1
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Ge S, Ding F, Daniel B, Wu C, Ran M, Ma C, Xue Y, Zhao D, Liu Y, Zhu Z, Fang Z, Zhang G, Zhang Y, Wang S. Carbohydrate metabolism and cytology of S-type cytoplasmic male sterility in wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1255670. [PMID: 37908830 PMCID: PMC10614052 DOI: 10.3389/fpls.2023.1255670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023]
Abstract
Introduction Cytoplasmic male sterility (CMS) is an important tool for hybrid heterosis utilization. However, the underlying mechanisms still need to be discovered. An adequate supply of nutrients is necessary for anther development; pollen abortion would occur if the metabolism of carbohydrates were hampered. Methods In order to better understand the relationship between carbohydrate metabolism disorder and pollen abortion in S-CMS wheat, the submicroscopic structure of wheat anthers was observed using light microscopy and transmission electron microscopy; chloroplast proteome changes were explored by comparative proteomic analysis; sugar measuring and enzyme assays were performed; and the expression patterns of carbohydrate metabolism-related genes were studied using quantitative real-time PCR (qRT-PCR) method. Results These results indicated that the anther and microspore in S-CMS wheat underwent serious structural damage, including premature tapetum degeneration, nutritional shortage, pollen wall defects, and pollen grain malformations. Furthermore, the number of chloroplasts in the anthers of S-CMS lines decreased significantly, causing abnormal carbohydrate metabolism, and disintegration of osmiophilic granules and thylakoids. Meanwhile, some proteins participating in the Calvin cycle and carbohydrate metabolism were abnormally expressed in the chloroplasts of the S-CMS lines, which might lead to chloroplast dysfunction. Additionally, several key enzymes and genes related to carbohydrate metabolism were significantly inhibited in S-CMS. Discussion Based on these results, we proposed a carbohydrate metabolism pathway for anther abortion in S-type cytoplasmic male sterility, which would encourage further exploration of the pollen abortion mechanisms for CMS wheat.
Collapse
Affiliation(s)
- Shijie Ge
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Fugong Ding
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Bimpong Daniel
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Cuicui Wu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Mingyang Ran
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Chi Ma
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Yuhang Xue
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Die Zhao
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Yike Liu
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhanwang Zhu
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhengwu Fang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Gaisheng Zhang
- College of Agriculture, Northwest Agricuture and Forestry (A&F) University, Yangling, Shaanxi, China
| | - Yingxin Zhang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Shuping Wang
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River/College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
3
|
Hu R, Wang J, Yang H, Wei D, Tang Q, Yang Y, Tian S, Wang Z. Comparative transcriptome analysis reveals the involvement of an MYB transcriptional activator, SmMYB108, in anther dehiscence in eggplant. FRONTIERS IN PLANT SCIENCE 2023; 14:1164467. [PMID: 37521920 PMCID: PMC10382176 DOI: 10.3389/fpls.2023.1164467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023]
Abstract
Male sterility is a highly attractive agronomic trait as it effectively prevents self-fertilization and facilitates the production of high-quality hybrid seeds in plants. Timely release of mature pollen following anther dehiscence is essential for stamen development in flowering plants. Although several theories have been proposed regarding this, the specific mechanism of anther development in eggplant remains elusive. In this study, we selected an R2R3-MYB transcription factor gene, SmMYB108, that encodes a protein localized primarily in the nucleus by comparing the transcriptomics of different floral bud developmental stages of the eggplant fertile line, F142. Quantitative reverse transcription polymerase chain reaction revealed that SmMYB108 was preferentially expressed in flowers, and its expression increased significantly on the day of flowering. Overexpression of SmMYB108 in tobacco caused anther dehiscence. In addition, we found that SmMYB108 primarily functions as a transcriptional activator via C-terminal activation (amino acid 262-317). Yeast one-hybrid and dual-luciferase reporter assays revealed that genes (SmMYB21, SmARF6, and SmARF8) related to anther development targeted the SmMYB108 promoter. Overall, our results provide insights into the molecular mechanisms involved in the regulation of anther development by SmMYB108.
Collapse
Affiliation(s)
- Ruolin Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Jiali Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Huiqing Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Yang Yang
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shibing Tian
- The Institute of Vegetables and Flowers, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| |
Collapse
|
4
|
Ren Y, Song Q, Shan S, Wang J, Ma S, Song Y, Ma L, Zhang G, Niu N. Genome-Wide Identification and Expression Analysis of TUA and TUB Genes in Wheat ( Triticum aestivum L.) during Its Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:3495. [PMID: 36559605 PMCID: PMC9785050 DOI: 10.3390/plants11243495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Microtubules play a fundamental role in plant development, morphogenesis, and cytokinesis; they are assembled from heterodimers containing an α-tubulin (TUA) and a β-tubulin (TUB) protein. However, little research has been conducted on the TUA and TUB gene families in hexaploid wheat (Triticum aestivum L.). In this study, we identified 15 TaTUA and 28 TaTUB genes in wheat. Phylogenetic analysis showed that 15 TaTUA genes were divided into two major subfamilies, and 28 TaTUB genes were divided into five major subfamilies. Mostly, there were similar motif compositions and exon-intron structures among the same subfamilies. Segmental duplication of genes (WGD/segmental) is the main process of TaTUA and TaTUB gene family expansion in wheat. It was found that TaTUA and TaTUB genes presented specific temporal and spatial characteristics based on the expression profiles of 17 tissues during wheat development using publicly available RNA-seq data. It was worth noting, via qRT-PCR, that two TaTUA and five TaTUB genes were highly expressed in fertile anthers compared to male sterility. These were quite different between physiological male sterile lines and S-type cytoplasmic male sterile lines at different stages of pollen development. This study offers fundamental information on the TUA and TUB gene families during wheat development and provides new insights for exploring the molecular mechanism of wheat male sterility.
Collapse
Affiliation(s)
- Yang Ren
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qilu Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Sicong Shan
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Junwei Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shoucai Ma
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yulong Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Lingjian Ma
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Gaisheng Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Na Niu
- Key Laboratory of Crop Heterosis of Shaanxi Province, Wheat Breeding Engineering Research Center, Ministry of Education, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Yang X, Wang K, Bu Y, Niu F, Ge L, Zhang L, Song X. The transcription factor TaGAMYB modulates tapetum and pollen development of TGMS wheat YanZhan 4110S via the gibberellin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111447. [PMID: 36041563 DOI: 10.1016/j.plantsci.2022.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Male reproductive development in higher plants experienced a series of complex biological processes, which can be regulated by Gibberellins (GA). The transcriptional factor GAMYB is a crucial component of GA signaling in anther development. However, the mechanism of GAMYB in wheat male reproduction is less understood. Here, we found that the thermo-sensitive genic male sterilitywheat line YanZhan 4110S displayed delayed tapetum programmed cell death and pollen abortive under the hot temperature stress. Combined with RNA-Sequencing data analysis, TaGAMYB associated with fertility conversion was isolated, which was located in the nucleus and highly expressed in fertility anthers. The silencing of TaGAMYB in wheat displayed fertility decline, defects in tapetum, pollen and exine formation, where the abortion characteristics were the same as YanZhan 4110S. In addition, either hot temperature or GA3 treatment in YanZhan 4110S caused the downregulation of TaGAMYB at binucleate stage and trinucleate stage, as well as fertility decrease. Further, the transcription factor TaWRKY2 significantly changed under GA3-treatment and directly interacted with the TaGAMYB promoter by W-box cis-element. Therefore, we suggested that TaGAMYB may be essential for anther development and male fertility, and GA3 activates TaGAMYB by TaWRKY2 to regulate fertility in wheat.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Kai Wang
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Yaning Bu
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Limeng Ge
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling 712100 Shaanxi, China.
