1
|
Gitto S, Fiorillo C, Argento FR, Fini E, Borghi S, Falcini M, Roccarina D, La Delfa R, Lillo L, Zurli T, Forte P, Ghinolfi D, De Simone P, Chiesi F, Ingravallo A, Vizzutti F, Aspite S, Laffi G, Lynch E, Petruccelli S, Carrai P, Palladino S, Sofi F, Stefani L, Amedei A, Baldi S, Toscano A, Lau C, Marra F, Becatti M. Oxidative stress-induced fibrinogen modifications in liver transplant recipients: unraveling a novel potential mechanism for cardiovascular risk. Res Pract Thromb Haemost 2024; 8:102555. [PMID: 39309232 PMCID: PMC11416524 DOI: 10.1016/j.rpth.2024.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background Cardiovascular events represent a major cause of non-graft-related death after liver transplant. Evidence suggest that chronic inflammation associated with a remarkable oxidative stress in the presence of endothelial dysfunction and procoagulant environment plays a major role in the promotion of thrombosis. However, the underlying molecular mechanisms are not completely understood. Objectives In order to elucidate the mechanisms of posttransplant thrombosis, the aim of the present study was to investigate the role of oxidation-induced structural and functional fibrinogen modifications in liver transplant recipients. Methods A case-control study was conducted on 40 clinically stable liver transplant recipients and 40 age-matched, sex-matched, and risk factor-matched controls. Leukocyte reactive oxygen species (ROS) production, lipid peroxidation, glutathione content, plasma antioxidant capacity, fibrinogen oxidation, and fibrinogen structural and functional features were compared between patients and controls. Results Patients displayed enhanced leukocyte ROS production and an increased plasma lipid peroxidation with a reduced total antioxidant capacity compared with controls. This systemic oxidative stress was associated with fibrinogen oxidation with fibrinogen structural alterations. Thrombin-catalyzed fibrin polymerization and fibrin resistance to plasmin-induced lysis were significantly altered in patients compared with controls. Moreover, steatotic graft and smoking habit were associated with high fibrin degradation rate. Conclusion ROS-induced fibrinogen structural changes might increase the risk of thrombosis in liver transplant recipients.
Collapse
Affiliation(s)
- Stefano Gitto
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Margherita Falcini
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Davide Roccarina
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosario La Delfa
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ludovica Lillo
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Zurli
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Forte
- Gastroenterology Unit, University Hospital Careggi, Florence, Italy
| | - Davide Ghinolfi
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paolo De Simone
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesca Chiesi
- Department of Neuroscience, Psychology, Drug, and Child’s Health (NEUROFARBA), Section of Psychology, University of Florence, Florence, Italy
| | - Angelica Ingravallo
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Vizzutti
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Aspite
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giacomo Laffi
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Lynch
- Gastroenterology Unit, University Hospital Careggi, Florence, Italy
| | - Stefania Petruccelli
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Paola Carrai
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Simona Palladino
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Francesco Sofi
- Unit of Clinical Nutrition, Careggi University Hospital, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Stefani
- Sports Medicine Center Clinical and Experimental Medicine Department, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Arianna Toscano
- Division of Internal Medicine, University Hospital of Policlinico G. Martino, Messina, Italy
| | - Chloe Lau
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Fabio Marra
- Internal Medicine and Liver Unit, University Hospital Careggi, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| |
Collapse
|
2
|
Saccà M, Bondi D, Balducci F, Petri C, Mazza G. Intra- and Inter-Seasonal Fitness and Training Load Variations of Elite U20 Soccer Players. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:940-947. [PMID: 35612959 DOI: 10.1080/02701367.2022.2074951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Inherent physical and anthropometric traits of elite soccer players, influenced by nature and nurture, account for the emergence of performances across time. Purpose: The present study aimed to evaluate inter- and intraseasonal differences and the influence of playing position on training and fitness metrics in talented young soccer players. Methods: A total of 74 male players from U20 teams of a single elite club were tested both at beginning, during, and at the end of three consecutive competitive seasons. Players under went anthropometric measurement and were tested for aerobic, jumping, and sprinting performances; the GPS-derived measures of metabolic power (MP) and equivalent distance index (ED) of every athlete were analyzed. Results: Difference between teams emerged in Mognoni's test, while it did not in countermovement jump and anthropometrics. ED was different across seasons. The model selection criteria revealed that the Bosco-Vittori test achieved the best fit. BMI and countermovement jump (CMJ) increased, and fat mass decreased, during season; different intraseasonal trends for CMJ. MP was slightly greater in midfielder. Conclusion: Network approaches in modeling performance metrics in sports team could unveil original interconnections between performance factors. In addition, the authors support multiparametric longitudinal assessments and a huge database of sports data for facilitating talent identification.
