 0JE, United Kingdom
| | | | - Bukola Salami
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Del Harnish
- Applied Research Associates, Inc., Albuquerque, NM, USA
| | - Peter Claes
- Medical Imaging Research Center, UZ Leuven, 3000, Leuven, Belgium; Department of Electrical Engineering, Processing of Speech and Images (ESAT-PSI), KU Leuven, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada; McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Li L, Wang YM, Zeng XY, Hu Y, Zhang J, Wang B, Chen SX. Bioactive proteins and antioxidant peptides from Litsea cubeba fruit meal: Preparation, characterization and ameliorating function on high-fat diet-induced NAFLD through regulating lipid metabolism, oxidative stress and inflammatory response. Int J Biol Macromol 2024; 280:136186. [PMID: 39357720 DOI: 10.1016/j.ijbiomac.2024.136186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) plays an increasingly significant threat to human health. In this study, the processing by-products of Litsea cubeba fruit meal were defatted by ultrasound-assisted methods, then the acetone-precipitated protein of L. cubeba (LCP) was obtained and structural analysis was performed. LCP was hydrolyzed by a two-step sequential hydrolysis method using alcalase and papain. Subsequently, antioxidant peptide fraction (IV2) was isolated and identified from the resultant hydrolysate through membrane ultrafiltration, Sephadex G-15 chromatography, and liquid chromatograph mass spectrometer (LC-MS). Animal experimentation indicated the potential of IV2 to mitigate hepatic steatosis. Moreover, IV2 could effectively reduce oxidative stress-induced damage by modulating the Keap1-Nrf2 pathway to activate downstream heme oxygenase-1 (HO-1) and NAD(P) H quinone oxidoreductase 1 (NQO1). Integrating metabolomics and transcriptomics revealed enrichment in pathways associated with glycerolipid metabolism and fatty acid β-oxidation, suggesting the principal mechanisms underlying IV2's ameliorative effects on NAFLD. Transcriptome sequencing identified 3092 up-regulated and 3010 down-regulated genes following IV2 treatment. Interaction analyses based on different lipid compositions (DELs) and differentially expressed genes (DEGs) indicated that IV2 primarily alleviated hepatic steatosis by modulating peroxisome proliferator-activated receptor α (PPAR-α) related pathways, thereby augmenting fatty acid β-oxidation within liver cells. These results indicate that IV2 shows potential in improving high-fat diet (HFD)-induced NAFLD, with improved fatty acid β-oxidation and reduced triglyceride biosynthesis emerging as underlying mechanisms.
Collapse
Affiliation(s)
- Li Li
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiao-Yan Zeng
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China
| | - Ying Hu
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China
| | - Ji Zhang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Shang-Xing Chen
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Technology Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang 330045, China.
| |
Collapse
|
3
|
Martin-Moya D, Ribot I. Investigating temporal bone variation of colonial populations from St-Lawrence Valley, Quebec: A 3D geometric morphometric approach. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24885. [PMID: 38146128 DOI: 10.1002/ajpa.24885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES In Quebec, genetic and genealogical research are used to document migratory events and family structures since colonial times, because bioarchaeological analysis is limited by poor skeletal preservation. This article aims to fill this gap by exploring past population structure in the St-Lawrence Valley from the French (1683-1760) and British (1760-1867) regimes using morphological variation of well-preserved temporal bones. MATERIALS AND METHODS 3D geometric morphometrics shape data from seven populations (five Catholics of French descent and two Protestants of British descent; n = 214) were collected from temporal bones. Using Procrustes distances and both MANOVA and Discriminant Function Analysis, morphological differences were measured to calculate affinities patterns among populations. Shape variations were explored with between-group analysis, Mahalanobis distances and quantified by means of Fst estimates using Relethford-Blangero analysis. RESULTS Despite strong affinities between all Catholic cemeteries, all show divergent morphological regional diversity -especially Montreal and the fortified villages dedicated to its defense. Montreal exhibits low increase in morphological variance over three centuries. As our results show no morphological differences between the Catholic and the Protestant cemeteries in Montreal, this fact may highlight the potential presence of Irish or admixed individuals in Montreal cemeteries after the British takeover. DISCUSSION Patterns of morphological diversity highlighted that French colonists did not equally contribute to the descendant populations as reflected by significant interregional variation. Although historical records show that French and English-speaking populations did not tend to admix, morphological affinities between Protestants and Catholics in the beginning of the industrial era in Montreal could reflect the genetic contribution of Catholic Irish migrants. RESEARCH HIGHLIGHTS All Catholic cemeteries display distinct morphologies, highlighting differential contributions from French colonists and founder effects, which have increased regional differences. Montreal Catholic (French descent) and Protestant (English colonists) cemeteries show significant morphological affinities at the beginning of the industrial era. The Irish migration following the British conquest may explain morphological similarities observed between Catholic and Protestant cemeteries.
Collapse
Affiliation(s)
- Diane Martin-Moya
- Département d'Anthropologie, Laboratoire de Bioarchéologie Humaine, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Ribot
- Département d'Anthropologie, Laboratoire de Bioarchéologie Humaine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Magnet R, Bloch K, Taverne M, Melzi S, Geoffroy M, Khonsari RH, Ovsjanikov M. Assessing craniofacial growth and form without landmarks: A new automatic approach based on spectral methods. J Morphol 2023; 284:e21609. [PMID: 37458086 DOI: 10.1002/jmor.21609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 07/18/2023]
Abstract
We present a novel method for the morphometric analysis of series of 3D shapes, and demonstrate its relevance for the detection and quantification of two craniofacial anomalies: trigonocephaly and metopic ridges, using CT-scans of young children. Our approach is fully automatic, and does not rely on manual landmark placement and annotations. Our approach furthermore allows to differentiate shape classes, enabling successful differential diagnosis between trigonocephaly and metopic ridges, two related conditions characterized by triangular foreheads. These results were obtained using recent developments in automatic nonrigid 3D shape correspondence methods and specifically spectral approaches based on the functional map framework. Our method can capture local changes in geometric structure, in contrast to methods based, for instance, on global shape descriptors. As such, our approach allows to perform automatic shape classification and provides visual feedback on shape regions associated with different classes of deformations. The flexibility and generality of our approach paves the way for the application of spectral methods in quantitative medicine.
Collapse
Affiliation(s)
- Robin Magnet
- LIX, École Polytechnique, IP Paris, Palaiseau, France
| | - Kevin Bloch
- Laboratoire "Forme et Croissance du Crâne", Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris, France
| | - Maxime Taverne
- Laboratoire "Forme et Croissance du Crâne", Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris, France
| | - Simone Melzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
| | - Maya Geoffroy
- Laboratoire "Forme et Croissance du Crâne", Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris, France
| | - Roman H Khonsari
- Laboratoire "Forme et Croissance du Crâne", Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Faculté de Médecine, Université Paris Cité, Paris, France
| | | |
Collapse
|
5
|
Farnell DJJ, Claes P. Initial Steps towards a Multilevel Functional Principal Components Analysis Model of Dynamical Shape Changes. J Imaging 2023; 9:jimaging9040086. [PMID: 37103237 PMCID: PMC10144090 DOI: 10.3390/jimaging9040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
In this article, multilevel principal components analysis (mPCA) is used to treat dynamical changes in shape. Results of standard (single-level) PCA are also presented here as a comparison. Monte Carlo (MC) simulation is used to create univariate data (i.e., a single "outcome" variable) that contain two distinct classes of trajectory with time. MC simulation is also used to create multivariate data of sixteen 2D points that (broadly) represent an eye; these data also have two distinct classes of trajectory (an eye blinking and an eye widening in surprise). This is followed by an application of mPCA and single-level PCA to "real" data consisting of twelve 3D landmarks outlining the mouth that are tracked over all phases of a smile. By consideration of eigenvalues, results for the MC datasets find correctly that variation due to differences in groups between the two classes of trajectories are larger than variation within each group. In both cases, differences in standardized component scores between the two groups are observed as expected. Modes of variation are shown to model the univariate MC data correctly, and good model fits are found for both the "blinking" and "surprised" trajectories for the MC "eye" data. Results for the "smile" data show that the smile trajectory is modelled correctly; that is, the corners of the mouth are drawn backwards and wider during a smile. Furthermore, the first mode of variation at level 1 of the mPCA model shows only subtle and minor changes in mouth shape due to sex; whereas the first mode of variation at level 2 of the mPCA model governs whether the mouth is upturned or downturned. These results are all an excellent test of mPCA, showing that mPCA presents a viable method of modeling dynamical changes in shape.