| |
Collapse
|
6
|
Zhang H, Hou Q, Luo B, Tu K, Zhao C, Sun Q. Detection of seed purity of hybrid wheat using reflectance and transmittance hyperspectral imaging technology. FRONTIERS IN PLANT SCIENCE 2022; 13:1015891. [PMID: 36247557 PMCID: PMC9554440 DOI: 10.3389/fpls.2022.1015891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Chemical hybridization and genic male sterility systems are two main methods of hybrid wheat production; however, complete sterility of female wheat plants cannot be guaranteed owing to the influence of the growth stage and weather. Consequently, hybrid wheat seeds are inevitably mixed with few parent seeds, especially female seeds. Therefore, seed purity is a key factor in the popularization of hybrid wheat. However, traditional seed purity detection and variety identification methods are time-consuming, laborious, and destructive. Therefore, to establish a non-destructive classification method for hybrid and female parent seeds, three hybrid wheat varieties (Jingmai 9, Jingmai 11, and Jingmai 183) and their parent seeds were sampled. The transmittance and reflectance spectra of all seeds were collected via hyperspectral imaging technology, and a classification model was established using partial least squares-discriminant analysis (PLS-DA) combined with various preprocessing methods. The transmittance spectrum significantly improved the classification of hybrids and female parents compared to that obtained using reflectance spectrum. Specifically, using transmittance spectrum combined with a characteristic wavelength-screening algorithm, the Detrend-CARS-PLS-DA model was established, and the accuracy rates in the testing sets of Jingmai 9, Jingmai 11, and Jingmai 183 were 95.69%, 98.25%, and 97.25%, respectively. In conclusion, transmittance hyperspectral imaging combined with a machine learning algorithm can effectively distinguish female parent seeds from hybrid seeds. These results provide a reference for rapid seed purity detection in the hybrid production process. Owing to the non-destructive and rapid nature of hyperspectral imaging, the detection of hybrid wheat seed purity can be improved by online sorting in the future.
Collapse
Affiliation(s)
- Han Zhang
- Department of Seed Science & Biotechnology, The Innovation Center (Beijing) of Crop Seeds whole-process Technology Research Ministry of Agriculture and Rural Affairs (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiling Hou
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Keling Tu
- Department of Seed Science & Biotechnology, The Innovation Center (Beijing) of Crop Seeds whole-process Technology Research Ministry of Agriculture and Rural Affairs (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Changping Zhao
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qun Sun
- Department of Seed Science & Biotechnology, The Innovation Center (Beijing) of Crop Seeds whole-process Technology Research Ministry of Agriculture and Rural Affairs (MOA), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Crop Improvement: Where Are We Now? BIOLOGY 2022; 11:biology11101373. [PMID: 36290279 PMCID: PMC9598755 DOI: 10.3390/biology11101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
|
8
|
Wang R, Ba Q, Zhang L, Wang W, Zhang P, Li G. Comparative analysis of mitochondrial genomes provides insights into the mechanisms underlying an S-type cytoplasmic male sterility (CMS) system in wheat (Triticum aestivum L.). Funct Integr Genomics 2022; 22:951-964. [PMID: 35678921 DOI: 10.1007/s10142-022-00871-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Cytoplasmic male sterility (CMS) has been widely used in crop cross breeding. There has been much research on wheat CMS. However, the correlation between S-type CMS and mitochondrial genome remains elusive. Herein, we sequenced the mitochondrial genome of wheat CMS line and compared it with the maintainer line. The results showed that the mitochondrial genome of CMS line encoded 26 tRNAs, 8 rRNAs, and 35 protein-coding genes, and the cob encoding complex III in which the protein coding gene is mutated. This protein is known to affect reactive oxygen (ROS) production. The analysis of ROS metabolism in developing anthers showed that the deficiency of antioxidants and antioxidant enzymes in the sterile system aggravated membrane lipid oxidation, resulting in ROS accumulation, and influencing the anther development. Herein, cob is considered as a candidate causative gene sequence for CMS.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Plant Resources and Biology of Anhui Province, School of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Qingsong Ba
- Key Laboratory of Plant Resources and Biology of Anhui Province, School of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China.
| | - Lanlan Zhang
- Key Laboratory of Plant Resources and Biology of Anhui Province, School of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Weilun Wang
- Key Laboratory of Plant Resources and Biology of Anhui Province, School of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| | - Pengfei Zhang
- Xiangyang Academy of Agricultural Sciences, Hubei, 441057, People's Republic of China
| | - Guiping Li
- Key Laboratory of Plant Resources and Biology of Anhui Province, School of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
| |
Collapse
|
9
|
Wang Q, He Z, Wang L, Qi Z. 染色体工程在杂交小麦育种中的应用进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Seki K. Detection of candidate gene LsACOS5 and development of InDel marker for male sterility by ddRAD-seq and resequencing analysis in lettuce. Sci Rep 2022; 12:7370. [PMID: 35513535 PMCID: PMC9072324 DOI: 10.1038/s41598-022-11244-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
A new breeding method of F1 hybrid using male sterility would open an exciting frontier in lettuce breeding, a self-pollinating crop. Male sterility is a crucial trait in F1 hybrid breeding. It is essential to map the causative gene for using male sterility. The ms-S, male-sterile (MS) gene of 'CGN17397', was mapped to linkage group (LG) 8 by ddRAD-seq and narrowed down between two markers using two F2 populations. This region spans approximately 10.16 Mb, where 94 genes were annotated according to the lettuce reference genome sequence (version8 from 'Salinas'). The whole-genome sequencing of the MS lines 'CGN17397-MS' and male-fertile (MF) lines 'CGN17397-MF' revealed that only one gene differed in the area of Lsat_1_v5_gn_8_148221.1, a homolog of acyl-CoA synthetase5 (ACOS5), and was deleted in the MS lines. It was reported that ACOS5 was needed for pollen wall formation and that the null mutants of ACOS5 were entirely male sterility in some plants. Thus, I concluded that Lsat_1_v5_gn_8_148221.1 designated as LsACOS5 was a biologically plausible candidate gene for the ms-S locus. By using the structural polymorphism of LsACOS5, an InDel marker was developed to select the MS trait. The results obtained here provide valuable information for the genic male-sterility in lettuce.