Collapse
|
3
|
McKay BA, Delaney JA, Simpkin A, Larkin T, Murray A, Daniels D, Pedlar CR, Sampson JA. Objective Measures of Strain and Subjective Muscle Soreness Differ Between Positional Groups and Season Phases in American College Football. Int J Sports Physiol Perform 2023; 18:625-633. [PMID: 37059425 DOI: 10.1123/ijspp.2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/27/2023] [Accepted: 03/03/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE To assess objective strain and subjective muscle soreness in "Bigs" (offensive and defensive line), "Combos" (tight ends, quarterbacks, line backers, and running backs), and "Skills" (wide receivers and defensive backs) in American college football players during off-season, fall camp, and in-season phases. METHODS Twenty-three male players were assessed once weekly (3-wk off-season, 4-wk fall camp, and 3-wk in-season) for hydroperoxides (free oxygen radical test [FORT]), antioxidant capacity (free oxygen radical defense test [FORD]), oxidative stress index (OSI), countermovement-jump flight time, Reactive Strength Index (RSI) modified, and subjective soreness. Linear mixed models analyzed the effect of a 2-within-subject-SD change between predictor and dependent variables. RESULTS Compared to fall camp and in-season phases, off-season FORT (P ≤ .001 and <.001), FORD (P ≤ .001 and <.001), OSI (P ≤ .001 and <.001), flight time (P ≤ .001 and <.001), RSI modified (P ≤ .001 and <.001), and soreness (P ≤ .001 and <.001) were higher for "Bigs," whereas FORT (P ≤ .001 and <.001) and OSI (P = .02 and <.001) were lower for "Combos." FORT was higher for "Bigs" compared to "Combos" in all phases (P ≤ .001, .02, and .01). FORD was higher for "Skills" compared with "Bigs" in off-season (P = .02) and "Combos" in-season (P = .01). OSI was higher for "Bigs" compared with "Combos" (P ≤ .001) and "Skills" (P = .01) during off-season and to "Combos" in-season (P ≤ .001). Flight time was higher for "Skills" in fall camp compared with "Bigs" (P = .04) and to "Combos" in-season (P = .01). RSI modified was higher for "Skills" during off-season compared with "Bigs" (P = .02) and "Combos" during fall camp (P = .03), and in-season (P = .03). CONCLUSION Off-season American college football training resulted in higher objective strain and subjective muscle soreness in "Bigs" compared with fall camp and during in-season compared with "Combos" and "Skills" players.
Collapse
Affiliation(s)
- Benjamin A McKay
- Centre of Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW,Australia
- Athletics Department, University of Oregon, Eugene, OR,USA
| | | | - Andrew Simpkin
- School of Mathematical and Statistical Sciences, National University of Ireland, Galway,Ireland
| | - Theresa Larkin
- Centre of Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW,Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW,Australia
| | - Andrew Murray
- Physical Education & Health Sciences, University of Edinburgh, Edinburgh,United Kingdom
| | - Diarmuid Daniels
- Orreco Ltd, Business Innovation Unit, National University of Ireland, Galway,Ireland
| | - Charles R Pedlar
- Orreco Ltd, Business Innovation Unit, National University of Ireland, Galway,Ireland
- Faculty of Sport, Allied Health and Performance Sciences, St Mary's University, London,United Kingdom
- Division of Surgery and Interventional Science, University College London, London,United Kingdom
| | - John A Sampson
- Centre of Medical and Exercise Physiology, School of Medicine, University of Wollongong, Wollongong, NSW,Australia
| |
Collapse
|
4
|
Becatti M, Cito G, Argento FR, Fini E, Bettiol A, Borghi S, Mannucci A, Fucci R, Giachini C, Picone R, Emmi G, Taddei N, Coccia ME, Fiorillo C. Blood Leukocyte ROS Production Reflects Seminal Fluid Oxidative Stress and Spermatozoa Dysfunction in Idiopathic Infertile Men. Antioxidants (Basel) 2023; 12:antiox12020479. [PMID: 36830037 PMCID: PMC9952358 DOI: 10.3390/antiox12020479] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
A large proportion of infertile men do not receive a clear diagnosis, being considered as idiopathic or unexplained cases due to infertility diagnosis based on standard semen parameters. Particularly in unexplained cases, the search for new indicators seems mandatory to provide specific information. In the etiopathogenesis of male infertility oxidative stress displays important roles by negatively affecting sperm quality and function. In this study, performed in a population of 34 idiopathic infertile men and in 52 age-matched controls, redox parameters were assessed in blood, leukocytes, spermatozoa, and seminal fluid and related to semen parameters. The main findings indicate that blood oxidative stress markers reflect seminal oxidative stress. Interestingly, blood leukocyte ROS production was significantly correlated to sperm ROS production and to semen parameters. Overall, these results suggest the potential employ of blood redox markers as a relevant and adjunctive tool for sperm quality evaluation aimed to preconception care.