Collapse
Affiliation(s)
| | - Peter Claes
- Medical Imaging Research Center, UZ Leuven, 3000 Leuven, Belgium
- Department of Electrical Engineering, Processing of Speech and Images (ESAT-PSI), KU Leuven, 3000 Leuven, Belgium
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Avni HL, Shvalb N, Pokhojaev A, Francis S, Pelleg-Kallevag R, Roul V, Hublin JJ, Rühli F, May H. Evolutionary roots of the risk of hip fracture in humans. Commun Biol 2023; 6:283. [PMID: 36932194 PMCID: PMC10023703 DOI: 10.1038/s42003-023-04633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
The transition to bipedal locomotion was a fundamental milestone in human evolution. Consequently, the human skeleton underwent substantial morphological adaptations. These adaptations are responsible for many of today's common physical impairments, including hip fractures. This study aims to reveal the morphological changes in the proximal femur, which increase the risk of intracapsular hip fractures in present-day populations. Our sample includes chimpanzees, early hominins, early Homo Neanderthals, as well as prehistoric and recent humans. Using Geometric Morphometric methods, we demonstrate differences in the proximal femur shape between hominids and populations that practiced different lifestyles. We show that the proximal femur morphology is a risk factor for intracapsular hip fracture independent of osteoporosis. Changes in the proximal femur, such as the shortening of the femoral neck and an increased anterolateral expansion of the greater trochanter, are associated with an increased risk for intracapsular hip fractures. We conclude that intracapsular hip fractures are a trade-off for efficient bipedal walking in humans, and their risk is exacerbated by reduced physical activity.
Collapse
Affiliation(s)
- Hadas Leah Avni
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nir Shvalb
- Mechanical Engineering Department, Ariel University, Ariel, 40700, Israel
| | - Ariel Pokhojaev
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Samuel Francis
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ruth Pelleg-Kallevag
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- Zefat Academic College, Zefat, Israel
| | - Victoria Roul
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Jean-Jacques Hublin
- Chaire de Paléoanthropologie, CIRB (UMR 7241 - U1050), Collège de France, Paris, 75231, France
- Max-Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Frank Rühli
- Institute of Evolutionary Medicine, University of Zurich, Zurich, CH-8057, Switzerland
| | - Hila May
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
7
|
Arias-Martorell J, Urciuoli A, Almécija S, Alba DM, Nakatsukasa M. The radial head of the Middle Miocene ape Nacholapithecus kerioi: Morphometric affinities, locomotor inferences, and implications for the evolution of the hominoid humeroradial joint. J Hum Evol 2023; 178:103345. [PMID: 36933453 DOI: 10.1016/j.jhevol.2023.103345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Affiliation(s)
- Julia Arias-Martorell
- Institut Català de Paleontologia Miquel Crusafont, Universitat Auntònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; School of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury, CT2 7NR, UK.
| | - Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany; Institut Català de Paleontologia Miquel Crusafont, Universitat Auntònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Auntònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Auntònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| |
Collapse
|
8
|
O'Mahoney TG, Lowe T, Chamberlain AT, Sellers WI. Endostructural and periosteal growth of the human humerus. Anat Rec (Hoboken) 2023; 306:60-78. [PMID: 36054304 PMCID: PMC10086792 DOI: 10.1002/ar.25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 01/29/2023]
Abstract
The growth and development of long bones are of considerable interests in the fields of comparative anatomy and palaeoanthropology, as evolutionary changes and adaptations to specific physical activity patterns are expected to be revealed during bone ontogeny. Traditionally, the cross-sectional geometry of long bones has been examined at discrete locations usually placed at set intervals or fixed percentage distances along the midline axis of the bone shaft. More recently, the technique of morphometric mapping has enabled the continuous analysis of shape variation along the shaft. Here we extend this technique to the full sequence of late fetal and postnatal development of the humeral shaft in a modern human population sample, with the aim of establishing the shape changes during growth and their relationship with the development of the arm musculature and activity patterns. A sample of modern human humeri from individuals of age ranging from 24 weeks in utero to 18 years was imaged using microtomography at multiple resolutions and custom Matlab scripts. Standard biomechanical properties, cortical thickness, surface curvature, and pseudo-landmarks were extracted along radial vectors spaced at intervals of 1° at each 0.5% longitudinal increment measured along the shaft axis. Heat maps were also generated for cortical thickness and surface curvature. The results demonstrate that a whole bone approach to analysis of cross-sectional geometry is more desirable where possible, as there is a continuous pattern of variation along the shaft. It is also possible to discriminate very young individuals and adolescents from other groups by relative cortical thickness, and also by periosteal surface curvature.
Collapse
Affiliation(s)
- Thomas George O'Mahoney
- School of Life SciencesAnglia Ruskin UniversityCambridgeUK
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Tristan Lowe
- Henry Moseley X‐Ray Imaging FacilityUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
9
|
Bourel-Ponchel E, Querne L, Flamein F, Ghostine-Ramadan G, Wallois F, Lamblin MD. The prognostic value of neonatal conventional-EEG monitoring in hypoxic-ischemic encephalopathy during therapeutic hypothermia. Dev Med Child Neurol 2023; 65:58-66. [PMID: 35711160 PMCID: PMC10084260 DOI: 10.1111/dmcn.15302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/28/2023]
Abstract
AIM To determine the prognostic value of conventional electroencephalography (EEG) monitoring in neonatal hypoxic-ischemic encephalopathy (HIE). METHOD In this multicentre retrospective study, 95 full-term neonates (mean of 39.3wks gestational age [SD 1.4], 36 [38%] females, 59 [62%] males) with HIE (2013-2016) undergoing therapeutic hypothermia were divided between favourable or adverse outcomes. Background EEG activity (French classification scale: 0-1-2-3-4-5) and epileptic seizure burden (epileptic seizure scale: 0-1-2) were graded for seven 6-hour periods. Conventional EEG monitoring was investigated by principal component analysis (PCA), with clustering methods to extract prognostic biomarkers of development at 2 years and infant death. RESULTS Eighty-one per cent of infants with an adverse outcome had a French classification scale equal to or greater than 3 after H48 (100% at H6-12). The H6-12 epileptic seizure scale was equal to or greater than 1 for 39%, increased to 52% at H30-36 and then remained equal to or greater than 1 for 39% after H48. Forty-five per cent of infants with a favourable outcome had a H6-12 French classification scale equal to or greater than 3, which dropped to 5% after H48; 13% had a H6-12 epileptic seizure scale equal to or greater than 1 but no seizures after H48. Clustering methods based on PCA showed the high efficiency (96%) of conventional EEG monitoring for outcome prediction and allowed the definition of three prognostic EEG biomarkers: H6-78 French classification scale mean, H6-78 French classification scale slope, and H30-78 epileptic seizure scale mean. INTERPRETATION Early lability and recovery of physiological features is prognostic of a favourable outcome. Seizure onset from the second day should also be considered to accurately predict neurodevelopment in HIE and support the importance of conventional EEG monitoring in HIE in infants cooled with therapeutic hypothermia. WHAT THIS PAPER ADDS Comprehensive analysis showed the high prognostic efficiency (96%) of conventional electroencephalography (EEG) monitoring. Prognostic EEG biomarkers consist of the grade of background EEG activity, its evolution, and the mean seizure burden. Persistent seizures (H48) without an improvement in background EEG activity were consistently associated with an adverse outcome.