Collapse
Affiliation(s)
- Kousuke Seki
- Nagano Vegetable and Ornamental Crops Experiment Station, Tokoo 1066-1, Souga, Shiojiri, Nagano, 399-6461, Japan.
| |
Collapse
|
11
|
ElShamey EA, Sakran RM, ElSayed MA, Aloufi S, Alharthi B, Alqurashi M, Mansour E, Abd El-Moneim D. Heterosis and combining ability for floral and yield characters in rice using cytoplasmic male sterility system. Saudi J Biol Sci 2022; 29:3727-3738. [PMID: 35844365 PMCID: PMC9280222 DOI: 10.1016/j.sjbs.2022.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/08/2022] [Accepted: 03/06/2022] [Indexed: 11/27/2022] Open
Abstract
Developing high-yielding rice genotypes is decisive to ensure global food security with current population growth and the threat of environmental pressures. Cytoplasmic male sterility (CMS) system provides a valuable approach for commercial exploitation of heterosis and producing high-yielding and quality hybrid rice. Three CMS lines and ten diverse restorers were crossed using line × tester mating design. The obtained thirty F1 hybrids and their thirteen parents were evaluated. Yield traits as well as certain floral traits characters that influence the efficiency of crossing and hybrid seed production as the duration of floret opening (min), stigma exsertion (mm), stigma length (mm), opening floret angle, and anther length (mm) were assessed. Highly significant variations were detected among parents, crosses, and parents vs. crosses for all the studied traits. The CMS line L2 and the restorer T5 were determined as good combiners for stigma exsertion, stigma length, opining floret angle, and duration of floret opening. Besides, the hybrids L1 × T1, L1 × T3, L2 × T2, L2 × T5, L3 × T4, L3 × T5, and L3 × T9 exhibited positive SCA effects for most floral traits. Moreover, the CMS lines L1 and L3 as well as the restorers T1, T2, T3, T6, and T9 were identified as good general combiners for grain yield and certain related traits. The hybrids L1 × T1, L1 × T5, L1 × T7, L2 × T3, L2 × T4, L2 × T5, L2 × T10, L3 × T1, L3 × T2, and L3 × T6 displayed positive SCA effects for grain yield and one or more of its attributes. Both additive and non-additive gene effects were involved in the governing inheritance of all evaluated traits. The biochemical variations among the certain evaluated genotypes were further studied. The esterase and peroxidase isozymes were applied for verifying the genetic diversity at the protein level among the used CMS lines, restorers, and their crosses. All the applied isozymes displayed polymorphism for the parents and their crosses. The banding pattern and intensity differences provided accurate results on the reliable variability among the tested genotypes.
Collapse
|
12
|
El Hanafi S, Cherkaoui S, Kehel Z, Sanchez-Garcia M, Sarazin JB, Baenziger S, Tadesse W. Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:508. [PMID: 35214841 PMCID: PMC8880032 DOI: 10.3390/plants11040508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Breeding hybrids with maximum heterosis requires efficient cross-pollination and an improved male sterility system. Renewed efforts have been made to dissect the phenotypic variation and genetic basis of hybrid floral traits, although the potential of tailoring the appropriate flower design on seed setting is less known. To this end, elite wheat genotypes were crossed using a chemical hybridizing agent at different doses. A total of 23 hybrids were developed from a partial diallel design; and planted in an alpha lattice design with their parents at two locations in Morocco, for two years, to evaluate for yield components, heterosis and combining abilities. The 13.5 L ha-1 dose induced a maximum level of sterility (95%) and seed set showed large phenotypic variation and high heritability. In parallel, seed set showed tight correlation with pollen mass (0.97), visual anther extrusion (0.94) and pollen shedding (0.91) (p < 0.001), allowing direct selection of the associated traits. Using the combined data, mid-parent heterosis ranges were -7.64-14.55% for biomass (BM), -8.34-12.51% for thousand kernel weight (TKW) and -5.29-26.65% for grain yield (YLD); while best-parent heterosis showed ranges of -11.18-7.20%, -11.35-11.26% and -8.27-24.04% for BM, TKW and YLD, respectively. The magnitude of general combining ability (GCA) variance was greater than the specific combining ability (SCA) variance suggesting a greater additive gene action for BM, TKW and YLD. The favorable GCA estimates showed a simple method to predict additive effects contributing to high heterosis and thus could be an effective approach for the selection of promising parents in early generations.
Collapse
Affiliation(s)
- Samira El Hanafi
- International Center for Agricultural Research in the Dry Areas, Rue Hafiane Cherkaoui, Rabat-Institutes, Rabat B.P. 6299, Morocco; (Z.K.); (M.S.-G.); (W.T.)
- Physiology Plant Biotechnology Unit, Bio-Bio Center, Faculty of Sciences, Mohammed V University of Rabat, 4 Avenue Ibn Battouta, Rabat B.P. 1014, Morocco;
| | - Souad Cherkaoui
- Physiology Plant Biotechnology Unit, Bio-Bio Center, Faculty of Sciences, Mohammed V University of Rabat, 4 Avenue Ibn Battouta, Rabat B.P. 1014, Morocco;
| | - Zakaria Kehel
- International Center for Agricultural Research in the Dry Areas, Rue Hafiane Cherkaoui, Rabat-Institutes, Rabat B.P. 6299, Morocco; (Z.K.); (M.S.-G.); (W.T.)
| | - Miguel Sanchez-Garcia
- International Center for Agricultural Research in the Dry Areas, Rue Hafiane Cherkaoui, Rabat-Institutes, Rabat B.P. 6299, Morocco; (Z.K.); (M.S.-G.); (W.T.)
| | | | - Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Wuletaw Tadesse
- International Center for Agricultural Research in the Dry Areas, Rue Hafiane Cherkaoui, Rabat-Institutes, Rabat B.P. 6299, Morocco; (Z.K.); (M.S.-G.); (W.T.)