Collapse
Affiliation(s)
- Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
- Correspondence: ; Tel.: +39-055-2751261
| | - Gianmartin Cito
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | - Rossella Fucci
- Assisted Reproductive Technology Centre, Careggi University Hospital, 50134 Firenze, Italy
| | - Claudia Giachini
- Assisted Reproductive Technology Centre, Careggi University Hospital, 50134 Firenze, Italy
| | - Rita Picone
- Assisted Reproductive Technology Centre, Careggi University Hospital, 50134 Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| | | | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50134 Firenze, Italy
| |
Collapse
|
5
|
Cirillo M, Argento FR, Attanasio M, Becatti M, Ladisa I, Fiorillo C, Coccia ME, Fatini C. Atherosclerosis and Endometriosis: The Role of Diet and Oxidative Stress in a Gender-Specific Disorder. Biomedicines 2023; 11:biomedicines11020450. [PMID: 36830986 PMCID: PMC9953736 DOI: 10.3390/biomedicines11020450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Background: Accelerated atherosclerosis in patients with endometriosis has been hypothesised, and lifestyle improvement might control cardiovascular risk. We explored cardiometabolic markers and oxidative stress and evaluated the effects of the Mediterranean Diet (MD) in modulating these markers. Methods: In this prospective study, we included 35 women with endometriosis. At baseline (T0) and after 3 (T1) and 6 (T2) months from the start of the diet, we investigated cardiometabolic parameters, lifestyle and oxidative stress. Results: After a 3-month intervention with MD, we observed a significant reduction in total cholesterol (p = 0.01) and LDL-c (p = 0.003). We observed at T1 an increase in B12 and E vitamins, folate and zinc. After 6 months, zinc (p = 0.04) and folate (p = 0.08) increased in comparison to T0. A reduction in homocysteine from T0 to T1 (p = 0.01) was found. After 3 months, an increase in Rapid Assessment of Physical Activity tool 1 (RAPA) (p < 0.001) and RAPA 2 was observed (p = 0.009). We observed high levels of oxidative stress markers at baseline. After 6 months of MD, a significant improvement in lymphocyte Reactive Oxygen Species (ROS) (p < 0.001) and total antioxidant capacity was observed (p = 0.02). Conclusions: The improvement of lifestyle, and in particular the Mediterranean dietary intervention, allowed the improvement of the metabolic and oxidative profile and overall health-related quality of life.
Collapse
Affiliation(s)
- Michela Cirillo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Centre for Assisted Reproductive Technology, Division of Obstetrics and Gynaecology, Careggi University Hospital, 50134 Florence, Italy
| | - Flavia Rita Argento
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Monica Attanasio
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Matteo Becatti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Irene Ladisa
- Centre for Assisted Reproductive Technology, Division of Obstetrics and Gynaecology, Careggi University Hospital, 50134 Florence, Italy
| | - Claudia Fiorillo
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Maria Elisabetta Coccia
- Centre for Assisted Reproductive Technology, Division of Obstetrics and Gynaecology, Careggi University Hospital, 50134 Florence, Italy
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Cinzia Fatini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Centre for Assisted Reproductive Technology, Division of Obstetrics and Gynaecology, Careggi University Hospital, 50134 Florence, Italy
- Correspondence:
| |
Collapse
|
6
|
D’Amico A, Fossati C, Pigozzi F, Borrione P, Peruzzi M, Bartimoccia S, Saba F, Pingitore A, Biondi-Zoccai G, Petramala L, De Grandis F, Vecchio D, D’Ambrosio L, Schiavon S, Sciarra L, Nocella C, Cavarretta E. Natural Activators of Autophagy Reduce Oxidative Stress and Muscle Injury Biomarkers in Endurance Athletes: A Pilot Study. Nutrients 2023; 15:nu15020459. [PMID: 36678330 PMCID: PMC9862446 DOI: 10.3390/nu15020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oxidative stress and impaired autophagy are directly and indirectly implicated in exercise-mediated muscle injury. Trehalose, spermidine, nicotinamide, and polyphenols possess pro-autophagic and antioxidant properties, and could therefore reduce exercise-induced damage to skeletal muscle. The aim of this study was to investigate whether a mixture of these compounds was able to improve muscle injury biomarkers in endurance athletes through the modulation of oxidative stress and autophagic machinery. METHODS AND RESULTS sNOX2-dp; H2O2 production; H2O2 breakdown activity (HBA); ATG5 and p62 levels, both markers of autophagic process; and muscle injury biomarkers were evaluated in five endurance athletes who were allocated in a crossover design study to daily administration of 10.5 g of an experimental mixture or no treatment, with evaluations conducted at baseline and after 30 days of mixture consumption. Compared to baseline, the mixture intake led to a remarkable reduction of oxidative stress and positively modulated autophagy. Finally, after the 30-day supplementation period, a significant decrease in muscle injury biomarkers was found. CONCLUSION Supplementation with this mixture positively affected redox state and autophagy and improved muscle injury biomarkers in athletes, allowing for better muscle recovery. Moreover, it is speculated that this mixture could also benefit patients suffering from muscle injuries, such as cancer or cardiovascular patients, or elderly subjects.
Collapse
Affiliation(s)
- Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Mariangela Peruzzi
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Annachiara Pingitore
- Department of General and Specialistic Surgery “Paride Stefanini”, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luigi Petramala
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Fabrizio De Grandis
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luca D’Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luigi Sciarra
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 Coppito, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel./Fax: +39-064-9970-102
| | - Elena Cavarretta
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
7
|
Pérez-Castillo ÍM, Rueda R, Bouzamondo H, López-Chicharro J, Mihic N. Biomarkers of post-match recovery in semi-professional and professional football (soccer). Front Physiol 2023; 14:1167449. [PMID: 37113691 PMCID: PMC10126523 DOI: 10.3389/fphys.2023.1167449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
High-level football (soccer) players face intense physical demands that result in acute and residual fatigue, impairing their physical performance in subsequent matches. Further, top-class players are frequently exposed to match-congested periods where sufficient recovery times are not achievable. To evaluate training and recovery strategies, the monitoring of players' recovery profiles is crucial. Along with performance and neuro-mechanical impairments, match-induced fatigue causes metabolic disturbances denoted by changes in chemical analytes that can be quantified in different body fluids such as blood, saliva, and urine, thus acting as biomarkers. The monitoring of these molecules might supplement performance, neuromuscular and cognitive measurements to guide coaches and trainers during the recovery period. The present narrative review aims to comprehensively review the scientific literature on biomarkers of post-match recovery in semi-professional and professional football players as well as provide an outlook on the role that metabolomic studies might play in this field of research. Overall, no single gold-standard biomarker of match-induced fatigue exists, and a range of metabolites are available to assess different aspects of post-match recovery. The use of biomarker panels might be suitable to simultaneously monitoring these broad physiological processes, yet further research on fluctuations of different analytes throughout post-match recovery is warranted. Although important efforts have been made to address the high interindividual heterogeneity of available markers, limitations inherent to these markers might compromise the information they provide to guide recovery protocols. Further research on metabolomics might benefit from evaluating the long-term recovery period from a high-level football match to shed light upon new biomarkers of post-match recovery.
