1
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
2
|
Wagner R, Eckstein SS, Fritsche L, Prystupa K, Hörber S, Häring HU, Birkenfeld AL, Peter A, Fritsche A, Heni M. Postprandial Dynamics of Proglucagon Cleavage Products and Their Relation to Metabolic Health. Front Endocrinol (Lausanne) 2022; 13:892677. [PMID: 35872982 PMCID: PMC9297683 DOI: 10.3389/fendo.2022.892677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION While oral glucose ingestion typically leads to a decrease in circulating glucagon levels, a substantial number of persons display stable or rising glucagon concentrations when assessed by radioimmunoassay (RIA). However, these assays show cross-reactivity to other proglucagon cleavage products. Recently, more specific assays became available, therefore we systematically assessed glucagon and other proglucagon cleavage products and their relation to metabolic health. RESEARCH DESIGN AND METHODS We used samples from 52 oral glucose tolerance tests (OGTT) that were randomly selected from persons with different categories of glucose tolerance in an extensively phenotyped study cohort. RESULTS Glucagon concentrations quantified with RIA were non-suppressed at 2 hours of the OGTT in 36% of the samples. Non-suppressors showed lower fasting glucagon levels compared to suppressors (p=0.011). Similar to RIA measurements, ELISA-derived fasting glucagon was lower in non-suppressors (p<0.001). Glucagon 1-61 as well as glicentin and GLP-1 kinetics were significantly different between suppressors and non-suppressors (p=0.004, p=0.002, p=0.008 respectively) with higher concentrations of all three hormones in non-suppressors. Levels of insulin, C-peptide, and free fatty acids were comparable between groups. Non-suppressors were leaner and had lower plasma glucose concentrations (p=0.03 and p=0.047, respectively). Despite comparable liver fat content and insulin sensitivity (p≥0.3), they had lower 2-hour post-challenge glucose (p=0.01). CONCLUSIONS Glucagon 1-61, glicentin and GLP-1 partially account for RIA-derived glucagon measurements due to cross-reactivity of the assay. However, this contribution is small, since the investigated proglucagon cleavage products contribute less than 10% to the variation in RIA measured glucagon. Altered glucagon levels and higher post-challenge incretins are associated with a healthier metabolic phenotype.
Collapse
Affiliation(s)
- Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich-Heine University, Düsseldorf, Germany
| | - Sabine S. Eckstein
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Louise Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Katsiaryna Prystupa
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sebastian Hörber
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas L. Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
- *Correspondence: Martin Heni,
| |
Collapse
|
3
|
Hansen MS, Frost M. Alliances of the gut and bone axis. Semin Cell Dev Biol 2021; 123:74-81. [PMID: 34303607 DOI: 10.1016/j.semcdb.2021.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Gut hormones secreted from enteroendocrine cells following nutrient ingestion modulate metabolic processes including glucose homeostasis and food intake, and several of these gut hormones are involved in the regulation of the energy demanding process of bone remodelling. Here, we review the gut hormones considered or known to be involved in the gut-bone crosstalk and their role in orchestrating adaptions of bone formation and resorption as demonstrated in cellular and physiological experiments and clinical trials. Understanding the physiology and pathophysiology of the gut-bone axis may identify adverse effects of investigational drugs aimed to treat metabolic diseases such as type 2 diabetes and obesity and new therapeutic candidates for the treatment of bone diseases.
Collapse
Affiliation(s)
- Morten Steen Hansen
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Morten Frost
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark.
| |
Collapse
|
4
|
Theilade S, Christensen MB, Vilsbøll T, Knop FK. An overview of obesity mechanisms in humans: Endocrine regulation of food intake, eating behaviour and common determinants of body weight. Diabetes Obes Metab 2021; 23 Suppl 1:17-35. [PMID: 33621414 DOI: 10.1111/dom.14270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Obesity is one of the biggest health challenges of the 21st century, already affecting close to 700 million people worldwide, debilitating and shortening lives and costing billions of pounds in healthcare costs and loss of workability. Body weight homeostasis relies on complex biological mechanisms and the development of obesity occurs on a background of genetic susceptibility and an environment promoting increased caloric intake and reduced physical activity. The pathophysiology of common obesity links neuro-endocrine and metabolic disturbances with behavioural changes, genetics, epigenetics and cultural habits. Also, specific causes of obesity exist, including monogenetic diseases and iatrogenic causes. In this review, we provide an overview of obesity mechanisms in humans with a focus on energy homeostasis, endocrine regulation of food intake and eating behavior, as well as the most common specific causes of obesity.