| |
Collapse
|
13
|
Bhowmik P, Bilichak A. Advances in Gene Editing of Haploid Tissues in Crops. Genes (Basel) 2021; 12:1410. [PMID: 34573392 PMCID: PMC8468125 DOI: 10.3390/genes12091410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop's genome are needed. Doubled haploid (DH) methods have been used for decades in major crops to fix desired alleles in elite backgrounds in a short time. DH plants are also widely used for mapping of the quantitative trait loci (QTLs), marker-assisted selection (MAS), genomic selection (GS), and hybrid production. Recent discoveries of genes responsible for haploid induction (HI) allowed engineering this trait through gene editing (GE) in non-inducer varieties of different crops. Direct editing of gametes or haploid embryos increases GE efficiency by generating null homozygous plants following chromosome doubling. Increased understanding of the underlying genetic mechanisms responsible for spontaneous chromosome doubling in haploid plants may allow transferring this trait to different elite varieties. Overall, further improvement in the efficiency of the DH technology combined with the optimized GE could accelerate breeding efforts of the major crops.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
14
|
Dong W, Wu D, Yan C, Wu D. Mapping and Analysis of a Novel Genic Male Sterility Gene in Watermelon ( Citrullus lanatus). FRONTIERS IN PLANT SCIENCE 2021; 12:639431. [PMID: 34539684 PMCID: PMC8442748 DOI: 10.3389/fpls.2021.639431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/19/2021] [Indexed: 05/15/2023]
Abstract
Seed production is critical for watermelon production, which mostly involves first-generation hybrid varieties. However, watermelon hybrid seed production currently requires complex procedures, including artificial isolation and pollination. Therefore, the development and use of a male-sterile system to generate watermelon hybrids can simplify the process. The scarcity of male-sterile watermelon germplasm resources necessitates the use of molecular breeding methods. Unfortunately, the genes responsible for male sterility in watermelon have not been cloned. Thus, the genetic basis of the male sterility remains unknown. In this study, two DNA pools derived from male-sterile and normal plants in the F2 population were used for whole-genome resequencing. The Illumina high-throughput sequencing resulted in 62.99 Gbp clean reads, with a Q30 of 80% after filtering. On the basis of the SNP index association algorithm, eight candidate regions (0.32 Mb) related to specific traits were detected on chromosome 6. Expression pattern analyses and watermelon transformation studies generated preliminary evidence that Cla006625 encodes a pollen-specific leucine-rich repeat protein (ClaPEX1) influencing the male sterility of watermelon. The identification and use of genic male sterility genes will promote watermelon male sterility research and lay the foundation for the efficient application of seed production technology.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Henan University, Kaifeng, China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Chen Yan
- School of Life Science, Henan University, Kaifeng, China
| | - Defeng Wu
- School of Life Science, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Tyrka M, Bakera B, Szeliga M, Święcicka M, Krajewski P, Mokrzycka M, Rakoczy-Trojanowska M. Identification of Rf Genes in Hexaploid Wheat ( Triticumaestivum L.) by RNA-Seq and Paralog Analyses. Int J Mol Sci 2021; 22:ijms22179146. [PMID: 34502055 PMCID: PMC8431562 DOI: 10.3390/ijms22179146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Among the natural mechanisms used for wheat hybrid breeding, the most desirable is the system combining the cytoplasmic male sterility (cms) of the female parent with the fertility-restoring genes (Rf) of the male parent. The objective of this study was to identify Rf candidate genes in the wheat genome on the basis of transcriptome sequencing (RNA-seq) and paralog analysis data. Total RNA was isolated from the anthers of two fertility-restorer (Primépi and Patras) and two non-restorer (Astoria and Grana) varieties at the tetrad and late uninucleate microspore stages. Of 36,912 differentially expressed genes (DEGs), 21 encoding domains in known fertility-restoring proteins were selected. To enrich the pool of Rf candidates, 52 paralogs (PAGs) of the 21 selected DEGs were included in the analyses. The expression profiles of most of the DEGs and PAGs determined bioinformatically were as expected (i.e., they were overexpressed in at least one fertility-restorer variety). However, these results were only partially consistent with the quantitative real-time PCR data. The DEG and PAG promoters included cis-regulatory elements common among PPR-encoding genes. On the basis of the obtained results, we designated seven genes as Rf candidate genes, six of which were identified for the first time in this study.
Collapse
Affiliation(s)
- Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland; (M.T.); (M.S.)
| | - Beata Bakera
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
| | - Magdalena Szeliga
- Department of Biotechnology and Bioinformatics, Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland; (M.T.); (M.S.)
| | - Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
| | - Paweł Krajewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (P.K.); (M.M.)
| | - Monika Mokrzycka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (P.K.); (M.M.)
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland; (B.B.); (M.Ś.)
- Correspondence: ; Tel./Fax: +48-22-59-32152
| |
Collapse
|
16
|
Brownfield L. Plant breeding: Revealing the secrets of cytoplasmic male sterility in wheat. Curr Biol 2021; 31:R724-R726. [PMID: 34102121 DOI: 10.1016/j.cub.2021.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
While cytoplasmic male sterility is used for breeding in many crops, it has proved difficult to implement in wheat. A new study identifying the key molecules and their mode of action in cytoplasmic male sterility provides new opportunities for wheat breeding.
Collapse
|
17
|
Yang X, Ye J, Niu F, Feng Y, Song X. Identification and verification of genes related to pollen development and male sterility induced by high temperature in the thermo-sensitive genic male sterile wheat line. PLANTA 2021; 253:83. [PMID: 33770279 DOI: 10.1007/s00425-021-03601-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bioinformatic analysis identified the function of genes regulating wheat fertility. Barley stripe mosaic virus-induced gene silencing verified that the genes TaMut11 and TaSF3 are involved in pollen development and related to fertility conversion. Environment-sensitive genic male sterility is of vital importance to hybrid vigor in crop production and breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. In this study, YanZhan 4110S, a new thermo-sensitive genic male sterility wheat line, and its near-isogenic line YanZhan 4110 were analyzed. Through comparative transcriptome basic bioinformatics and weighted gene co-expression network to further identify some hub genes, the genes TaMut11 and TaSF3 associated with pollen development and male sterility induced by high-temperature were identified in YanZhan 4110S. Further verification through barley stripe mosaic virus-induced gene silencing elucidated that the silencing of TaMut11 and TaSF3 caused pollen abortion, finally resulting in the declination of fertility. These findings provided data on the abortive mechanism in environment-sensitive genic male sterility wheat.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yi Feng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
A Comparative Assessment of the Baking Quality of Hybrid and Population Wheat Cultivars. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The study assessed the quality parameters of grain and flour, the rheological properties of dough and the quality of bread prepared from flour of hybrid cultivars of wheat in comparison with population cultivars of wheat. As the interest in wheat hybrids cultivars from the agricultural and milling industry is growing, their technological value of grain and flour was evaluated at two levels of nitrogen fertilisation (N1—110 kg/ha, N2—150 kg/ha). Increasing the fertilisation (N2) produced a significant influence on the crude protein and gluten content in the flour, as well as the moisture of the crumb and the yield of the dough without impacting other rheological traits and parameters of bread baking process. The performed principal component analysis (PCA) allowed for identification of the best cultivars among the studied wheat cultivars (Hybery and Hyvento). The hybrid cultivar Hyvento was characterised by favourable qualitative traits of the grain (vitreousness, crude protein content) and rheological parameters of the dough (bread volume), however, it had lower baking quality parameters. Among the hybrid cultivars, the best applicability for baking purposes was Hybery due to the favourable values of the baking process parameters and bread quality (bread yield, bread volume, Dallmann porosity index of crumb). Hybrid cultivars of wheat can therefore be used for the production of bread and be an alternative in agricultural production for population cultivars, which will contribute to filling the knowledge gap for the hybrid wheat cultivars.