Collapse
Affiliation(s)
| | | | | | - José López-Chicharro
- Real Madrid, Medical Services, Madrid, Spain
- *Correspondence: José López-Chicharro,
| | - Niko Mihic
- Real Madrid, Medical Services, Madrid, Spain
| |
Collapse
|
8
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
9
|
Andrzejewski M, Konefał M, Podgórski T, Pluta B, Chmura P, Chmura J, Marynowicz J, Melka K, Brazaitis M, Kryściak J. How training loads in the preparation and competitive period affect the biochemical indicators of training stress in youth soccer players? PeerJ 2022; 10:e13367. [PMID: 35539014 PMCID: PMC9080429 DOI: 10.7717/peerj.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Background Physical fitness optimization and injury risk-reducing require extensive monitoring of training loads and athletes' fatigue status. This study aimed to investigate the effect of a 6-month training program on the training-related stress indicators (creatine kinase - CK; cortisol - COR; serotonin - SER; brain-derived neurotrophic factor - BDNF) in youth soccer players. Methods Eighteen players (17.8 ± 0.9 years old, body height 181.6 ± 6.9 cm, training experience 9.7 ± 1.7 years) were blood-tested four times: at the start of the preparation period (T0), immediately following the preparation period (T1), mid-competitive period (T2), and at the end of the competitive period (T3). CK activity as well as concentrations of serum COR, SER and BDNF were determined. Training loads were recorded using a session rating of perceived exertion (sRPE). Results Statistical analyzes revealed significant effects for all biochemical parameters in relation to their time measurements (T0, T1, T2, T3). The statistical analyzes of sRPE and differences of biochemical parameters in their subsequent measurements (T0-T1, T1-T2, T2-T3) also demonstrated significant effects observed for all variables: sRPE (HKW = 13.189 (df = 2); p = 0.00), COR (HKW = 9.261 (df = 2); p = 0.01), CK (HKW = 12.492 (df = 2); p = 0.00), SER (HKW = 7.781 (df = 2); p = 0.02) and BDNF (HKW = 15.160 (df = 2); p < 0.001). Discussion In conclusion, it should be stated that the most demanding training loads applied in the preparation period (highest sRPE values) resulted in a significant increase in all analyzed biochemical training stress indicators. The reduction in the training loads during a competitive period and the addition of recovery training sessions resulted in a systematic decrease in the values of the measured biochemical indicators. The results of the study showed that both subjective and objective markers, including training loads, are useful in monitoring training stress in youth soccer players.
Collapse
Affiliation(s)
- Marcin Andrzejewski
- Department of Methodology of Recreation, Poznań University of Physical Education, Poznań, Poland
| | - Marek Konefał
- Department of Biological and Motor Sport Bases, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Tomasz Podgórski
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Beata Pluta
- Department of Methodology of Recreation, Poznań University of Physical Education, Poznań, Poland
| | - Paweł Chmura
- Department of Team Games, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Jan Chmura
- Department of Biological and Motor Sport Bases, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Jakub Marynowicz
- Department of Theory and Methodology of Team Sport Games, Poznań University of Physical Education, Poznań, Poland
| | - Kamil Melka
- Institute of Mathematics, University of Wrocław, Wrocław, Poland
| | - Marius Brazaitis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Kaunas, Lithuania
| | - Jakub Kryściak
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
10
|
D’Amico A, Cavarretta E, Fossati C, Borrione P, Pigozzi F, Frati G, Sciarretta S, Costa V, De Grandis F, Nigro A, Peruzzi M, Miraldi F, Saade W, Calogero A, Rosa P, Galardo G, Loffredo L, Pignatelli P, Nocella C, Carnevale R. Platelet Activation Favours NOX2-Mediated Muscle Damage in Elite Athletes: The Role of Cocoa-Derived Polyphenols. Nutrients 2022; 14:nu14081558. [PMID: 35458119 PMCID: PMC9030438 DOI: 10.3390/nu14081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanisms of exercise-induced muscle injury with etiopathogenesis and its consequences have been described; however, the impact of different intensities of exercise on the mechanisms of muscular injury development is not well understood. The aim of this study was to exploit the relationship between platelet activation, oxidative stress and muscular injuries induced by physical exercise in elite football players compared to amateur athletes. Oxidant/antioxidant status, platelet activation and markers of muscle damage were evaluated in 23 elite football players and 23 amateur athletes. Compared to amateurs, elite football players showed lower antioxidant capacity and higher oxidative stress paralleled by increased platelet activation and muscle damage markers. Simple linear regression analysis showed that sNOX2-dp and H2O2, sCD40L and PDGF-bb were associated with a significant increase in muscle damage biomarkers. In vitro studies also showed that plasma obtained from elite athletes increased oxidative stress and muscle damage in human skeletal muscle myoblasts cell line compared to amateurs’ plasma, an effect blunted by the NOX2 inhibitor or by the cell treatment with cocoa-derived polyphenols. These results indicate that platelet activation increased muscular injuries induced by oxidative stress. Moreover, NOX2 inhibition and polyphenol extracts treatment positively modulates redox status and reduce exercise-induced muscular injury.
