1
|
Xian Y, Wu Y, He M, Cheng J, Lv X, Ren Y. Sleeve Gastrectomy Attenuates the Severity of Cerulein-Induced Acute Pancreatitis in Obese Rats. Obes Surg 2021; 31:4107-4117. [PMID: 34152559 DOI: 10.1007/s11695-021-05521-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/27/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Obesity is one of the most important risk factors for acute pancreatitis. Based on the effect of sleeve gastrectomy (SG) on improving body weight and blood lipids, we investigated whether SG is beneficial in improving pancreatitis in obese rats. MATERIALS AND METHODS Two studies were used to evaluate the effect of SG on the first onset of pancreatitis and acute episodes of recurrent pancreatitis in obese rats. A high-fat diet (HFD) for 8 weeks resulted in obesity in rats. Study 1: Obese rats were treated with SG and sham surgery. Pancreatitis was induced by intraperitoneal injection of cerulein at 6 weeks after surgery. The severity of pancreatitis was assessed by histological examination, cytokines, and infiltration of inflammatory cells. Study 2 performed the same procedure as in study 1, except that rats were intraperitoneally injected with a small dose of cerulein three times a week for 6 weeks before surgery to induce recurrent pancreatitis. RESULTS The body weight, food intake, and blood lipids of SG rats in study 1 and study 2 were significantly lower than those of sham rats during the 6 weeks after surgery. Compared with sham rats, SG rats in both studies had fewer inflammatory cytokines, inflammatory cell infiltration, and pathological injury in the pancreas after cerulein-induced acute pancreatitis. CONCLUSION SG reduces the severity of the first onset of pancreatitis and the seriousness of acute episodes of recurrent pancreatitis. The improvement of lipid metabolism and body weight by SG may play an important role in this effect.
Collapse
Affiliation(s)
- Yin Xian
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.,Nanchong Psychosomatic Hospital, Nanchong, 637000, People's Republic of China
| | - Yi Wu
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Ming He
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Junming Cheng
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Xiaodong Lv
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Yixing Ren
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
| |
Collapse
|
2
|
He X, Qi Z, Hou H, Gao J, Zhang XX. Effects of chronic cadmium exposure at food limitation-relevant levels on energy metabolism in mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121791. [PMID: 31818666 DOI: 10.1016/j.jhazmat.2019.121791] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) exposure has been implicated in the perturbation of energy metabolism and the development of cardiometabolic disease, but disease predisposition from chronic low-dose Cd exposure remains unclear. This study employed a mouse model to investigate the toxic effects of chronic Cd exposure at food limitation-relevant levels on energy metabolism and the associated liver and gut microbiome functions. Results showed that the Cd exposure induced the perturbation of energy metabolism in mice, evidenced by the alteration of various metabolites associated with the phosphorogen (adenosine triphosphate-creatine phosphate) system, tricarboxylic acid cycle, and lipid metabolism, as well as the increase of the cardiometabolic risk factor, triglyceride. Moreover, both liver and gut microbiome underwent marked structural/histological and functional alterations, prone to the onset of cardiometabolic disease following the Cd exposure. Certain hepatic transcription factors and gut microbes, specifically PPARα, SREBP1c, HNF4A and the Clostridiales_vadinBB60_group, were identified to be highly correlated with altered urinary metabolites, revealing potential toxicological interactions between the liver and gut microbiome, and energy metabolism. Our findings provide new insights into the progression of metabolic diseases induced by Cd exposure. We also propose a stricter Cd limitation in future food safety standards.