Collapse
Affiliation(s)
- Emilie Bourel-Ponchel
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,Pediatric Neurophysiology Unit, Amiens Picardie University Hospital, Amiens, France
| | - Laurent Querne
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,Department of Pediatric Neurology, Amiens-Picardie University Hospital, Amiens, France
| | - Florence Flamein
- Department of Neonatology, University Hospital of Lille, Lille, France
| | - Ghida Ghostine-Ramadan
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,Neonatal Intensive Care Unit, Amiens-Picardie University Hospital, Amiens, France
| | - Fabrice Wallois
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1105, Research Group on Multimodal Analysis of Brain Function, University of Picardie Jules Verne, Amiens, France.,Pediatric Neurophysiology Unit, Amiens Picardie University Hospital, Amiens, France
| | | |
Collapse
|
10
|
Can we Restore Balance to Geometric Morphometrics? A Theoretical Evaluation of how Sample Imbalance Conditions Ordination and Classification. Evol Biol 2022. [DOI: 10.1007/s11692-022-09590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Llambrich S, González-Colom R, Wouters J, Roldán J, Salassa S, Wouters K, Van Bulck V, Sharpe J, Callaerts-Vegh Z, Vande Velde G, Martínez-Abadías N. Green Tea Catechins Modulate Skeletal Development with Effects Dependent on Dose, Time, and Structure in a down Syndrome Mouse Model. Nutrients 2022; 14:nu14194167. [PMID: 36235819 PMCID: PMC9572077 DOI: 10.3390/nu14194167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Altered skeletal development in Down syndrome (DS) results in a brachycephalic skull, flattened face, shorter mandibular ramus, shorter limbs, and reduced bone mineral density (BMD). Our previous study showed that low doses of green tea extract enriched in epigallocatechin-3-gallate (GTE-EGCG), administered continuously from embryonic day 9 to postnatal day 29, reduced facial dysmorphologies in the Ts65Dn (TS) mouse model of DS, but high doses could exacerbate them. Here, we extended the analyses to other skeletal structures and systematically evaluated the effects of high and low doses of GTE-EGCG treatment over postnatal development in wild-type (WT) and TS mice using in vivo µCT and geometric morphometrics. TS mice developed shorter and wider faces, skulls, and mandibles, together with shorter and narrower humerus and scapula, and reduced BMD dynamically over time. Besides facial morphology, GTE-EGCG did not rescue any other skeletal phenotype in TS treated mice. In WT mice, GTE-EGCG significantly altered the shape of the skull and mandible, reduced the length and width of the long bones, and lowered the BMD. The disparate effects of GTE-EGCG depended on the dose, developmental timepoint, and anatomical structure analyzed, emphasizing the complex nature of DS and the need to further investigate the simultaneous effects of GTE-EGCG supplementation.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Rubèn González-Colom
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Jens Wouters
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Jorge Roldán
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Sara Salassa
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Kaat Wouters
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Vicky Van Bulck
- Laboratory of Biological Psychology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - James Sharpe
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08003 Barcelona, Spain
- EMBL Barcelona, European Molecular Biology Laboratory, 08003 Barcelona, Spain
| | | | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, University of Leuven (KU Leuven), 3000 Leuven, Belgium
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Correspondence: (G.V.V.); (N.M.-A.); Tel.: +32-16330924 (G.V.V.); +34-934034564 (N.M.-A.)
| |
Collapse
|
12
|
Le Maître A, Guy F, Merceron G, Kostopoulos DS. Morphology of the Bony Labyrinth Supports the Affinities of Paradolichopithecus with the Papionina. INT J PRIMATOL 2022; 44:209-236. [PMID: 36817734 PMCID: PMC9931825 DOI: 10.1007/s10764-022-00329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Discoveries in recent decades indicate that the large papionin monkeys Paradolipopithecus and Procynocephalus are key members of the Late Pliocene - Early Pleistocene mammalian faunas of Eurasia. However, their taxonomical status, phylogenetic relationships, and ecological profile remain unclear. Here we investigate the two latter aspects through the study of the inner ear anatomy, as revealed by applying micro-CT scan imaging techniques on the cranium LGPUT DFN3-150 of Paradolichopithecus from the lower Pleistocene (2.3 Ma) fossil site Dafnero-3 in Northwestern Greece. Using geometric morphometric methods, we quantified shape variation and the allometric and phylogenetic signals in extant cercopithecines (n = 80), and explored the morphological affinities of the fossil specimen with extant taxa. LGPUT DFN3-150 has a large centroid size similar to that of baboons and their relatives. It shares several shape features with Macacina and Cercopithecini, which we interpret as probable retention of a primitive morphology. Overall, its inner ear morphology is more consistent with a stem Papionini more closely related to Papionina than Macacina, or to a basal crown Papionina. Our results, along with morphometrical and ecological features from previous studies, call into question the traditional hypothesis of a Paradolichopithecus-Macacina clade, and provide alternative perspectives in the study of Eurasian primate evolution during the late Neogene-Quaternary. Supplementary Information The online version contains supplementary material available at 10.1007/s10764-022-00329-4.
Collapse
Affiliation(s)
- Anne Le Maître
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- PALEVOPRIM - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France
| | - Franck Guy
- PALEVOPRIM - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France
| | - Gildas Merceron
- PALEVOPRIM - UMR 7262 CNRS INEE, Université de Poitiers, Poitiers, France
| | - Dimitris S Kostopoulos
- Laboratory of Geology and Palaeontology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Postcranial evidence of late Miocene hominin bipedalism in Chad. Nature 2022; 609:94-100. [PMID: 36002567 DOI: 10.1038/s41586-022-04901-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Bipedal locomotion is one of the key adaptations that define the hominin clade. Evidence of bipedalism is known from postcranial remains of late Miocene hominins as early as 6 million years ago (Ma) in eastern Africa1-4. Bipedality of Sahelanthropus tchadensis was hitherto inferred about 7 Ma in central Africa (Chad) based on cranial evidence5-7. Here we present postcranial evidence of the locomotor behaviour of S. tchadensis, with new insights into bipedalism at the early stage of hominin evolutionary history. The original material was discovered at locality TM 266 of the Toros-Ménalla fossiliferous area and consists of one left femur and two, right and left, ulnae. The morphology of the femur is most parsimonious with habitual bipedality, and the ulnae preserve evidence of substantial arboreal behaviour. Taken together, these findings suggest that hominins were already bipeds at around 7 Ma but also suggest that arboreal clambering was probably a significant part of their locomotor repertoire.
Collapse
|
14
|
Zollikofer CPE, Bienvenu T, Beyene Y, Suwa G, Asfaw B, White TD, Ponce de León MS. Endocranial ontogeny and evolution in early Homo sapiens: The evidence from Herto, Ethiopia. Proc Natl Acad Sci U S A 2022; 119:e2123553119. [PMID: 35914174 PMCID: PMC9371682 DOI: 10.1073/pnas.2123553119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022] Open
Abstract
Fossils and artifacts from Herto, Ethiopia, include the most complete child and adult crania of early Homo sapiens. The endocranial cavities of the Herto individuals show that by 160,000 y ago, brain size, inferred from endocranial size, was similar to that seen in modern human populations. However, endocranial shape differed from ours. This gave rise to the hypothesis that the brain itself evolved substantially during the past ∼200,000 y, possibly in tandem with the transition from Middle to Upper Paleolithic techno-cultures. However, it remains unclear whether evolutionary changes in endocranial shape mostly reflect changes in brain morphology rather than changes related to interaction with maxillofacial morphology. To discriminate between these effects, we make use of the ontogenetic fact that brain growth nearly ceases by the time the first permanent molars fully erupt, but the face and cranial base continue to grow until adulthood. Here we use morphometric data derived from digitally restored immature and adult H. sapiens fossils from Herto, Qafzeh, and Skhul (HQS) to track endocranial development in early H. sapiens. Until the completion of brain growth, endocasts of HQS children were similar in shape to those of modern human children. The similarly shaped endocasts of fossil and modern children indicate that our brains did not evolve substantially over the past 200,000 y. Differences between the endocranial shapes of modern and fossil H. sapiens adults developed only with continuing facial and basicranial growth, possibly reflecting substantial differences in masticatory and/or respiratory function.