Collapse
Affiliation(s)
- Simone Theilade
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Koliaki C, Liatis S, Dalamaga M, Kokkinos A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr Obes Rep 2020; 9:255-271. [PMID: 32647952 DOI: 10.1007/s13679-020-00396-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review provides an update on the role of gut hormones and their interactions in the regulation of energy homeostasis, describes gut hormone adaptations in obesity and in response to weight loss, and summarizes the current evidence on the role of gut hormone-based therapies for obesity treatment. RECENT FINDINGS Gut hormones play a key role in regulating eating behaviour, energy and glucose homeostasis. Dysregulated gut hormone responses have been proposed to be pathogenetically involved in the development and perpetuation of obesity. Summarizing the major gut hormone changes in obesity, obese individuals are characterized by blunted postprandial ghrelin suppression, loss of premeal ghrelin peaks, impaired diurnal ghrelin variability and reduced fasting and postprandial levels of anorexigenic peptides. Adaptive alterations of gut hormone levels are implicated in weight regain, thus complicating hypocaloric dietary interventions, and can further explain the profound weight loss and metabolic improvement following bariatric surgery. A plethora of compounds mimicking gut hormone changes after bariatric surgery are currently under investigation, introducing a new era in the pharmacotherapy of obesity. The current trend is to combine different gut hormone receptor agonists and target multiple systems simultaneously, in order to replicate as closely as possible the gut hormone milieu after bariatric surgery and circumvent the counter-regulatory adaptive changes associated with dietary energy restriction. An increasing number of preclinical and early-phase clinical trials reveal the additive benefits obtained with dual or triple gut peptide receptor agonists in reducing body weight and improving glycaemia. Gut hormones act as potent regulators of energy and glucose homeostasis. Therapeutic strategies targeting their levels or receptors emerge as a promising approach to treat patients with obesity and hyperglycaemia.
Collapse
Affiliation(s)
- Chrysi Koliaki
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece.
| | - Stavros Liatis
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National Kapodistrian University of Athens, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
6
|
Moffett RC, Docherty NG, le Roux CW. The altered enteroendocrine reportoire following roux-en-Y-gastric bypass as an effector of weight loss and improved glycaemic control. Appetite 2020; 156:104807. [PMID: 32871202 DOI: 10.1016/j.appet.2020.104807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
The alarming rise in obesity and relative lack of pharmacotherapies to treat, what is becoming a global epidemic, has necessitated that an increasing number of bariatric procedures be performed. Several surgical techniques have been developed during the last 50 years and the advent of laparoscopic surgery has increased the safety and efficacy of these procedures. Bariatric surgery is by a substantial margin, the most efficacious means of achieving sustained weight loss maintenance in patients with obesity. Roux-en-Y gastric bypass surgery (RYGB) elicits the most favourable metabolic outcomes with attendant benefits for type 2 diabetes and, cardiovascular disease as well as endocrine disorders and cancers in females. RYGB is the most extensively studied bariatric procedure regarding mechanism of action. In this review we catalogue the multiple alterations in secretion of gut hormones (ghrelin, obestatin, cholecystokinin, GLP-1, PYY, GIP, oxyntomodulin, glicentin and GLP-2) occurring after RYGB and summarise evidence indicating that these changes play a role in the reduction of food intake and improvements in glucose homeostasis.
Collapse
Affiliation(s)
- R Charlotte Moffett
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, UK.