Collapse
Affiliation(s)
- Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.D.); (C.F.); (P.B.); (F.P.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy; (M.P.); (P.P.)
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.D.); (C.F.); (P.B.); (F.P.)
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.D.); (C.F.); (P.B.); (F.P.)
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.D.); (C.F.); (P.B.); (F.P.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Vincenzo Costa
- AS Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy;
| | - Fabrizio De Grandis
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, 00135 Rome, Italy; (F.D.G.); (A.N.)
| | - Antonia Nigro
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, 00135 Rome, Italy; (F.D.G.); (A.N.)
| | - Mariangela Peruzzi
- Mediterranea, Cardiocentro, 80122 Napoli, Italy; (M.P.); (P.P.)
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Fabio Miraldi
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Wael Saade
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
| | | | - Lorenzo Loffredo
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Pasquale Pignatelli
- Mediterranea, Cardiocentro, 80122 Napoli, Italy; (M.P.); (P.P.)
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Cristina Nocella
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
- Correspondence: (C.N.); (R.C.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy; (M.P.); (P.P.)
- Correspondence: (C.N.); (R.C.)
| |
Collapse
|
11
|
Mannucci A, Argento FR, Fini E, Coccia ME, Taddei N, Becatti M, Fiorillo C. The Impact of Oxidative Stress in Male Infertility. Front Mol Biosci 2022; 8:799294. [PMID: 35071326 PMCID: PMC8766739 DOI: 10.3389/fmolb.2021.799294] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
At present infertility is affecting about 15% of couples and male factor is responsible for almost 50% of infertility cases. Oxidative stress, due to enhanced Reactive Oxygen Species (ROS) production and/or decreased antioxidants, has been repeatedly suggested as a new emerging causative factor of this condition. However, the central roles exerted by ROS in sperm physiology cannot be neglected. On these bases, the present review is focused on illustrating both the role of ROS in male infertility and their main sources of production. Oxidative stress assessment, the clinical use of redox biomarkers and the treatment of oxidative stress-related male infertility are also discussed.
Collapse
Affiliation(s)
- Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Maria Elisabetta Coccia
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
12
|
Mishra S, Singh VJ, Chawla PA, Chawla V. Neuroprotective Role of Nutritional Supplementation in Athletes. Curr Mol Pharmacol 2021; 15:129-142. [PMID: 34886789 DOI: 10.2174/1874467214666211209144721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. AIMS The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. METHODS This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. RESULTS The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. CONCLUSION Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacology, SRM College of Pharmacy, Delhi-NCR. India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, Punjab. India
| |
Collapse
|
13
|
A Practical Approach to Monitoring Biomarkers of Inflammation and Muscle Damage in Youth Soccer Players During a 6-Month Training Cycle. J Hum Kinet 2021; 80:185-197. [PMID: 34868428 PMCID: PMC8607760 DOI: 10.2478/hukin-2021-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to determine the effects of a 6-month training cycle on muscle damage and inflammatory markers in youth male soccer players. Twenty-one soccer players were tested four times: at the beginning (T1) and immediately after the pre-season period (T2), in the middle (T3) and at the end of the competitive period (T4). Muscle damage and inflammatory markers were determined in blood taken 36 hours after the match. Throughout the training cycle significant increases (p < 0.05) of creatine kinase (T1: 254.4 U·L-1; T4: 304.2 U·L-1) and lactate dehydrogenase (T1: 382.8 U·L-1; T4: 453.2 U·L-1) activities were observed. Significant changes (p < 0.05) in platelet count (T1: 210.5·109·L-1; T4: 234.2·109·L-1), percentage of lymphocyte (T1: 39.80%; T4: 42.97%), monocyte (T1: 6.88%; T4: 9.99%) and granulocyte (T1: 53.32%; T4: 47.05%) as well as in granulocyte-to-lymphocyte (T1: 1.41; T4: 1.17) and lymphocyte-to-monocyte (T1: 6.21; T4: 4.46) ratios were noted. The correlation analysis revealed statistically significant relationships (p < 0.05) between: myoglobin and the percentage of leukocyte subpopulations and the granulocyte to lymphocyte ratio; lactate dehydrogenase and the percentage of monocyte; lactate and leukocyte count. In conclusion, the reported muscle damage and inflammatory markers in T3 and T4 indicate the need for fatigue status monitoring in youth soccer players, especially in the competitive period. Moreover granulocyte to lymphocyte and lymphocyte to monocyte ratios proved to be sensitive to fatigue changes and therefore can provide coaches and sport scientists with a broader perspective on the biochemical monitoring of training status in soccer players.