Collapse
Affiliation(s)
| | - Thibault Bienvenu
- Department of Anthropology, University of Zurich, Zurich 8057, Switzerland
| | - Yonas Beyene
- French Center for Ethiopian Studies (CFEE), Addis Ababa, Ethiopia
| | - Gen Suwa
- University Museum, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Tim D. White
- Human Evolution Research Center, The University of California at Berkeley, Berkeley, CA 94720
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos 09002, Spain
- Department of Integrative Biology, The University of California at Berkeley, Berkeley, CA 94720
| | | |
Collapse
|
15
|
Mitteroecker P, Schaefer K. Thirty years of geometric morphometrics: Achievements, challenges, and the ongoing quest for biological meaningfulness. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178 Suppl 74:181-210. [PMID: 36790612 PMCID: PMC9545184 DOI: 10.1002/ajpa.24531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
The foundations of geometric morphometrics were worked out about 30 years ago and have continually been refined and extended. What has remained as a central thrust and source of debate in the morphometrics community is the shared goal of meaningful biological inference through a tight connection between biological theory, measurement, multivariate biostatistics, and geometry. Here we review the building blocks of modern geometric morphometrics: the representation of organismal geometry by landmarks and semilandmarks, the computation of shape or form variables via superimposition, the visualization of statistical results as actual shapes or forms, the decomposition of shape variation into symmetric and asymmetric components and into different spatial scales, the interpretation of various geometries in shape or form space, and models of the association between shape or form and other variables, such as environmental, genetic, or behavioral data. We focus on recent developments and current methodological challenges, especially those arising from the increasing number of landmarks and semilandmarks, and emphasize the importance of thorough exploratory multivariate analyses rather than single scalar summary statistics. We outline promising directions for further research and for the evaluation of new developments, such as "landmark-free" approaches. To illustrate these methods, we analyze three-dimensional human face shape based on data from the Avon Longitudinal Study of Parents and Children (ALSPAC).
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, Unit for Theoretical BiologyUniversity of ViennaViennaAustria
| | - Katrin Schaefer
- Department of Evolutionary AnthropologyUniversity of ViennaViennaAustria,Human Evolution and Archaeological Sciences (HEAS)University of ViennaViennaAustria
| |
Collapse
|
16
|
O’Connell-Rodwell CE, Freeman PT, Kinzley C, Sandri MN, Berezin JL, Wiśniewska M, Jessup K, Rodwell TC. A novel technique for aging male African elephants (Loxodonta africana) using craniofacial photogrammetry and geometric morphometrics. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00238-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Wang B, Zelditch M, Badgley C. Geometric morphometrics of mandibles for dietary differentiation of Bovidae (Mammalia: Artiodactyla). Curr Zool 2022; 68:237-249. [PMID: 35592346 PMCID: PMC9113326 DOI: 10.1093/cz/zoab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
The mammalian family Bovidae has been widely studied in ecomorphological research, with important applications to paleoecological and paleohabitat reconstructions. Most studies of bovid craniomandibular features in relation to diet have used linear measurements. In this study, we conduct landmark-based geometric-morphometric analyses to evaluate whether different dietary groups can be distinguished by mandibular morphology. Our analysis includes data for 100 species of extant bovids, covering all bovid tribes and 2 dietary classifications. For the first classification with 3 feeding categories, we found that browsers (including frugivores), mixed feeders, and grazers are moderately well separated using mandibular shape. A finer dietary classification (frugivore, browser, browser-grazer intermediate, generalist, variable grazer, and obligate grazer) proved to be more useful for differentiating dietary extremes (frugivores and obligate grazers) but performed equally or less well for other groups. Notably, frugivorous bovids, which belong in tribe Cephalophini, have a distinct mandibular shape that is readily distinguished from all other dietary groups, yielding a 100% correct classification rate from jackknife cross-validation. The main differences in mandibular shape found among dietary groups are related to the functional needs of species during forage prehension and mastication. Compared with browsers, both frugivores and grazers have mandibles that are adapted for higher biomechanical demand of chewing. Additionally, frugivore mandibles are adapted for selective cropping. Our results call for more work on the feeding ecology and functional morphology of frugivores and offer an approach for reconstructing the diet of extinct bovids.
Collapse
Affiliation(s)
- Bian Wang
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109-1005, USA.,Museum of Paleontology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Miriam Zelditch
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Catherine Badgley
- Museum of Paleontology, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
18
|
Fasanelli MN, Milla Carmona PS, Soto IM, Tuero DT. Allometry, sexual selection and evolutionary lines of least resistance shaped the evolution of exaggerated sexual traits within the genus Tyrannus. J Evol Biol 2022; 35:669-679. [PMID: 35290678 DOI: 10.1111/jeb.14000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Abstract
Variational properties hold a fundamental role in shaping biological evolution, exerting control over the magnitude and direction of evolutionary change elicited by microevolutionary processes that sort variation, such as selection or drift. We studied the genus Tyrannus as a model for examining the conditions and drivers that facilitate the repeated evolution of exaggerated, secondary sexual traits in the face of significant functional limitations. In particular, we explore the role of allometry, sexual selection and their interaction, on the diversification of tail morphology in the genus, assessing whether and how they promoted or constrained phenotypic evolution. Non-deep-forked species tend to show reduced sexual dimorphism and moderate allometric variation in tail shape. The exaggerated and functionally constrained long feathers of deep-forked species, T. savana and T. forficatus, which show both marked sexual dimorphism and allometric tail shape variation, independently diverged from the rest of the genus following the same direction of main interspecific variation accrued during the evolution of non-deep-forked species. Moreover, the latter direction is also aligned with axes summarising sexual dimorphism and allometric variation on deep-forked species, a feature lacking in the rest of the species. Thus, exaggerated tail morphologies are interpreted as the result of amplified divergence through reorientation and co-option of allometric variation by sexual selection, repeatedly driving morphology along a historically favoured direction of cladogenetic evolution.
Collapse
Affiliation(s)
- Martín Nicolás Fasanelli
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo S Milla Carmona
- Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Ecosistemas Marinos Fósiles, Instituto de Estudios Andinos - IDEAN (CONICET-UBA), Buenos Aires, Argentina
| | - Ignacio María Soto
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Biología Integral de Sistemas Evolutivos, DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Tomás Tuero
- Instituto de Ecología, Genética y Evolución de Buenos Aires - IEGEBA (CONICET-UBA), Departamento de Ecología, Genética y Evolución -DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Farnell DJJ. An Exploration of Pathologies of Multilevel Principal Components Analysis in Statistical Models of Shape. J Imaging 2022; 8:jimaging8030063. [PMID: 35324618 PMCID: PMC8950128 DOI: 10.3390/jimaging8030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
3D facial surface imaging is a useful tool in dentistry and in terms of diagnostics and treatment planning. Between-group PCA (bgPCA) is a method that has been used to analyse shapes in biological morphometrics, although various “pathologies” of bgPCA have recently been proposed. Monte Carlo (MC) simulated datasets were created here in order to explore “pathologies” of multilevel PCA (mPCA), where mPCA with two levels is equivalent to bgPCA. The first set of MC experiments involved 300 uncorrelated normally distributed variables, whereas the second set of MC experiments used correlated multivariate MC data describing 3D facial shape. We confirmed results of numerical experiments from other researchers that indicated that bgPCA (and so also mPCA) can give a false impression of strong differences in component scores between groups when there is none in reality. These spurious differences in component scores via mPCA decreased significantly as the sample sizes per group were increased. Eigenvalues via mPCA were also found to be strongly affected by imbalances in sample sizes per group, although this problem was removed by using weighted forms of covariance matrices suggested by the maximum likelihood solution of the two-level model. However, this did not solve problems of spurious differences between groups in these simulations, which was driven by very small sample sizes in one group. As a “rule of thumb” only, all of our experiments indicate that reasonable results are obtained when sample sizes per group in all groups are at least equal to the number of variables. Interestingly, the sum of all eigenvalues over both levels via mPCA scaled approximately linearly with the inverse of the sample size per group in all experiments. Finally, between-group variation was added explicitly to the MC data generation model in two experiments considered here. Results for the sum of all eigenvalues via mPCA predicted the asymptotic amount for the total amount of variance correctly in this case, whereas standard “single-level” PCA underestimated this quantity.