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Ireland; Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Carel W le Roux
- Diabetes Complications Research Centre, Conway Institute, School of Medicine, University College Dublin, Ireland; Investigative Science, Imperial College London, UK
| |
Collapse
|
7
|
Biobaku F, Ghanim H, Monte SV, Caruana JA, Dandona P. Bariatric Surgery: Remission of Inflammation, Cardiometabolic Benefits, and Common Adverse Effects. J Endocr Soc 2020; 4:bvaa049. [PMID: 32775937 PMCID: PMC7402590 DOI: 10.1210/jendso/bvaa049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with increased mortality as a result of several comorbidities which occur in tandem with the obese state. Chronic inflammation is well documented in obesity, and evidence from numerous studies support the notion that the increased inflammation in individuals with obesity accentuates the comorbidities seen in this condition. The remission of comorbidities such as metabolic, cardiovascular, and neurological complications occurs following bariatric procedures. Bariatric surgery significantly reduces mortality and results in remarkable weight loss and reversal in several obesity-related comorbidities. There is indisputable evidence that the resolution of inflammation that occurs after bariatric surgery mitigates some of these comorbidities. With the increasing use of bariatric surgery for the treatment of severe obesity, it is pivotal to elucidate the underlying mechanisms responsible for the notable improvements seen after the procedure. This review summarizes underlying mechanisms responsible for the remission of obesity-related abnormalities and discusses the common adverse effects of bariatric surgery. Well-stratified, large-scale studies are still needed for a proper evaluation of these underlying mechanisms.
Collapse
Affiliation(s)
- Fatimo Biobaku
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, New York
| | - Husam Ghanim
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, New York
| | - Scott V Monte
- Synergy Bariatrics (Erie County Medical Center), Williamsville, NY
| | - Joseph A Caruana
- Synergy Bariatrics (Erie County Medical Center), Williamsville, NY
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, New York
| |
Collapse
|
8
|
Aznar FD, Aznar FD, Lauris JR, Chaim EA, Cazzo E, Sales-Peres SHDC. DENTAL WEAR AND TOOTH LOSS IN MORBID OBESE PATIENTS AFTER BARIATRIC SURGERY. ACTA ACUST UNITED AC 2019; 32:e1458. [PMID: 31826085 PMCID: PMC6902887 DOI: 10.1590/0102-672020190001e1458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity and its surgical treatment have been related with oral diseases. Aim: To evaluate and compare dental wear and dental loss in eutrophic and morbidly obese patients submitted to Roux-en-Y gastric bypass. METHOD Observational and analytical study with gender and age matching. The sample consisted of 240 patients, divided into four groups: eutrophic (GC=60), morbidly obese (GO=60), operated with up to 24 months (G24=60) and operated on for more than 36 months (G36=60). The following variables were analyzed: race, schooling, economic class, hypertension, diabetes, triglycerides, cholesterol, BMI, weight loss, waist-hip ratio, smoking, alcoholism, tooth loss and tooth wear. RESULTS GO presented lower economic class (p=0.012), hypertension (p<0.001), diabetes (p<0.001), cholesterol (p=0.001), BMI (p<0.001), waist-hip ratio (p<0.001) and percentage of weight loss percent (p<0.001) than groups G24 and G36. Dental wear was higher among the II and V sextants. CONCLUSION Individuals submitted to Roux-en-Y gastric bypass, regardless of the surgery period, presented more dental wear on the incisal/occlusal surfaces, and the anterior teeth were the most affected. Dental wear was associated with age and number of missing teeth.