Collapse
Affiliation(s)
- Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaodong Qi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Hou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Tessier R, Ribeiro-Parenti L, Bruneau O, Khodorova N, Cavin JB, Bado A, Azzout-Marniche D, Calvez J, Le Gall M, Gaudichon C. Effect of different bariatric surgeries on dietary protein bioavailability in rats. Am J Physiol Gastrointest Liver Physiol 2019; 317:G592-G601. [PMID: 31460792 DOI: 10.1152/ajpgi.00142.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bariatric surgery may induce protein malabsorption, although data are scarce. This study aims at evaluating dietary protein bioavailability after different bariatric surgeries in rats. Diet-induced obese Wistar rats were operated for vertical sleeve gastrectomy (VSG) or Roux-en-Y gastric bypass (RYGB). The control group was composed of pair-fed, sham-operated rats (Sham). Two weeks after surgery, rats were fed a 15N protein meal. Protein bioavailability was assessed by determination of 15N recovery in the gastrointestinal tract and organs 6 h after the meal. Fractional protein synthesis rate (FSR) was assessed using a flooding dose of 13C valine. Weight loss was the highest in RYGB rats and the lowest in Sham rats. Surprisingly, RYGB (95.6 ± 0.7%) improved protein digestibility (P = 0.045) compared with Sham (93.5 ± 0.5%) and VSG (93.8 ± 0.6%). In contrast, 15N retained in the liver (P = 0.001) and plasma protein (P = 0.037) was lower than in Sham, with a similar trend in muscle (P = 0.052). FSR was little altered by bariatric surgery, except for a decrease in the kidney of RYGB (P = 0.02). The 15N distribution along the small intestinal tissue suggests that dietary nitrogen was considerably retained in the remodeled mucosa of RYGB compared with Sham. This study revealed that in contrast to VSG, RYGB slightly improved protein digestibility but altered peripheral protein bioavailability. This effect may be ascribed to a higher uptake of dietary amino acids by the remodeled intestine.NEW & NOTEWORTHY Using a sensitive 15N meal test, we found that gastric bypass slightly improved protein digestibility compared with sleeve gastrectomy or control but, in contrast, lowered protein retention in the liver and muscles. This paradox can be due to a higher uptake of dietary nitrogen by the intestinal mucosa that was hypertrophied. This study provides new insight on the digestive and metabolic fate of dietary protein in different models of bariatric surgery in rats.
Collapse
Affiliation(s)
- Romain Tessier
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France.,INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lara Ribeiro-Parenti
- INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of General and Digestive Surgery, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ouafa Bruneau
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France.,INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nadezda Khodorova
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Jean-Baptiste Cavin
- INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - André Bado
- INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dalila Azzout-Marniche
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Juliane Calvez
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Maude Le Gall
- INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Gaudichon
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| |
Collapse
|
4
|
Scott F, Elahi S, Adebibe M, Parampalli U, Mannur K, Góralczyk A, Sanger GJ. Farnesoid X receptor - a molecular predictor of weight loss after vertical sleeve gastrectomy? Obes Sci Pract 2019; 5:273-280. [PMID: 31275601 PMCID: PMC6587316 DOI: 10.1002/osp4.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To determine the expression of the bile acid receptor, farnesoid X (FXR), in human gastric mucosa and investigate correlations between expression and body-mass index (BMI) and in patients with obesity, with changes in weight and BMI following vertical sleeve gastrectomy (VSG). METHODS Human gastric mucosa was obtained from normal/overweight individuals (macroscopically-normal tissue following surgery for malignancy) or from patients with obesity (VSG). The expression of FXR and its isoforms (FXRα, FXRβ) were examined by quantitative PCR and compared with the G protein-coupled bile acid receptor, GPBA. In patients with obesity, changes in BMI and weight loss were determined following VSG. RESULTS FXRα was the predominant isoform in normal/overweight individuals. FXR expression was higher in patients with obesity but GPBA receptor expression was unchanged. For those with obesity (n = 19), no correlation was found between FXR expression and change in Body-Mass Index (BMI)/month or weight loss/month, taken 3 ± 1 months after surgery, or in BMI or weight at surgery. CONCLUSIONS Obesity is associated with increased FXR expression in the gastric mucosa. The findings are preliminary but suggest that this increase in FXR expression is a consequence of obesity, rather than its cause.