Collapse
Affiliation(s)
- Damian J J Farnell
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| |
Collapse
|
20
|
Cárdenas-Serna M, Jeffery N. Human semicircular canal form: Ontogenetic changes and variation of shape and size. J Anat 2022; 240:541-555. [PMID: 34674260 PMCID: PMC8819049 DOI: 10.1111/joa.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
The semicircular canals (SCCs) transduce angular acceleration of the head into neuronal signals, and their morphology has been used to infer function. Once formed, the bony labyrinth, that surrounds the canals, is tightly regulated and has a very low bone turnover. However, relaxed postnatal inhibition of bone remodelling later in ontogeny may allow for some organised adjustments of shape and size or for greater stochastic variation. In the present study, we test the hypotheses that after birth, the shape and size of the bony canal changes or becomes more variable, or both. We study microCT scans of human perinatal and adult temporal bones using a combination of geometric morphometric analysis and cross-sectional measures. Results revealed marginal differences of size (<5%), of cross-sectional shape and of measurement variability. Geometry of the three canals together and their cross-sectional areas were, however, indistinguishable between perinates and adults. These mixed findings are indicative of diminutive levels of relaxed inhibition superimposed over a constrained template of SCC morphology.
Collapse
Affiliation(s)
- Marcela Cárdenas-Serna
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Nathan Jeffery
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Surface Representation and Morphometric Analysis Based on Discrete Cosine Transform. Evol Biol 2022. [DOI: 10.1007/s11692-021-09558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Cardini A, de Jong YA, Butynski TM. Can morphotaxa be assessed with photographs? Estimating the accuracy of two-dimensional cranial geometric morphometrics for the study of threatened populations of African monkeys. Anat Rec (Hoboken) 2021; 305:1402-1434. [PMID: 34596361 PMCID: PMC9298422 DOI: 10.1002/ar.24787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022]
Abstract
The classification of most mammalian orders and families is under debate and the number of species is likely greater than currently recognized. Improving taxonomic knowledge is crucial, as biodiversity is in rapid decline. Morphology is a source of taxonomic knowledge, and geometric morphometrics applied to two dimensional (2D) photographs of anatomical structures is commonly employed for quantifying differences within and among lineages. Photographs are informative, easy to obtain, and low cost. 2D analyses, however, introduce a large source of measurement error when applied to crania and other highly three dimensional (3D) structures. To explore the potential of 2D analyses for assessing taxonomic diversity, we use patas monkeys (Erythrocebus), a genus of large, semi-terrestrial, African guenons, as a case study. By applying a range of tests to compare ventral views of adult crania measured both in 2D and 3D, we show that, despite inaccuracies accounting for up to one-fourth of individual shape differences, results in 2D almost perfectly mirror those in 3D. This apparent paradox might be explained by the small strength of covariation in the component of shape variance related to measurement error. A rigorous standardization of photographic settings and the choice of almost coplanar landmarks are likely to further improve the correspondence of 2D to 3D shapes. 2D geometric morphometrics is, thus, appropriate for taxonomic comparisons of patas ventral crania. Although it is too early to generalize, our results corroborate similar findings from previous research in mammals, and suggest that 2D shape analyses are an effective heuristic tool for morphological investigation of small differences.
Collapse
Affiliation(s)
- Andrea Cardini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy.,School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yvonne A de Jong
- Eastern Africa Primate Diversity and Conservation Program and Lolldaiga Hills Research Programme, Nanyuki, Kenya
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program and Lolldaiga Hills Research Programme, Nanyuki, Kenya
| |
Collapse
|
23
|
Thioulouse J, Renaud S, Dufour AB, Dray S. Overcoming the Spurious Groups Problem in Between-Group PCA. Evol Biol 2021. [DOI: 10.1007/s11692-021-09550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Craniofacial morphology does not support a pre-contact Carib "invasion" of the northern Caribbean. Sci Rep 2021; 11:16955. [PMID: 34417477 PMCID: PMC8379211 DOI: 10.1038/s41598-021-95558-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
|
25
|
A spectral theory for Wright's inbreeding coefficients and related quantities. PLoS Genet 2021; 17:e1009665. [PMID: 34280184 PMCID: PMC8320931 DOI: 10.1371/journal.pgen.1009665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/29/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
Wright’s inbreeding coefficient, FST, is a fundamental measure in population genetics. Assuming a predefined population subdivision, this statistic is classically used to evaluate population structure at a given genomic locus. With large numbers of loci, unsupervised approaches such as principal component analysis (PCA) have, however, become prominent in recent analyses of population structure. In this study, we describe the relationships between Wright’s inbreeding coefficients and PCA for a model of K discrete populations. Our theory provides an equivalent definition of FST based on the decomposition of the genotype matrix into between and within-population matrices. The average value of Wright’s FST over all loci included in the genotype matrix can be obtained from the PCA of the between-population matrix. Assuming that a separation condition is fulfilled and for reasonably large data sets, this value of FST approximates the proportion of genetic variation explained by the first (K − 1) principal components accurately. The new definition of FST is useful for computing inbreeding coefficients from surrogate genotypes, for example, obtained after correction of experimental artifacts or after removing adaptive genetic variation associated with environmental variables. The relationships between inbreeding coefficients and the spectrum of the genotype matrix not only allow interpretations of PCA results in terms of population genetic concepts but extend those concepts to population genetic analyses accounting for temporal, geographical and environmental contexts. Principal component analysis (PCA) is the most-frequently used approach to describe population genetic structure from large population genomic data sets. In this study, we show that PCA not only estimates ancestries of sampled individuals, but also computes the average value of Wright’s inbreeding coefficient over the loci included in the genotype matrix. Our result shows that inbreeding coefficients and PCA eigenvalues provide equivalent descriptions of population structure. As a consequence, PCA extends the definition of those coefficients beyond the framework of allelic frequencies. We give examples on how FST can be computed from ancient DNA samples for which genotypes are corrected for coverage, and in an ecological genomic example where a proportion of genetic variation is explained by environmental variables.
Collapse
|
26
|
Arias-Martorell J, Almécija S, Urciuoli A, Nakatsukasa M, Moyà-Solà S, Alba DM. A proximal radius of Barberapithecus huerzeleri from Castell de Barberà: Implications for locomotor diversity among pliopithecoids. J Hum Evol 2021; 157:103032. [PMID: 34233242 DOI: 10.1016/j.jhevol.2021.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 10/20/2022]
Abstract
Pliopithecoids are a diverse group of Miocene catarrhine primates from Eurasia. Their positional behavior is still unknown, and many species are known exclusively from dentognathic remains. Here, we describe a proximal radius (IPS66267) from the late Miocene of Castell de Barberà (Vallès-Penedès Basin, NE Iberian Peninsula) that represents the first postcranial specimen of the pliopithecoid Barberapithecus huerzeleri. A body mass estimate based on the radius is compared with dental estimates, and its morphology is compared with that of extant and fossil anthropoids by qualitative means as well as by landmark-based three-dimensional geometric morphometrics. The estimated body mass of ∼5 kg for IPS66267 closely matches the dental estimates for the (female) holotype, thereby discounting an alternative attribution to the large-bodied hominoid recorded at Castell de Barberà. In multiple features (oval and moderately tilted head with a pronounced lateral lip and a restricted articular area for the capitulum; proximodistally expanded proximal radioulnar joint; and short, robust, and anteroposteriorly compressed neck), the specimen differs from hominoids and resembles instead extant nonateline monkeys and stem catarrhines. The results of the morphometric analysis further indicate that the Barberapithecus proximal radius shows closer similarities with nonsuspensory arboreal cercopithecoids and the dendropithecid Simiolus. From a locomotor viewpoint, the radius of Barberapithecus lacks most of the features functionally related to climbing and/or suspensory behaviors and displays instead a proximal radioulnar joint that would have been particularly stable under pronation. On the other hand, the Barberapithecus radius differs from other stem catarrhines in the less anteroposteriorly compressed and less tilted radial head with a deeper capitular fovea, suggesting a somewhat enhanced mobility at the elbow joint. We conclude that pronograde arboreal quadrupedalism was the main component of the locomotor repertoire of Barberapithecus but that, similar to other crouzeliids, it might have displayed better climbing abilities than pliopithecids.