Collapse
Affiliation(s)
- Fabiano Duarte Aznar
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Faculty of Dentistry of Bauru, University of São Paulo, Bauru, SP; Brazil
| | - Fabio D Aznar
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Faculty of Dentistry of Bauru, University of São Paulo, Bauru, SP; Brazil
| | - José R Lauris
- Department of Pediatric Dentistry, Orthodontics and Collective Health, Faculty of Dentistry of Bauru, University of São Paulo, Bauru, SP; Brazil
| | - Elinton Adami Chaim
- Department of Surgery, Faculty of Medicine, University of Campinas, Campinas, SP, Brazil
| | - Everton Cazzo
- Department of Surgery, Faculty of Medicine, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
9
|
Perakakis N, Kokkinos A, Peradze N, Tentolouris N, Ghaly W, Pilitsi E, Upadhyay J, Alexandrou A, Mantzoros CS. Circulating levels of gastrointestinal hormones in response to the most common types of bariatric surgery and predictive value for weight loss over one year: Evidence from two independent trials. Metabolism 2019; 101:153997. [PMID: 31672446 DOI: 10.1016/j.metabol.2019.153997] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
Abstract
AIMS Bariatric surgery leads to profound and sustainable weight loss. Gastrointestinal hormones are involved in energy and glucose homeostasis, thus postoperative changes of their circulating levels may be mediating future weight loss. To investigate how the circulating concentrations of gastrointestinal hormones change in response to the most common types of bariatric operation and whether these changes can predict future weight loss. MATERIALS AND METHODS We measured circulating GLP-1, GLP-2, oxyntomodulin, glicentin, glucagon, major proglucagon fragment (MPGF), ghrelin, GIP, PYY after overnight fasting and/or after a mixed meal test (MMT) in: a) 14 subjects that have undergone either an adjustable gastric banding [AGB] (n = 9) or a Roux-en-Y bypass (RYGB) (n = 5) (Pilot study 1), b) 28 subjects that have undergone either a vertical sleeve gastrectomy (n = 17) or a RYGB (n = 11) before and three, six and twelve months after surgery. RESULTS In addition to the expected associations with GLP-1, the most robust increases were observed in postprandial levels of oxyntomodulin and glicentin three months after VSG or RYGB (but not after AGB) and are associated with degree of weight loss. Oxyntomodulin and glicentin levels at the third and sixth month postoperative visit are positively associated with feeling of satiety which may be underlying the observed associations with future weight loss. CONCLUSION Beyond GLP-1, early postprandial changes in circulating oxyntomodulin and glicentin are predictors of weight loss after bariatric surgery, possibly through regulation of satiety. Further studies should focus on underlying mechanisms, and their potential as attractive therapeutic tools against obesity and related comorbidities.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Natia Peradze
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Physiology, Fayoum University, Fayoum, Egypt
| | - Eleni Pilitsi
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jagriti Upadhyay
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andreas Alexandrou
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, 150 South Huntington Avenue, Boston, MA 02130, USA
| |
Collapse
|
10
|
Kokkinos A, Tsilingiris D, le Roux CW, Rubino F, Mantzoros CS. Will medications that mimic gut hormones or target their receptors eventually replace bariatric surgery? Metabolism 2019; 100:153960. [PMID: 31412266 DOI: 10.1016/j.metabol.2019.153960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Bariatric surgery is currently the most effective therapeutic modality through which sustained beneficial effects on weight loss and metabolic improvement are achieved. During recent years, indications for bariatric surgery have been expanded to include cases of poorly controlled type 2 (T2DM) diabetes mellitus in lesser extremes of body weight. A spectrum of the beneficial effects of surgery is attributed to robust changes of postprandial gut peptide responses that are observed post operatively. Consolidated knowledge regarding gut peptide physiology as well as emerging new evidence shedding light on the mode of action of previously overlooked gut hormones provide appealing potential obesity and T2DM therapeutic perspectives. The accumulation of evidence from the effect of exogenous administration of native gut peptides alone or in combinations to humans as well as the development of mimetic agents exerting agonistic effects on combinations of gut hormone receptors pave the way for future integrated gut peptide-based treatments, which may mimic the effects of bariatric surgery.
Collapse
Affiliation(s)
- Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece.