Collapse
Affiliation(s)
- F. Scott
- Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of London
| | - S. Elahi
- Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of London
| | - M. Adebibe
- Bariatric Surgery DepartmentHomerton University HospitalLondon
| | - U. Parampalli
- Bariatric Surgery DepartmentHomerton University HospitalLondon
- Royal Sussex County HospitalBrighton
| | - K. Mannur
- Bariatric Surgery DepartmentHomerton University HospitalLondon
| | - A. Góralczyk
- Bariatric Surgery DepartmentHomerton University HospitalLondon
| | - G. J. Sanger
- Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of London
| |
Collapse
|
5
|
Jin LH, Fang ZP, Fan MJ, Huang WD. Bile-ology: from bench to bedside. J Zhejiang Univ Sci B 2019; 20:414-427. [PMID: 31090267 PMCID: PMC6568232 DOI: 10.1631/jzus.b1900158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Bile acids (BAs) are originally known as detergents essential for the digestion and absorption of lipids. In recent years, extensive research has unveiled new functions of BAs as gut hormones that modulate physiological and pathological processes, including glucose and lipid metabolism, energy expenditure, inflammation, tumorigenesis, cardiovascular disease, and even the central nervous system in addition to cholesterol homeostasis, enterohepatic protection and liver regeneration. BAs are closely linked with gut microbiota which might explain some of their crucial roles in organs. The signaling actions of BAs can also be mediated through specific nuclear receptors and membrane-bound G protein-coupled receptors. Several pharmacological agents or bariatric surgeries have demonstrated efficacious therapeutic effects on metabolic diseases through targeting BA signaling. In this mini-review, we summarize recent advances in bile-ology, focusing on its translational studies.
Collapse
Affiliation(s)
- Li-hua Jin
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
- State Key Laboratory of Cellular Stress Biology; Innovation Center for Cell Signaling Network; School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhi-peng Fang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Min-jie Fan
- College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-dong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Saga K, Iwashita Y, Hidano S, Aso Y, Isaka K, Kido Y, Tada K, Takayama H, Masuda T, Hirashita T, Endo Y, Ohta M, Kobayashi T, Inomata M. Secondary Unconjugated Bile Acids Induce Hepatic Stellate Cell Activation. Int J Mol Sci 2018; 19:ijms19103043. [PMID: 30301191 PMCID: PMC6213941 DOI: 10.3390/ijms19103043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) are key players in liver fibrosis, cellular senescence, and hepatic carcinogenesis. Bile acids (BAs) are involved in the activation of HSCs, but the detailed mechanism of this process remains unclear. We conducted a comprehensive DNA microarray study of the human HSC line LX-2 treated with deoxycholic acid (DCA), a secondary unconjugated BA. Additionally, LX-2 cells were exposed to nine BAs and studied using immunofluorescence staining, enzyme-linked immunosorbent assay, and flow cytometry to examine the mechanisms of HSC activation. We focused on the tumor necrosis factor (TNF) pathway and revealed upregulation of genes related to nuclear factor kappa B (NF-κB) signaling and senescence-associated secretory phenotype factors. α-Smooth muscle actin (α-SMA) was highly expressed in cells treated with secondary unconjugated BAs, including DCA, and a morphological change associated with radial extension of subendothelial protrusion was observed. Interleukin-6 level in culture supernatant was significantly higher in cells treated with secondary unconjugated BAs. Flow cytometry showed that the proportion of cells highly expressing α-SMA was significantly increased in HSCs cultured with secondary unconjugated BAs. We demonstrated that secondary unconjugated BAs induced the activation of human HSCs.
Collapse
Affiliation(s)
- Kunihiro Saga
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yukio Iwashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuiko Aso
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kenji Isaka
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kazuhiro Tada
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Hiroomi Takayama
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Masuda
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuichi Endo
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masayuki Ohta
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| |
Collapse
|