Collapse
Affiliation(s)
- Julia Arias-Martorell
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain; School of Anthropology and Conservation, Marlowe Building University of Kent, Canterbury, CT2 7NR, UK.
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Alessandro Urciuoli
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain; Unitat d'Antropologia Biològica (Departament de Biologia Animal, Biologia Vegetal i Ecologia), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
27
|
Jeffery NS, Sarver DC, Mendias CL. Ontogenetic and in silico models of spatial-packing in the hypermuscular mouse skull. J Anat 2021; 238:1284-1295. [PMID: 33438210 PMCID: PMC8128773 DOI: 10.1111/joa.13393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Networks linking single genes to multiple phenotypic outcomes can be founded on local anatomical interactions as well as on systemic factors like biochemical products. Here we explore the effects of such interactions by investigating the competing spatial demands of brain and masticatory muscle growth within the hypermuscular myostatin-deficient mouse model and in computational simulations. Mice that lacked both copies of the myostatin gene (-/-) and display gross hypermuscularity, and control mice that had both copies of the myostatin gene (+/+) were sampled at 1, 7, 14 and 28 postnatal days. A total of 48 mice were imaged with standard as well as contrast-enhanced microCT. Size metrics and landmark configurations were collected from the image data and were analysed alongside in silico models of tissue expansion. Findings revealed that: masseter muscle volume was smaller in -/- mice at day 1 but became, and remained thereafter, larger by 7 days; -/- endocranial volumes begin and remained smaller; -/- enlargement of the masticatory muscles was associated with caudolateral displacement of the calvarium, lateral displacement of the zygomatic arches, and slight dorsal deflection of the face and basicranium. Simulations revealed basicranial retroflexion (flattening) and dorsal deflection of the face associated with muscle expansion and abrogative covariations of basicranial flexion and ventral facial deflection associated with endocranial expansion. Our findings support the spatial-packing theory and highlight the importance of understanding the harmony of competing spatial demands that can shape and maintain mammalian skull architecture during ontogeny.
Collapse
Affiliation(s)
- Nathan S. Jeffery
- Institute of Life Course & Medical SciencesUniversity of LiverpoolLiverpoolUK
| | - Dylan C. Sarver
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
- School of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Christopher L. Mendias
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
- HSS Research InstituteHospital for Special SurgeryNew YorkNYUSA
| |
Collapse
|
28
|
Carlson KJ, Green DJ, Jashashvili T, Pickering TR, Heaton JL, Beaudet A, Stratford D, Crompton R, Kuman K, Bruxelles L, Clarke RJ. The pectoral girdle of StW 573 ('Little Foot') and its implications for shoulder evolution in the Hominina. J Hum Evol 2021; 158:102983. [PMID: 33888323 DOI: 10.1016/j.jhevol.2021.102983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
The ca. 3.67 Ma adult skeleton known as 'Little Foot' (StW 573), recovered from Sterkfontein Member 2 breccia in the Silberberg Grotto, is remarkable for its morphology and completeness. Preservation of clavicles and scapulae, including essentially complete right-side elements, offers opportunities to assess morphological and functional aspects of a nearly complete Australopithecus pectoral girdle. Here we describe the StW 573 pectoral girdle and offer quantitative comparisons to those of extant hominoids and selected homininans. The StW 573 pectoral girdle combines features intermediate between those of humans and other apes: a long and curved clavicle, suggesting a relatively dorsally positioned scapula; an enlarged and uniquely proportioned supraspinous fossa; a relatively cranially oriented glenoid fossa; and ape-like reinforcement of the axillary margin by a stout ventral bar. StW 573 scapulae are as follows: smaller than those of some homininans (i.e., KSD-VP-1/1 and KNM-ER 47000A), larger than others (i.e., A.L. 288-1, Sts 7, and MH2), and most similar in size to another australopith from Sterkfontein, StW 431. Moreover, StW 573 and StW 431 exhibit similar structural features along their axillary margins and inferior angles. As the StW 573 pectoral girdle (e.g., scapular configuration) has a greater affinity to that of apes-Gorilla in particular-rather than modern humans, we suggest that the StW 573 morphological pattern appears to reflect adaptations to arboreal behaviors, especially those with the hand positioned above the head, more than human-like manipulatory capabilities. When compared with less complete pectoral girdles from middle/late Miocene apes and that of the penecontemporaneous KSD-VP-1/1 (Australopithecus afarensis), and mindful of consensus views on the adaptiveness of arboreal positional behaviors soliciting abducted glenohumeral joints in early Pliocene taxa, we propose that the StW 573 pectoral girdle is a reasonable model for hypothesizing pectoral girdle configuration of the crown hominin last common ancestor.
Collapse
Affiliation(s)
- Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa.
| | - David J Green
- Department of Anatomy, Campbell University School of Osteopathic Medicine, Buies Creek, NC 27506, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Geology and Paleontology, Georgian National Museum, Tbilisi 0105, Georgia
| | - Travis R Pickering
- Department of Anthropology, University of Wisconsin, Madison, WI 53706, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum, Pretoria 0001, South Africa
| | - Jason L Heaton
- Department of Biology, Birmingham-Southern College, Birmingham, AL 35254, USA; Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa; Plio-Pleistocene Palaeontology Section, Department of Vertebrates, Ditsong National Museum, Pretoria 0001, South Africa
| | - Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa; Department of Anatomy, University of Pretoria, PO Box 2034, Pretoria 0001, South Africa
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Robin Crompton
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kathleen Kuman
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Laurent Bruxelles
- TRACES, UMR 5608 of the French National Centre for Scientific Research, Jean Jaurès University, 31058 Toulouse, France; French National Institute for Preventive Archaeological Researches (INRAP), 30900 Nîmes, France; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050 South Africa
| | - Ronald J Clarke
- Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa
| |
Collapse
|
29
|
Farnell DJJ, Richmond S, Galloway J, Zhurov AI, Pirttiniemi P, Heikkinen T, Harila V, Matthews H, Claes P. An exploration of adolescent facial shape changes with age via multilevel partial least squares regression. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105935. [PMID: 33485077 PMCID: PMC7920996 DOI: 10.1016/j.cmpb.2021.105935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/05/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Multilevel statistical models represent the existence of hierarchies or clustering within populations of subjects (or shapes in this work). This is a distinct advantage over single-level methods that do not. Multilevel partial-least squares regression (mPLSR) is used here to study facial shape changes with age during adolescence in Welsh and Finnish samples comprising males and females. METHODS 3D facial images were obtained for Welsh and Finnish male and female subjects at multiple ages from 12 to 17 years old. 1000 3D points were defined regularly for each shape by using "meshmonk" software. A three-level model was used here, including level 1 (sex/ethnicity); level 2, all "subject" variations excluding sex, ethnicity, and age; and level 3, age. The mathematical formalism of mPLSR is given in an Appendix. RESULTS Differences in facial shape between the ages of 12 and 17 predicted by mPLSR agree well with previous results of multilevel principal components analysis (mPCA); buccal fat is reduced with increasing age and features such as the nose, brow, and chin become larger and more distinct. Differences due to ethnicity and sex are also observed. Plausible simulated faces are predicted from the model for different ages, sexes and ethnicities. Our models provide good representations of the shape data by consideration of appropriate measures of model fit (RMSE and R2). CONCLUSIONS Repeat measures in our dataset for the same subject at different ages can only be modelled indirectly at the lowest level of the model at discrete ages via mPCA. By contrast, mPLSR models age explicitly as a continuous covariate, which is a strong advantage of mPLSR over mPCA. These investigations demonstrate that multivariate multilevel methods such as mPLSR can be used to describe such age-related changes for dense 3D point data. mPLSR might be of much use in future for the prediction of facial shapes for missing persons at specific ages or for simulating shapes for syndromes that affect facial shape in new subject populations.