Collapse
|
19
|
Genomic Patterns of Introgression in Interspecific Populations Created by Crossing Wheat with Its Wild Relative. G3-GENES GENOMES GENETICS 2020; 10:3651-3661. [PMID: 32737066 PMCID: PMC7534432 DOI: 10.1534/g3.120.401479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Collapse
|
20
|
Selva C, Riboni M, Baumann U, Würschum T, Whitford R, Tucker MR. Hybrid breeding in wheat: how shaping floral biology can offer new perspectives. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:675-694. [PMID: 32534601 DOI: 10.1071/fp19372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Hybrid breeding in wheat (Triticum aestivum L.) has the potential to deliver major yield increases. This is a requisite to guarantee food security for increasing population demands and to counterbalance the effects of extreme environmental conditions. Successful hybrid breeding in wheat relies on forced outcrossing while preventing self-pollination. To achieve this, research has been directed towards identifying and improving fertility control systems. To maximise cross-pollination and seed set, however, fertility control systems need to be complemented by breeding phenotypically distinct male and female lines. This review summarises existing and novel male sterility systems for wheat hybridisation. We also consider the genetic resources that can be used to alter wheat's floral development and spike morphology, with a focus on the genetic variation already available. Exploiting these resources can lead to enhanced outcrossing, a key requirement in the progress towards hybrid wheat breeding.
Collapse
Affiliation(s)
- Caterina Selva
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Matteo Riboni
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ryan Whitford
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; and Corresponding authors. ;
| | - Matthew R Tucker
- School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; and Corresponding authors. ;
| |
Collapse
|
21
|
Cyclin-Dependent Kinase Inhibitor Gene TaICK1 acts as a Potential Contributor to Wheat Male Sterility induced by a Chemical Hybridizing Agent. Int J Mol Sci 2020; 21:ijms21072468. [PMID: 32252420 PMCID: PMC7177297 DOI: 10.3390/ijms21072468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Heterosis has been widely accepted as an effective strategy to increase yields in plant breeding. Notably, the chemical hybridization agent SQ-1 induces male sterility in wheat, representing a critical potential tool in hybrid seed production. However, the mechanisms underlying the male sterility induced by SQ-1 still remain poorly understood. In this study, a cyclin-dependent kinase inhibitor gene, TaICK1, which encodes a 229 amino acid protein, was identified as a potential contributor to male sterility in common wheat. The expression of TaICK1 was upregulated during the development of anthers in Xinong1376 wheat treated with SQ-1. Meanwhile, the seed setting rate was found to be significantly decreased in TaICK1 transgenic rice. Furthermore, we identified two cyclin proteins, TaCYCD2;1 and TaCYCD6;1, as interactors through yeast two-hybrid screening using TaICK1 as the bait, which were validated using bimolecular fluorescence complementation. Subcellular localization revealed that the proteins encoded by TaICK1, TaCYCD2;1, and TaCYCD6;1 were localized in the cell nucleus. The expression levels of TaCYCD2;1 and TaCYCD6;1 were lower in Xinong1376 treated with SQ-1. A further analysis demonstrated that the expression levels of OsCYCD2;1 and OsCYCD6;1 were lower in transgenic TaICK1 rice lines as well. Taken together, these results suggest that the upregulation of TaICK1, induced by SQ-1, may subsequently suppress the expression of TaCYCD2;1 and TaCYCD6;1 in anthers, resulting in male sterility. This study provides new insights into the understanding of SQ-1-induced wheat male sterility, as well as the developmental mechanisms of anthers.
Collapse
|
22
|
Wang R, Lu C, Shu Z, Yuan X, Jiang H, Guo H. iTRAQ-based proteomic analysis reveals several key metabolic pathways associated with male sterility in Salvia miltiorrhiza. RSC Adv 2020; 10:16959-16970. [PMID: 35496921 PMCID: PMC9053177 DOI: 10.1039/c9ra09240d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/20/2020] [Indexed: 02/02/2023] Open
Abstract
Male sterility is a common phenomenon in flowering plants, and it has been widely used in hybrid seed production in a number of economically important crops. In 2002, our team discovered a natural male sterile mutant of Salvia miltiorrhiza. It provided us with the possibility of obtaining stable and controllable quality. To study the molecular mechanism of male sterility in S. miltiorrhiza, we generated proteomic profiles comparing the male sterile mutant type (MT) and wild type (WT) using iTRAQ sequencing. We found a total of 639 differential abundant proteins (DAPs) between MT and WT buds. The DAPs associated with male sterility were mainly involved in (1) carbohydrate and energy metabolism, and (2) protein synthesis and degradation. Based on a comparison between the protein expression profiles of MT and WT, we elucidated a potential protein interaction network involved in male sterility. These results provide new potential biomarkers and insights into the molecular mechanism of male sterility in S. miltiorrhiza. Male sterility is a common phenomenon in flowering plants, and it has been widely used in hybrid seed production in a number of economically important crops.![]()
Collapse
Affiliation(s)
- Ruihong Wang
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
- College of Life Sciences
| | - Congyu Lu
- Centre for Bioinformatics & Computational Biology
- University of Delaware
- Newark
- USA
| | - Zhiming Shu
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Xinbo Yuan
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| | - Han Jiang
- College of Life Sciences
- Northwest A&F University
- Yangling 712100
- China
| | - Hongbo Guo
- College of Chemistry and Pharmacy
- Northwest A&F University
- Yangling 712100
- China
| |
Collapse
|
23
|
Wang R, Jiang H, Zhou Z, Guo H, Dong J. Physiological and transcriptome analysis reveal molecular mechanism in Salvia miltiorrhiza leaves of near-isogenic male fertile lines and male sterile lines. BMC Genomics 2019; 20:780. [PMID: 31655539 PMCID: PMC6815445 DOI: 10.1186/s12864-019-6173-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Our previous study finds that male sterility in Salvia miltiorrhiza could result in stunted growth and reduced biomass, but their molecular mechanisms have not yet been revealed. In this article, we investigate the underlying mechanism of male sterility and its impact on plant growth and metabolic yield by using physiological analysis and mRNA sequencing (RNA-Seq). Results In this study, transcriptomic and physiological analysis were performed to identify the mechanism of male sterility in mutants and its impact on plant growth and metabolic yield. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, it is found that the pathways are mainly enriched in processes including organ development, primary metabolic process and secondary metabolic process. Physiological analysis show that the chloroplast structure of male sterile mutants of S. miltiorrhiza is abnormally developed, which could result in decrease in leaf gas exchange (A, E and gs), chlorophyll fluorescence (Fv, Fm and Fv/Fm), and the chlorophyll content. Expression level of 7 differentially expressed genes involved in photosynthesis-related pathways is downregulated in male sterile lines of S. miltiorrhiza, which could explain the corresponding phenotypic changes in chlorophyll fluorescence, chlorophyll content and leaf gas exchange. Transcriptomic analysis establishes the role of disproportionating enzyme 1 (DPE1) as catalyzing the degradation of starch, and the role of sucrose synthase 3 (SUS3) and cytosolic invertase 2 (CINV2) as catalyzing the degradation of sucrose in the S. miltiorrhiza mutants. The results also confirm that phenylalanine ammonialyase (PAL) is involved in the biosynthesis of rosmarinic acid and salvianolic acid B, and flavone synthase (FLS) is an important enzyme catalyzing steps of flavonoid biosynthesis. Conclusions Our results from the physiological and transcriptome analysis reveal underlying mechanism of plant growth and metabolic yield in male sterile mutants, and provide insight into the crop yield of S. miltiorrhiza.