Collapse
|
14
|
Quinn KM, Cox AJ, Roberts L, Pennell EN, McKeating DR, Fisher JJ, Perkins AV, Minahan C. Temporal changes in blood oxidative stress biomarkers across the menstrual cycle and with oral contraceptive use in active women. Eur J Appl Physiol 2021; 121:2607-2620. [PMID: 34106325 DOI: 10.1007/s00421-021-04734-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/03/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To examine the temporal changes in blood oxidative stress biomarkers in recreationally-trained women that were naturally-cycling (WomenNC) or using oral contraceptives (WomenOC) across one month. METHODS Blood samples were acquired at three timepoints of the menstrual cycle (1: early-follicular, 2: late-follicular and 3: mid-luteal) and oral contraceptive packet (1: InactiveOC, 2: Mid-activeOC and 3: Late-activeOC) for determination of estradiol, progesterone, oxidative stress, C-reactive protein (CRP) and other cardiometabolic biomarkers in plasma and serum. RESULTS There was a Group by Time effect on estradiol (p < 0.001, partial η2 = 0.64) and progesterone (p < 0.001, partial η2 = 0.77). Malondialdehyde, lipid hydroperoxides and CRP concentrations were higher in WomenOC during Late-activeOC compared to InactiveOC (+ 96%, + 23% and + 104%, respectively, p < 0.05). However, there were no changes in these biomarkers across the menstrual cycle in WomenNC (p > 0.05). At all timepoints (i.e., 1, 2 and 3), WomenOC had elevated lipid hydroperoxides (+ 28, + 48% and + 50%) and CRP (+ 71%, + 117% and + 130%) compared to WomenNC (p < 0.05, partial η2 > 0.25). There was no Group by Time effect on non-enzymatic antioxidants or glutathione peroxidase; however, glutathione peroxidase was lower in WomenOC, i.e., main effect of group (p < 0.05, partial η2 > 0.20). CONCLUSION These findings demonstrate that WomenOC not only have higher oxidative stress and CRP than WomenNC, but also a transient increase across one month of habitual oral contraceptive use. Since changes in oxidative stress and CRP often relate to training stress and recovery, these outcomes may have implications to workload monitoring practices in female athletes.
Collapse
Affiliation(s)
- Karlee M Quinn
- Griffith Sports Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
- Sport Performance Innovation and Knowledge Excellence Unit, Queensland Academy of Sport, Brisbane, 4111, Australia.
| | - Amanda J Cox
- School of Medical Science, Griffith University, Gold Coast, 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, Australia
| | - Llion Roberts
- Griffith Sports Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
- Sport Performance Innovation and Knowledge Excellence Unit, Queensland Academy of Sport, Brisbane, 4111, Australia
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Evan N Pennell
- School of Medical Science, Griffith University, Gold Coast, 4222, Australia
| | - Daniel R McKeating
- School of Medical Science, Griffith University, Gold Coast, 4222, Australia
| | - Joshua J Fisher
- School of Medical Science, Griffith University, Gold Coast, 4222, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast, 4222, Australia
| | - Clare Minahan
- Griffith Sports Science, Griffith University, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| |
Collapse
|
15
|
Simmons R, Doma K, Sinclair W, Connor J, Leicht A. Acute Effects of Training Loads on Muscle Damage Markers and Performance in Semi-elite and Elite Athletes: A Systematic Review and Meta-analysis. Sports Med 2021; 51:2181-2207. [PMID: 34097298 DOI: 10.1007/s40279-021-01486-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The relationship between exercise-induced muscle damage (EIMD) indicators and acute training loads (TL) is yet to be reviewed extensively in semi-elite and elite athlete populations. OBJECTIVES The objectives of this systematic review and meta-analysis were threefold: (1) to evaluate studies of EIMD following the initial period of the preseason in semi-elite and elite athletes: (2) to examine acute physiological and performance responses across two periods of the season with similar TL; and (3) to examine acute physiological and performance responses to acute changes in TL during the season. METHODS The CINAHL, PubMed, Scopus, SPORTDiscus and Web of Science databases were systematically searched for studies that investigated: (1) semi-elite or elite athletes in team or individual sports following a periodised training programme; and (2) measured acute responses to training. Studies were excluded if: (1) conducted in animals; (2) non-English language; or (3) a conference abstract, review or case report. The Kmet Quality Scoring of Quantitative Studies tool was used for study appraisal. SYNTHESIS METHODS Data were quantitatively analysed by generating forest plots to report test statistics for statistical significance and inter-trial heterogeneity. RESULTS Of the included studies (n = 32), athletes experienced greater creatine kinase (CK) concentrations (Z = 4.99, p < 0.00001, I2 = 74%), inflammatory factors and other indirect measures of muscle damage in the initial phase of the preseason period compared to the off-season; there were no changes in CK (Z = 1.43, p = 0.15, I2 = 74%) across two time points of similar TL; and there were concurrent increases in CK with increases in TL (Z = 4.26, p < 0.0001, I2 = 36%) and vice versa (Z = 4.33, p < 0.0001, I2 = 79%).The qualitative analysis identified that the response of inflammatory factors and other indirect measures of muscle damage to changes in load were inconclusive. LIMITATIONS This review included varying age, sex, sports and competition levels. The group level meta-analysis failed to identify within-athlete or position-specific differences across time. CONCLUSION Blood biomarkers of EIMD may not differ across periods of similar TL, however can be considered a sensitive monitoring tool for assessing responses following acute TL changes in semi-elite and elite athletes.