Collapse
Affiliation(s)
- D J J Farnell
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom.
| | - S Richmond
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - J Galloway
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - A I Zhurov
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, United Kingdom
| | - P Pirttiniemi
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - T Heikkinen
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - V Harila
- Research Unit of Oral Health Sciences, Faculty of Medicine, University of Oulu, Oulu, Finland; Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, Oulu, Finland
| | - H Matthews
- Medical Imaging Research Center, UZ Leuven, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Facial Sciences Research Group, Murdoch Children's Research Institute, Melbourne; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - P Claes
- Medical Imaging Research Center, UZ Leuven, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; Department of Electrical Engineering, ESAT/PSI, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
30
|
Parametric fitting and morphometric analysis of 3D open curves based on discrete cosine transform. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00520-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Santos-Santos JH, Audenaert L, Verheyen E, Adriaens D. Ontogenetic divergence generates novel phenotypes in hybrid cichlids. J Anat 2021; 238:1116-1127. [PMID: 33417249 PMCID: PMC8053579 DOI: 10.1111/joa.13375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Hybridization is suggested to contribute to ecomorphological and taxonomic diversity in lacustrine East African cichlids. This is supported by studies demonstrating that genetic diversity within lake radiations has been influenced by hybridization events, leading to extensive phenotypic differentiation of genetically closely related species. Hybrid persistence and speciation in sympatry with gene flow can be explained by pleiotropy in traits involved in reproductive isolation; however, little attention has been given to how trait differentiation is established during hybrid ontogeny, and how this may relate to trophic and locomotor specialization. This study compares body shape changes in a Lake Victoria cichlid hybrid throughout its post-hatch ontogeny to those of its parental species. Across the considered age/size categories, hybrids occupy a distinct and intermediate morphological space, yet where several transgressive traits emerge. A between-group principal component analysis on body shapes across size categories reveals axes of shape variation exclusive to the hybrids in the youngest/smallest size categories. Shape differences in the hybrids involved morphological traits known to be implicated in trophic and locomotor specializations in the parental species. Combined, our findings suggest that phenotypic divergence in the hybrid can lead to functional differences that may potentially release them to some degree from competition with the parental species. These findings agree with recent literature that addresses the potential importance of hybridization for the unusually recent origin of the Lake Victoria cichlid super-species flock.
Collapse
Affiliation(s)
- Javier H Santos-Santos
- Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium.,Department of Biogeography and Global Change, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (MNCN-CSIC), Madrid, Spain
| | - Leen Audenaert
- OD Taxonomy and Phylogeny, Vertebrates, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Erik Verheyen
- OD Taxonomy and Phylogeny, Vertebrates, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Evolutionary Ecology Group, Biology Department, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
32
|
Urciuoli A, Zanolli C, Beaudet A, Pina M, Almécija S, Moyà-Solà S, Alba DM. A comparative analysis of the vestibular apparatus in Epipliopithecus vindobonensis: Phylogenetic implications. J Hum Evol 2021; 151:102930. [PMID: 33422741 DOI: 10.1016/j.jhevol.2020.102930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Pliopithecoids are an extinct group of catarrhine primates from the Miocene of Eurasia. More than 50 years ago, they were linked to hylobatids due to some morphological similarities, but most subsequent studies have supported a stem catarrhine status, due to the retention of multiple plesiomorphic features (e.g., the ectotympanic morphology) relative to crown catarrhines. More recently, some morphological similarities to hominoids have been noted, raising the question of whether they could be stem members of this clade. To re-evaluate these competing hypotheses, we examine the morphology of the semicircular canals of the bony labyrinth of the middle Miocene pliopithecid Epipliopithecus vindobonensis. The semicircular canals are suitable to test between these hypotheses because (1) they have been shown to embed strong phylogenetic signal and reliably discriminate among major clades; (2) several potential hominoid synapomorphies have been identified previously in the semicircular canals; and (3) semicircular canal morphology has not been previously described for any pliopithecoid. We use a deformation-based (landmark-free) three-dimensional geometric morphometric approach to compare Epipliopithecus with a broad primate sample of extant and extinct anthropoids. We quantify similarities in semicircular canal morphology using multivariate analyses, reconstruct ancestral morphotypes by means of a phylomorphospace approach, and identify catarrhine and hominoid synapomorphies based on discrete characters. Epipliopithecus semicircular canal morphology most closely resembles that of platyrrhines and Aegyptopithecus due to the retention of multiple anthropoid symplesiomorphies. However, Epipliopithecus is most parsimoniously interpreted as a stem catarrhine more derived than Aegyptopithecus due to the possession of a crown catarrhine synapomorphy (i.e., the rounded anterior canal), combined with the lack of other catarrhine and any hominoid synapomorphies. Some similarities with hylobatids and atelids are interpreted as homoplasies likely related to positional behavior. The semicircular canal morphology of Epipliopithecus thus supports the common view that pliopithecoids are stem catarrhines.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600, Pessac, France
| | - Amélie Beaudet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa; Department of Anatomy, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| | - Marta Pina
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, 176 Oxford Road, Manchester, M13 9PL, UK
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, Central Park West at 79(th) Street, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain; Unitat d'Antropologia (Departament de Biologia Animal, Biologia Vegetal i Ecologia), Universitat Autònoma de Barcelona, Campus de la UAB s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
33
|
Evin A, Bonhomme V, Claude J. Optimizing digitalization effort in morphometrics. Biol Methods Protoc 2020; 5:bpaa023. [PMID: 33324759 PMCID: PMC7723759 DOI: 10.1093/biomethods/bpaa023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
Quantifying phenotypes is a common practice for addressing questions regarding morphological variation. The time dedicated to data acquisition can vary greatly depending on methods and on the required quantity of information. Optimizing digitization effort can be done either by pooling datasets among users, by automatizing data collection, or by reducing the number of measurements. Pooling datasets among users is not without risk since potential errors arising from multiple operators in data acquisition prevent combining morphometric datasets. We present an analytical workflow to estimate within and among operator biases and to assess whether morphometric datasets can be pooled. We show that pooling and sharing data requires careful examination of the errors occurring during data acquisition, that the choice of morphometric approach influences amount of error, and that in some cases pooling data should be avoided. The demonstration is based on a worked example (Sus scrofa teeth) using a combinations of 18 morphometric approaches and datasets for which we identified and quantified several potential sources of errors in the workflow. We show that it is possible to estimate the analytical power of a study using a small subset of data to select the best morphometric protocol and to optimize the number of variables necessary for analysis. In particular, we focus on semi-landmarks, which often produce an inflation of variables in contrast to the number of available observations use in statistical testing. We show how the workflow can be used for optimizing digitization efforts and provide recommendations for best practices in error management.