Collapse
Affiliation(s)
- Ruihong Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Han Jiang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Ziyun Zhou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Hongbo Guo
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
24
|
Gupta PK, Balyan HS, Gahlaut V, Saripalli G, Pal B, Basnet BR, Joshi AK. Hybrid wheat: past, present and future. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2463-2483. [PMID: 31321476 DOI: 10.1007/s00122-019-03397-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/11/2019] [Indexed: 05/02/2023]
Abstract
The review outlines past failures, present status and future prospects of hybrid wheat, and includes information on CMS/CHA/transgenic approaches for male sterility, heterotic groups and cost-effective hybrid seed production. Hybrid varieties give increased yield and improved grain quality in both cross- and self-pollinated crops. However, hybrid varieties in self-pollinated crops (particularly cereals) have not been very successful, except for hybrid rice in China. In case of hybrid wheat, despite the earlier failures, renewed efforts in recent years have been made and hybrid varieties with desirable attributes have been produced and marketed in some European countries. This review builds upon previous reviews, with a new outlook and improved knowledge base, not covered in earlier reviews. New technologies have been described, which include the Hordeum chilense-based CMS-fertility restorer system, chromosomal XYZ-4E-ms system and the following transgenic technologies: (1) conditional male sterility involving use of tapetum-specific expression of a gene that converts a pro-toxin into a phytotoxin causing male sterility; (2) barnase-barstar SeedLink system of Bayer CropScience; (3) split-barnase system that obviates the need of a barstar-based male restorer line; and (4) seed production technology of DuPont-Pioneer that makes use of transgenes in production of male-sterile lines, but gives hybrid seed with no transgenes. This review also includes a brief account of studies for discovery of heterotic QTL, genomic prediction of hybrid vigour and the development of heterotic groups/patterns and their importance in hybrid wheat production. The problem of high cost of hybrid seed due to required high seed rate in wheat relative to hybrid rice has also been addressed. The review concludes with a brief account of the current efforts and future possibilities in making hybrid wheat a commercial success.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250001, India.
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250001, India
| | - Vijay Gahlaut
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250001, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250001, India
| | - Bijendra Pal
- Bioseed Research India Pvt. Ltd., Hyderabad, 500 033, India
| | | | | |
Collapse
|
25
|
Qi J, Ni F, Wang X, Sun M, Cui Y, Wu J, Caplan A, Fu D. The anther-specific CYP704B is potentially responsible for MSG26 male sterility in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2413-2423. [PMID: 31209536 DOI: 10.1007/s00122-019-03363-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Plant male sterility is a valuable trait in breeding and hybrid seed production. The barley male-sterility gene msg26 was mapped to a 0.02-cM region that anchors to a 506-kb low-quality assembly between two cleaved amplified polymorphic sequence (CAPS) markers, SP1M14 and SP1M49. The barley gene HORVU4Hr1G074840, which encodes a putative cytochrome P450 CYP704B protein, appears to be a strong candidate for the MSG26 trait. Barley (Hordeum vulgare L.) is an important cereal crop worldwide. Traditional breeding in barley is time-consuming and labor-intensive. The use of male-sterile genotypes may significantly improve the efficacy of hybrid breeding and seed production. The barley accession 'GSHO745' is a spontaneous male-sterile mutant from the barley variety, 'Unitan'. The male sterility in 'GSHO745' is controlled by the recessive gene, msg26 (originally named as ms-u). We revealed that the barley plants homozygous for msg26 proceeded normally through Meiosis II until the tetrad stage, but became fully defective in the late uninucleate microspores and developed pollen-less anthers. Using seven barley F2 populations, we mapped MSG26 to a 0.02-cM region that anchored to a 506-kb low-quality assembly between two cleaved amplified polymorphic sequence markers, SP1M14 and SP1M49. The HORVU4Hr1G074840 gene that encodes a putative cytochrome P450 protein (CYP704B) was identified as the most plausible candidate for MSG26. First, HORVU4Hr1G074840 is located in a collinear region of the rice CYP704B2 and the maize CYP704B1. Both of these genes are essential for male gamete production. Second, the male-sterile allele of HORVU4Hr1G074840 in GSHO745 contained a 4-bp deletion in the last exon. The resulting frame shift causes a Gly436Gln substitution, scrambles the sequence of the remainder of the protein, and forms a new termination site at the 70th triplet of the shifted reading frame. We thus called the variant protein CYP704B:p.G436Qfs*70. Third, the barley HORVU4Hr1G074840 gene was specifically expressed in anthers. Altogether, HORVU4Hr1G074840 represents a strong candidate for MSG26 in barley.
Collapse
Affiliation(s)
- Juan Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Fei Ni
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Meng Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yu Cui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Allan Caplan
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Daolin Fu
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
26
|
Assessment of Heterosis Based on Genetic Distance Estimated Using SNP in Common Wheat. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9020066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study assessed the genetic distance (GD) between parental genotypes using single nucleotide polymorphism (SNP) DNA markers and evaluated the correlation between GD and heterosis in common wheat. We examined the performance of parents and hybrids in a field experiment conducted in a randomized block design at a Shihezi location with three replications. Different traits such as the height of the parents and the F1 generation, number of harvested ears, number of grains per panicle, grain weight per panicle, 1000-grain weight, and grain yield were examined. Genotyping using a wheat 90K SNP chip determined the GD between the parents and analyzed the relationship between GD and heterotic performance of hybrids in wheat. Cluster analysis based on GD estimated using SNP chips divided the 20 elite parents into five groups which were almost consistent with the parental pedigree. Correlation analysis showed a significant association between GD and mid-parent heterosis (MPH) of 1000-grain weight. However, GD and high-parent heterosis (HPH) of 1000-grain weight showed no significant correlation. There was a weak correlation between GD and with spikelet number, harvested spikes, and yield at MPH or HPH. Hence, SNP analysis may be utilized in allocating wheat parents to heterotic groups. However, the correlation between SNP-based GD and hybrid performance still remains unclear.