| | - Dimitrios Tsilingiris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Francesco Rubino
- Department of Metabolic and Bariatric Surgery, Diabetes and Nutritional Science Division, King's College Hospital, London, United Kingdom
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
11
|
Murata M, Adachi H, Nakade T, Oshima S. Glucagon secretion determined by the RIA method is lower in patients with low left ventricular ejection fraction: The new glass study. Diabetes Res Clin Pract 2018; 144:260-269. [PMID: 30213772 DOI: 10.1016/j.diabres.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
AIMS We investigated the glucagon levels in patients with heart failure (HF), using long oral glucose tolerance test (OGTT). METHODS In this prospective observational study, we enrolled 30 undiagnosed diabetes patients (age 69 ± 10 years, 70% males, HbA1c 43 mmol/mol). A 4-h OGTT was performed. Glucose, insulin, and glucagon (radioimmunoassay [RIA] and sandwich ELISA [S-W] methods) were evaluated during 4-h. We compared glucagon levels between HF and non-HF patients. RESULTS There were 11 HF and 19 non-HF patients. In patients with HF, glucagon (S-W) during 4-h was lower than in patients without HF, with no significant difference. The area under the curve (AUC) of glucagon (RIA) during 4-h was significantly lower among HF patients. Moreover, in patients with reduced left ventricular ejection fraction (LVEF) (<40%), AUC glucagon (RIA) was significantly lower than in patients with non-reduced EF (≥40%). However, there was no difference in glucagon values between the high E/e' (≥13.0) and low E/e' (<13.0) groups. CONCLUSIONS Although glucagon (S-W) showed no significant difference in patients with and without HF, especially reduced LVEF, glucagon (RIA) secretion was significantly lower in HF patients than in patients without HF. It is suggested that low glucagon secretion might be correlated with low EF.
Collapse
Affiliation(s)
- Makoto Murata
- Gunma Prefectural Cardiovascular Center, Department of Cardiology, 3-12 Kameizumimachi, Maebashi, Gunma 371-0004, Japan.
| | - Hitoshi Adachi
- Gunma Prefectural Cardiovascular Center, Department of Cardiology, 3-12 Kameizumimachi, Maebashi, Gunma 371-0004, Japan.
| | - Taishuke Nakade
- Gunma Prefectural Cardiovascular Center, Department of Cardiology, 3-12 Kameizumimachi, Maebashi, Gunma 371-0004, Japan.
| | - Shigeru Oshima
- Gunma Prefectural Cardiovascular Center, Department of Cardiology, 3-12 Kameizumimachi, Maebashi, Gunma 371-0004, Japan.
| |
Collapse
|
12
|
Fasting levels of glicentin are higher in Roux-en-Y gastric bypass patients exhibiting postprandial hypoglycemia during a meal test. Surg Obes Relat Dis 2018; 14:929-935. [DOI: 10.1016/j.soard.2018.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
|
13
|
Raffort J, Lareyre F, Massalou D, Fénichel P, Panaïa-Ferrari P, Chinetti G. Insights on glicentin, a promising peptide of the proglucagon family. Biochem Med (Zagreb) 2017; 27:308-324. [PMID: 28736498 PMCID: PMC5508206 DOI: 10.11613/bm.2017.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022] Open
Abstract
Glicentin is a proglucagon-derived peptide mainly produced in the L-intestinal cells. While the roles of other members of the proglucagon family including glucagon-like peptide 1, glucagon-like peptide 2 and oxyntomodulin has been well studied, the functions and variation of glicentin in human are not fully understood. Experimental and clinical studies have highlighted its role in both intestinal physiology and glucose metabolism, pointing to its potential interest in a wide range of pathological states including gastrointestinal and metabolic disorders. Due to its structure presenting many similarities with the other proglucagon-derived peptides, its measurement is technically challenging. The recent commercialization of specific detection methods has offered new opportunities to go further in the understanding of glicentin physiology. Here we summarize the current knowledge on glicentin biogenesis and physiological roles. In the limelight of clinical studies investigating glicentin variation in human, we discuss future directions for potential applications in clinical practice.
Collapse
Affiliation(s)
- Juliette Raffort
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France.,Université Côte d'Azur, Institute for Research on Cancer and Aging, Nice, France
| | - Fabien Lareyre
- Université Côte d'Azur, Institute for Research on Cancer and Aging, Nice, France.,Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Damien Massalou
- Department of General Surgery and Digestive Cancerology, University Hospital of Nice, Nice, France
| | - Patrick Fénichel
- Department of Endocrinology, University Hospital of Nice, Nice, France
| | - Patricia Panaïa-Ferrari
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France.,Université Côte d'Azur, Institute for Research on Cancer and Aging, Nice, France
| | - Giulia Chinetti
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France.,Université Côte d'Azur, Institute for Research on Cancer and Aging, Nice, France
| |
Collapse
|