Collapse
Affiliation(s)
- Allowen Evin
- Institut des Sciences de l'Evolution-Montpellier, UMR 5554-ISEM, CNRS, Université de Montpellier, IRD, EPHE, 2 place Eugène Bataillon, CC065, 34095 Montpellier Cedex 5, France
| | - Vincent Bonhomme
- Institut des Sciences de l'Evolution-Montpellier, UMR 5554-ISEM, CNRS, Université de Montpellier, IRD, EPHE, 2 place Eugène Bataillon, CC065, 34095 Montpellier Cedex 5, France
| | - Julien Claude
- Institut des Sciences de l'Evolution-Montpellier, UMR 5554-ISEM, CNRS, Université de Montpellier, IRD, EPHE, 2 place Eugène Bataillon, CC065, 34095 Montpellier Cedex 5, France
| |
Collapse
|
34
|
Farnell DJJ, Khor C, Ayre WN, Doyle Z, Chadwick EA. Initial Investigations of the Cranial Size and Shape of Adult Eurasian Otters ( Lutra lutra) in Great Britain. J Imaging 2020; 6:106. [PMID: 34460547 PMCID: PMC8321200 DOI: 10.3390/jimaging6100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional (3D) surface scans were carried out in order to determine the shapes of the upper sections of (skeletal) crania of adult Eurasian otters (Lutra lutra) from Great Britain. Landmark points were placed on these shapes using a graphical user interface (GUI) and distance measurements (i.e., the length, height, and width of the crania) were found by using the landmark points. Male otters had significantly larger skulls than females (P < 0.001). Differences in size also occurred by geographical area in Great Britain (P < 0.05). Multilevel Principal Components Analysis (mPCA) indicated that sex and geographical area explained 31.1% and 9.6% of shape variation in "unscaled" shape data and that they explained 17.2% and 9.7% of variation in "scaled" data. The first mode of variation at level 1 (sex) correctly reflected size changes between males and females for "unscaled" shape data. Modes at level 2 (geographical area) also showed possible changes in size and shape. Clustering by sex and geographical area was observed in standardized component scores. Such clustering in a cranial shape by geographical area might reflect genetic differences in otter populations in Great Britain, although other potentially confounding factors (e.g., population age-structure, diet, etc.) might also drive regional differences. This work provides a successful first test of the effectiveness of 3D surface scans and multivariate methods, such as mPCA, to study the cranial morphology of otters.
Collapse
Affiliation(s)
- Damian J. J. Farnell
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (C.K.); (W.N.A.); (E.A.C.)
| | - Chern Khor
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (C.K.); (W.N.A.); (E.A.C.)
| | - Wayne Nishio Ayre
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (C.K.); (W.N.A.); (E.A.C.)
| | - Zoe Doyle
- School of Biosciences, Cardiff University, Heath Park, Cardiff CF10 3AX, UK;
| | - Elizabeth A. Chadwick
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, UK; (C.K.); (W.N.A.); (E.A.C.)
| |
Collapse
|
35
|
Pan L, Dumoncel J, Mazurier A, Zanolli C. Hominin diversity in East Asia during the Middle Pleistocene: A premolar endostructural perspective. J Hum Evol 2020; 148:102888. [PMID: 33039881 DOI: 10.1016/j.jhevol.2020.102888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
Following the recent studies of East Asian mid-Middle to early Late Pleistocene hominin material, a large spectrum of morphological diversity has been recognized and the coexistence of archaic ('Homo erectus-like') and derived ('modern-like') dental morphological patterns has been highlighted. In fact, for most of these Chinese fossils, generally categorized as 'archaic Homo sapiens' or 'post-H. erectus Homo', the taxonomic attribution is a matter of contention. With the help of μCT techniques and a deformation-based 3D geometric morphometric approach, we focused on the morphological variation in the enamel-dentine junction (EDJ) of 18 upper and lower premolars from Chinese Middle Pleistocene hominins. We then compared our results with a number of fossil and modern human groups, including Early Pleistocene H. erectus from Sangiran; late Early Pleistocene hominins from Tighenif, Algeria; classic Neanderthals; and modern humans. Our results highlight an evolutionary/chronological trend of crown base reduction, elevation of EDJ topography, and EDJ surface simplification in the hominin groups studied here. Moreover, this study brings insights to the taxonomy/phylogeny of 6 late Middle Pleistocene specimens whose evolutionary placement has been debated for decades. Among these specimens, Changyang premolars show features that can be aligned with the Asian H. erectus hypodigm, whereas Panxian Dadong and Tongzi premolars are more similar to Late Pleistocene Homo. Compared with early to mid-Middle Pleistocene hominins in East Asia, late Middle Pleistocene hominins evince an enlarged morphological variation. A persistence of archaic morphotypes and possible admixture among populations during the late Middle Pleistocene are discussed.
Collapse
Affiliation(s)
- Lei Pan
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing, China; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Jean Dumoncel
- Laboratoire AMIS, UMR 5288 CNRS, Université Toulouse III, Paul Sabatier, France
| | - Arnaud Mazurier
- Institut de Chimie des Milieux et Matériaux, UMR 7285 CNRS, Université de Poitiers, 86073, Poitiers, France
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France.
| |
Collapse
|
36
|
Galeta P, Lázničková-Galetová M, Sablin M, Germonpré M. Morphological evidence for early dog domestication in the European Pleistocene: New evidence from a randomization approach to group differences. Anat Rec (Hoboken) 2020; 304:42-62. [PMID: 32869467 DOI: 10.1002/ar.24500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022]
Abstract
The antiquity of the wolf/dog domestication has been recently pushed back in time from the Late Upper Paleolithic (~14,000 years ago) to the Early Upper Paleolithic (EUP; ~36,000 years ago). Some authors questioned this early dog domestication claiming that the putative (EUP) Paleolithic dogs fall within the morphological range of recent wolves. In this study, we reanalyzed a data set of large canid skulls using unbalanced- and balanced-randomized discriminant analyses to assess whether the putative Paleolithic dogs are morphologically unique or whether they represent a subsample of the wolf morpho-population. We evaluated morphological differences between 96 specimens of the 4 a priori reference groups (8 putative Paleolithic dogs, 41 recent northern dogs, 7 Pleistocene wolves, and 40 recent northern wolves) using discriminant analysis based on 5 ln-transformed raw and allometrically size-adjusted cranial measurements. Putative Paleolithic dogs are classified with high accuracies (87.5 and 100.0%, cross-validated) and randomization experiment suggests that these classification rates cannot be exclusively explained by the small and uneven sample sizes of reference groups. It indicates that putative Upper Paleolithic dogs may represent a discrete canid group with morphological signs of domestication (a relatively shorter skull and wider palate and braincase) that distinguish them from sympatric Pleistocene wolves. The present results add evidence to the view that these specimens could represent incipient Paleolithic dogs that were involved in daily activities of European Upper Paleolithic forager groups.
Collapse
Affiliation(s)
- Patrik Galeta
- Department of Anthropology, University of West Bohemia, Pilsen, Czech Republic
| | - Martina Lázničková-Galetová
- Department of Anthropology, University of West Bohemia, Pilsen, Czech Republic.,The Moravian Museum, Brno, Czech Republic
| | - Mikhail Sablin
- Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Mietje Germonpré
- Operational Direction "Earth and History of Life", Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
37
|
Godinho RM, O'Higgins P, Gonçalves C. Assessing the reliability of virtual reconstruction of mandibles. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:723-734. [DOI: 10.1002/ajpa.24095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/02/2020] [Accepted: 05/15/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Ricardo Miguel Godinho
- Faculdade das Ciências Humanas e SociaisInterdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), University of Algarve Faro Portugal
| | - Paul O'Higgins
- PalaeoHub, Department of Archaeology and Hull York Medical SchoolUniversity of York York UK
- Center for Forensic AnthropologyThe University of Western Australia Australia
| | - Célia Gonçalves
- Faculdade das Ciências Humanas e SociaisInterdisciplinary Center for Archaeology and Evolution of Human Behaviour (ICArHEB), University of Algarve Faro Portugal
| |
Collapse
|
38
|
Cardini A. Modern morphometrics and the study of population differences: Good data behind clever analyses and cool pictures? Anat Rec (Hoboken) 2020; 303:2747-2765. [PMID: 32220106 DOI: 10.1002/ar.24397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
The study of phenotypic variation in time and space is central to evolutionary biology. Modern geometric morphometrics is the leading family of methods for the quantitative analysis of biological forms. This set of techniques relies heavily on technological innovation for data acquisition, often in the form of 2D or 3D digital images, and on powerful multivariate statistical tools for their analysis. However, neither the most sophisticated device for computerized imaging nor the best statistical test can produce accurate, robust and reproducible results, if it is not based on really good samples and an appropriate use of the 'measurements' extracted from the data. Using examples mostly from my own work on mammal craniofacial variation and museum specimens, I will show how easy it is to forget these most basic assumptions, while focusing heavily on analytical and visualization methods, and much less on the data that generate potentially powerful analyses and visually appealing diagrams.
Collapse
Affiliation(s)
- Andrea Cardini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy.,School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
39
|
|