Collapse
|
27
|
Takenaka S, Yamamoto R, Nakamura C. Differential and interactive effects of cytoplasmic substitution and seed ageing on submergence stress response in wheat ( Triticum aestivum L.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1549960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Shotaro Takenaka
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Ryohei Yamamoto
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| | - Chiharu Nakamura
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
28
|
Su Q, Yang J, Fu QY, Jia FY, Li SP, Li Y, Li YY. Profiling of indole metabolic pathway in thermo-sensitive Bainong male sterile line in wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:263-275. [PMID: 30804648 PMCID: PMC6352539 DOI: 10.1007/s12298-018-0626-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/17/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Bainong male sterile (BNS) wheat (Triticum aestivum L.) is a thermo-sensitive genic male sterile line with excellent sterility and self-restoration. We focused on transcriptional profiles of differentially expressed probes between BNS sterile and fertile anthers. Anthers, rachis and spikes from sterile line and fertile line were collected. Extracted RNA was assayed using wheat expression microarray and Gene Ontology was analyzed using Cytoscape with ClueGO. An indole (indole-3-acetic acid: IAA) metabolism pathway sub-network was almost formed in all differentially expressed profiles between sterile and fertile samples. IAA sub-network contained four nodes of indole and alkaloid metabolism connecting main network via indole compounds. This sub-network was absent in rachis and intact in transformed fertile anthers, which was the main differently expressed metabolism pathway in F1 anthers with restorer genes. Alkaloid metabolism was absent in sterile anthers. Abnormal metabolism of IAA may be involved in BNS sterility. BNS transformation may be regulated by the production of IAA and alkaloid metabolism pathway, which favor the safe utilization of the sterile line in hybrid wheat production.
Collapse
Affiliation(s)
- Qing Su
- Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003 China
- Henan University, Kaifeng, 475000 China
| | - Jing Yang
- Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003 China
| | - Qing Yun Fu
- Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003 China
| | - Fei Yun Jia
- Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003 China
| | | | - Yong Li
- Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003 China
- Institute of Plant Physiology and Ecology, SIBS, CAS, Shanghai, 200032 China
| | - You Yong Li
- Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003 China
| |
Collapse
|
29
|
Yang Y, Bao S, Zhou X, Liu J, Zhuang Y. The key genes and pathways related to male sterility of eggplant revealed by comparative transcriptome analysis. BMC PLANT BIOLOGY 2018; 18:209. [PMID: 30249187 PMCID: PMC6154905 DOI: 10.1186/s12870-018-1430-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/17/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Male sterility (MS) is an effective tool for hybrid production. Although MS has been widely reported in other plants, such as Arabidopsis and rice, the molecular mechanism of MS in eggplant is largely unknown. To understand the mechanism, the comparative transcriptomic file of MS line and its maintainer line was analyzed with the RNA-seq technology. RESULTS A total of 11,7695 unigenes were assembled and 19,652 differentially expressed genes (DEGs) were obtained. The results showed that 1,716 DEGs were shared in the three stages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these DEGs were mainly involved in oxidation-reduction, carbohydrate and amino acid metabolism. Moreover, transcriptional regulation was also the impact effector for MS and anther development. Weighted correlation network analysis (WGCNA) showed two modules might be responsible for MS, which was similar to hierarchical cluster analysis. CONCLUSIONS A number of genes and pathways associated with MS were found in this study. This study threw light on the molecular mechanism of MS and identified several key genes related to MS in eggplant.
Collapse
Affiliation(s)
- Yan Yang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Shengyou Bao
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Xiaohui Zhou
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Jun Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| | - Yong Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014 China
| |
Collapse
|
30
|
Tapetal-Delayed Programmed Cell Death (PCD) and Oxidative Stress-Induced Male Sterility of Aegilops uniaristata Cytoplasm in Wheat. Int J Mol Sci 2018; 19:ijms19061708. [PMID: 29890696 PMCID: PMC6032135 DOI: 10.3390/ijms19061708] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/31/2023] Open
Abstract
Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of hybrid vigor. Pollen development is often accompanied by oxidative metabolism responses and tapetal programmed cell death (PCD), and deficiency in these processes could lead to male sterility. Aegilops uniaristata cytoplasmic male sterility (Mu-CMS) wheat is a novel male-sterile line in wheat, which possess important potential in hybrid wheat breeding. However, its CMS mechanisms remain poorly understood. In our study, U87B1-706A, with the Aegilops uniaristata cytoplasm, and the maintainer line 706B were used to explore the abortive reason. Compared with 706B, histological analysis and PCD detection of the anther demonstrated that U87B1-706A appeared as delayed tapetal PCD as well as a disorganized organelle phenotype in the early uninucleate stage. Subsequently, a shrunken microspore and disordered exine structure were exhibited in the late uninucleate stage. While the activities of antioxidase increased markedly, the nonenzymatic antioxidant contents declined obviously following overacummulation of reactive oxygen species (ROS) during pollen development in U87B1-706A. Real-time quantitative PCR testified that the transcript levels of the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) genes, encoding pivotal antioxidant enzymes, were up-regulated in early pollen development. Therefore, we deduce excess ROS as a signal may be related to the increased expression levels of enzyme genes, thereby breaking the antioxidative system balance, resulting in delayed tapetal PCD initiation, which finally led to pollen abortion and male sterility in U87B1-706A. These results provide evidence to further explore the mechanisms of abortive pollen in CMS wheat.
Collapse
|
31
|
Liu Z, Shi X, Li S, Zhang L, Song X. Oxidative Stress and Aberrant Programmed Cell Death Are Associated With Pollen Abortion in Isonuclear Alloplasmic Male-Sterile Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:595. [PMID: 29780399 PMCID: PMC5945952 DOI: 10.3389/fpls.2018.00595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 05/18/2023]
Abstract
Cytoplasmic male sterility is crucial for the utilization of hybrid heterosis and it possibly occurs in parallel with tapetal programmed cell death (PCD) and oxidative metabolism responses. However, little is known about the mechanisms that underlie pollen abortion in wheat. Therefore, we obtained two isonuclear alloplasmic male sterile lines (IAMSLs) with Aegilops kotschyi and Ae. juvenalis cytoplasm. Compared with the maintainer line, cytochemical analyses of the anthers demonstrated that the IAMSLs exhibited anomalous tapetal PCD and organelles, with premature PCD in K87B1-706A and delayed PCD in Ju87B1-706A. We also found that the dynamic trends in reactive oxygen species (ROS) were consistent in these two IAMSLs during anther development and they were potentially associated with the initiation of tapetal PCD. In addition, the activities of ROS-scavenging enzymes increased rapidly, whereas non-enzymatic antioxidants were downregulated together with excess ROS production in IAMSLs. Real-time PCR analysis showed that the expression levels of superoxide dismutase, catalase, and ascorbate peroxidase genes, which encode important antioxidant enzymes, were significantly upregulated during early pollen development. Thus, we inferred that excessive ROS and the abnormal transcript levels of antioxidant enzyme genes disrupted the balance of the antioxidant system and the presence of excess ROS may have been related to aberrant tapetal PCD progression, thereby affecting the development of microspores and ultimately causing male sterility. These relationships between the mechanism of PCD and ROS metabolism provide new insights into the mechanisms responsible for abortive pollen in wheat.