Collapse
Affiliation(s)
- Ryan Simmons
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia. .,North Queensland Cowboys Rugby League Football Club, Townsville, Australia.
| | - Kenji Doma
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia.,Orthopaedic Research Institute of Queensland, Townsville, Australia
| | - Wade Sinclair
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia.,North Queensland Cowboys Rugby League Football Club, Townsville, Australia
| | - Jonathan Connor
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia
| | - Anthony Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
16
|
The Association Between Alterations in Redox Homeostasis, Cortisol, and Commonly Used Objective and Subjective Markers of Fatigue in American Collegiate Football. Int J Sports Physiol Perform 2021; 16:1851-1857. [PMID: 34051699 DOI: 10.1123/ijspp.2020-0933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess associations between a free oxygen radical test (FORT), free oxygen radical defense test (FORD), oxidative stress index, urinary cortisol, countermovement jump (CMJ), and subjective wellness in American college football. METHODS Twenty-three male student athlete American college football players were assessed over 10 weeks: off-season conditioning (3 wk), preseason camp (4 wk), and in season (3 wk). Assessments included a once-weekly FORT and FORD blood sample, urinary cortisol sample, CMJ assessment including flight time, reactive strength index modified and concentric impulse, and a daily subjective wellness questionnaire. Linear mixed models analyzed the effect of a 2 within-subject SD change in the predictor variable on the dependent variable. The effects were interpreted using magnitude-based inference and are presented as standardized effect size (ES) ± 90% confidence intervals. RESULTS Small negative associations were observed between FORT-flight time, FORT-fatigue, FORT-soreness (ES range = -0.30 to -0.48), FORD-sleep (ES = 0.42 ± 0.29), and oxidative stress index soreness (ES = 0.56 ± 0.29). Small positive associations were observed between FORT-cortisol (ES = 0.36 ± 0.35), FORD-flight time, FORD reactive strength index modified and FORD-soreness (0.37-0.41), oxidative stress index concentric impulse (ES = 0.37 ± 0.28), and with soreness-concentric impulse, soreness-flight time, and soreness reactive strength index modified (0.33-0.59). Moderate positive associations were observed between cortisol-concentric impulse and cortisol-sleep (0.57-0.60). CONCLUSION FORT/FORD was associated with CMJ variables and subjective wellness. Greater amounts of subjective soreness were associated with decreased CMJ performance, increased FORT and cortisol, and decreased FORD.
Collapse
|
17
|
King TJ, Coates AM, Tremblay JC, Slysz JT, Petrick HL, Pignanelli C, Millar PJ, Burr JF. Vascular Function Is Differentially Altered by Distance after Prolonged Running. Med Sci Sports Exerc 2021; 53:597-605. [PMID: 32804900 DOI: 10.1249/mss.0000000000002493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE Ultraendurance exercise is steadily growing in popularity; however, the effect of increasingly prolonged durations of exercise on the vascular endothelium is unknown. The aim of this study was to characterize the effect of various ultramarathon running distances on vascular form and function. METHODS We evaluated vascular endothelial function via flow-mediated dilation (FMD) in the superficial femoral artery, as well as microvascular function, inflammatory factors, and central artery stiffness, before and after participants completed 25-km (7M:2F), 50-km (11M:10F), 80-km (9M:4F), or 160-km (9M:2F) trail races all run on the same day and course. RESULTS Completion required 149 ± 20, 386 ± 111, 704 ± 130, and 1470 ± 235 min, with corresponding average paces of 6.0 ± 0.8, 7.7 ± 2.2, 8.6 ± 1.3, and 9.6 ± 1.3 min·km-1, respectively. At baseline, there were no differences in participant characteristics across race distance groups. Shear rate stimulus trended toward an increase after the race (P = 0.07), but resting postrace artery diameter (P < 0.001) was elevated to a similar extent in all conditions. There was a reduction in FMD after the 50-km race (Δ -1.9% ± 2.2%, P < 0.01), but not the 25-km (Δ +0.3% ± 2.9%, P = 0.8), the 80-km (Δ -1.5% ± 3.2%, P = 0.1), or the 160-km (Δ +0.5% ± 2.5%, P = 0.5) race. Inflammatory markers increased most after 160 km, but arterial stiffness and microvascular function were not differently affected by race distance. CONCLUSIONS Although the superficial femoral artery baseline diameter was larger postexercise regardless of race distance, only the 50-km race reduced FMD, whereas a short-duration higher-intensity race (25 km) and longer-duration lower-intensity races (160 km) did not. Therefore, a 50-km ultramarathon may represent the intersection between higher-intensity exercise over a prolonged duration, causing reduced endothelial function not seen in shorter or longer distances.