Collapse
Affiliation(s)
| | | | | | | | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Liu H, Zhang G, Wang J, Li J, Song Y, Qiao L, Niu N, Wang J, Ma S, Li L. Chemical hybridizing agent SQ-1-induced male sterility in Triticum aestivum L.: a comparative analysis of the anther proteome. BMC PLANT BIOLOGY 2018; 18:7. [PMID: 29304738 PMCID: PMC5755283 DOI: 10.1186/s12870-017-1225-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/22/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Heterosis is widely used to increase the yield of many crops. However, as wheat is a self-pollinating crop, hybrid breeding is not so successful in this organism. Even though male sterility induced by chemical hybridizing agents is an important aspect of crossbreeding, the mechanisms by which these agents induce male sterility in wheat is not well understood. RESULTS We performed proteomic analyses using the wheat Triticum aestivum L.to identify those proteins involved in physiological male sterility (PHYMS) induced by the chemical hybridizing agent CHA SQ-1. A total of 103 differentially expressed proteins were found by 2D-PAGE and subsequently identified by MALDI-TOF/TOF MS/MS. In general, these proteins had obvious functional tendencies implicated in carbohydrate metabolism, oxidative stress and resistance, protein metabolism, photosynthesis, and cytoskeleton and cell structure. In combination with phenotypic, tissue section, and bioinformatics analyses, the identified differentially expressed proteins revealed a complex network behind the regulation of PHYMS and pollen development. Accordingly, we constructed a protein network of male sterility in wheat, drawing relationships between the 103 differentially expressed proteins and their annotated biological pathways. To further validate our proposed protein network, we determined relevant physiological values and performed real-time PCR assays. CONCLUSIONS Our proteomics based approach has enabled us to identify certain tendencies in PHYMS anthers. Anomalies in carbohydrate metabolism and oxidative stress, together with premature tapetum degradation, may be the cause behind carbohydrate starvation and male sterility in CHA SQ-1 treated plants. Here, we provide important insight into the mechanisms underlying CHA SQ-1-induced male sterility. Our findings have practical implications for the application of hybrid breeding in wheat.
Collapse
Affiliation(s)
- Hongzhan Liu
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Gaisheng Zhang
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Junsheng Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jingjing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Yulong Song
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lin Qiao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Na Niu
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junwei Wang
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shoucai Ma
- National Yangling Agricultural Biotechnology & Breeding Center / Yangling Branch of State Wheat Improvement Centre / Wheat Breeding Engineering Research Center, Ministry of Education /Key Laboratory of Crop Heterosis of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| |
Collapse
|
33
|
Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. Proc Natl Acad Sci U S A 2017; 114:12614-12619. [PMID: 29109252 DOI: 10.1073/pnas.1715570114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Male sterility is an essential trait in hybrid seed production for monoclinous crops, including rice and wheat. However, compared with the high percentage of hybrid rice planted in the world, little commercial hybrid wheat is planted globally as a result of the lack of a suitable system for male sterility. Therefore, understanding the molecular nature of male fertility in wheat is critical for commercially viable hybrid wheat. Here, we report the cloning and characterization of Male Sterility 1 (Ms1) in bread wheat by using a combination of advanced genomic approaches. MS1 is a newly evolved gene in the Poaceae that is specifically expressed in microsporocytes, and is essential for microgametogenesis. Orthologs of Ms1 are expressed in diploid and allotetraploid ancestral species. Orthologs of Ms1 are epigenetically silenced in the A and D subgenomes of allohexaploid wheat; only Ms1 from the B subgenome is expressed. The encoded protein, Ms1, is localized to plastid and mitochondrial membranes, where it exhibits phospholipid-binding activity. These findings provide a foundation for the development of commercially viable hybrid wheat.
Collapse
|
34
|
Ni F, Qi J, Hao Q, Lyu B, Luo MC, Wang Y, Chen F, Wang S, Zhang C, Epstein L, Zhao X, Wang H, Zhang X, Chen C, Sun L, Fu D. Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat Commun 2017; 8:15121. [PMID: 28452349 PMCID: PMC5414350 DOI: 10.1038/ncomms15121] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/01/2017] [Indexed: 11/30/2022] Open
Abstract
Male sterility is a valuable trait for plant breeding and hybrid seed production. The dominant male-sterile gene Ms2 in common wheat has facilitated the release of hundreds of breeding lines and cultivars in China. Here, we describe the map-based cloning of the Ms2 gene and show that Ms2 confers male sterility in wheat, barley and Brachypodium. MS2 appears as an orphan gene within the Triticinae and expression of Ms2 in anthers is associated with insertion of a retroelement into the promoter. The cloning of Ms2 has substantial potential to assemble practical pipelines for recurrent selection and hybrid seed production in wheat.
Collapse
Affiliation(s)
- Fei Ni
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Juan Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Qunqun Hao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Bo Lyu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Yan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fengjuan Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shuyun Wang
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chaozhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Cuixia Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lanzhen Sun
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Daolin Fu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018, China
- Department of Plant, Soil and Entomological Sciences, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
35
|
Wang S, Zhang Y, Song Q, Fang Z, Chen Z, Zhang Y, Zhang L, Zhang L, Niu N, Ma S, Wang J, Yao Y, Hu Z, Zhang G. Mitochondrial Dysfunction Causes Oxidative Stress and Tapetal Apoptosis in Chemical Hybridization Reagent-Induced Male Sterility in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:2217. [PMID: 29367855 PMCID: PMC5767846 DOI: 10.3389/fpls.2017.02217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 05/07/2023]
Abstract
Male sterility in plants has been strongly linked to mitochondrial dysfunction. Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. Therefore, it is important to better understand the relationship between mitochondria and CHA-induced male sterility in wheat. This study reports on the impairment of mitochondrial function duo to CHA-SQ-1, which occurs by decreasing cytochrome oxidase and adenosine triphosphate synthase protein levels and theirs activities, respiratory rate, and in turn results in the inhibition of the mitochondrial electron transport chain (ETC), excessive production of reactive oxygen species (ROS) and disruption of the alternative oxidase pathway. Subsequently, excessive ROS combined with MnSOD defects results in damage to the mitochondrial membrane, followed by ROS release into the cytoplasm. The microspores underwent severe oxidative stress during pollen development. Furthermore, chronic oxidative stress, together with the overexpression of type II metacaspase, triggered premature tapetal apoptosis, which resulted in pollen abortion. Accordingly, we propose a metabolic pathway for mitochondrial-mediated male sterility in wheat, which provides information on the molecular events underlying CHA-SQ-1-induced abortion of anthers and may serve as an additional guide to the practical application of hybrid breeding.
Collapse
Affiliation(s)
- Shuping Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agronomy, Yangtze University, Jingzhou, China
- *Correspondence: Gaisheng Zhang, Shuping Wang,
| | - Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qilu Song
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Zhengwu Fang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Agronomy, Yangtze University, Jingzhou, China
| | - Zheng Chen
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Yamin Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Lili Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Na Niu
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Shoucai Ma
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Junwei Wang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
| | - Yaqin Yao
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gaisheng Zhang
- Key Laboratory of Crop Heterosis of Shaanxi Province, College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Yangling, China
- *Correspondence: Gaisheng Zhang, Shuping Wang,
| |
Collapse
|