Collapse
Affiliation(s)
- Trevor J King
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - Alexandra M Coates
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - Joshua C Tremblay
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, CANADA
| | - Joshua T Slysz
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - Heather L Petrick
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | | | - Philip J Millar
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - Jamie F Burr
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| |
Collapse
|
18
|
Farjallah MA, Ghattassi K, Ben Mahmoud L, Graja A, Boudaya M, Elleuch H, Jammoussi K, Sahnoun Z, Souissi N, Chtourou H, Hammouda O. Effect of nocturnal melatonin intake on cellular damage and recovery from repeated sprint performance during an intensive training schedule. Chronobiol Int 2020; 37:686-698. [PMID: 32378422 DOI: 10.1080/07420528.2020.1746797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An optimal recovery between training sessions is of similar if not greater importance as the training content and program of the training, itself. One of the most used strategies for improving recovery is the ingestion of supplements. The present study aimed to evaluate the effect of 5 mg oral melatonin supplementation on the recovery from repeated sprint (RSA) of performance and biochemical responses (i.e. oxidative stress, leukocytosis cellular damage) after an intensive training camp (TC). Twenty soccer players performed an RSA test before and after an intensive six-day TC associated with nocturnal melatonin (n = 10) or placebo (n = 10) ingestion. Resting and post-RSA test blood samples were obtained before and after the TC. Compared to placebo, melatonin intake decreased resting oxidative stress markers (i.e, advanced oxidation protein products), leukocytosis (i.e. white blood cells (WBC), neutrophils (NE)) and biomarkers of cellular damage (i.e. creatine kinase (CK)). It also lowered post-exercise leukocytosis (i.e. WBC, NE, lymphocytes (LY), monocytes (MO)) and biomarkers of cellular damage (i.e. CK, aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT)) and raised the activity of the main antioxidant enzymes (i.e. glutathione peroxidase (GPx), glutathione reductase (GR)). In addition, compared to placebo, melatonin reduced the deterioration of the best and total time during the RSA test after the TC. In conclusion, nocturnal melatonin supplementation during an intensive TC alleviated oxidative stress, leukocytosis and cellular damage and improved recovery of RSA performance in soccer players.
Collapse
Affiliation(s)
- Mohamed Amine Farjallah
- High Institute of Sport and Physical Education, Manouba University, Ksar-Saïd , Tunis, Tunisia
| | - Kais Ghattassi
- High Institute of Sport and Physical Education, Manouba University, Ksar-Saïd , Tunis, Tunisia
| | - Lobna Ben Mahmoud
- Department of Pharmacology, Faculty of Medicine, University of Sfax , Sfax, Tunisia
| | - Ahmed Graja
- High Institute of Sport and Physical Education, Manouba University, Ksar-Saïd , Tunis, Tunisia.,Research Laboratory, Education, Motricity, Sport and Health, LR15JS01, High Institute of Sport and Physical Education, University of Sfax , Sfax, Tunisia
| | - Mariem Boudaya
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax , Sfax, Tunisia
| | - Henda Elleuch
- Hematology Laboratory, CHU Hedi Chaker, University of Sfax , Sfax, Tunisia
| | - Kamel Jammoussi
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax , Sfax, Tunisia
| | - Zouheir Sahnoun
- Department of Pharmacology, Faculty of Medicine, University of Sfax , Sfax, Tunisia
| | - Nizar Souissi
- Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport , Tunis, Tunisia
| | - Hamdi Chtourou
- Physical Activity, Sport and Health, UR18JS01, National Observatory of Sport , Tunis, Tunisia.,High Institute of Sport and Physical Education of Sfax, University of Sfax , Sfax, Tunisia
| | - Omar Hammouda
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2-APSA), UPL, Paris Nanterre University, UFR STAPS , Nanterre, France.,Research Laboratory, Molecular Bases of Human Pathology, LR12ES17, Faculty of Medicine, University of Sfax , Sfax, Tunisia
| |
Collapse
|
19
|
Pedlar CR, Newell J, Lewis NA. Blood Biomarker Profiling and Monitoring for High-Performance Physiology and Nutrition: Current Perspectives, Limitations and Recommendations. Sports Med 2019; 49:185-198. [PMID: 31691931 PMCID: PMC6901403 DOI: 10.1007/s40279-019-01158-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood test data were traditionally confined to the clinic for diagnostic purposes, but are now becoming more routinely used in many professional and elite high-performance settings as a physiological profiling and monitoring tool. A wealth of information based on robust research evidence can be gleaned from blood tests, including: the identification of iron, vitamin or energy deficiency; the identification of oxidative stress and inflammation; and the status of red blood cell populations. Serial blood test data can be used to monitor athletes and make inferences about the efficacy of training interventions, nutritional strategies or indeed the capacity to tolerate training load. Via a profiling and monitoring approach, blood biomarker measurement combined with contextual data has the potential to help athletes avoid injury and illness via adjustments to diet, training load and recovery strategies. Since wide inter-individual variability exists in many biomarkers, clinical population-based reference data can be of limited value in athletes, and statistical methods for longitudinal data are required to identify meaningful changes within an athlete. Data quality is often compromised by poor pre-analytic controls in sport settings. The biotechnology industry is rapidly evolving, providing new technologies and methods, some of which may be well suited to athlete applications in the future. This review provides current perspectives, limitations and recommendations for sports science and sports medicine practitioners using blood profiling and monitoring for nutrition and performance purposes.
Collapse
Affiliation(s)
- Charles R Pedlar
- Faculty of Sport, Health and Applied Science, St Mary's University, Twickenham, UK.
- Orreco, Business Innovation Unit, National University of Ireland, Galway, Ireland.
- Division of Surgery and Interventional Science, University College London (UCL), London, UK.
| | - John Newell
- Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Nathan A Lewis
- Faculty of Sport, Health and Applied Science, St Mary's University, Twickenham, UK
- Orreco, Business Innovation Unit, National University of Ireland, Galway, Ireland
- English Institute of Sport, Bath, UK
| |
Collapse
|
20
|
Massaro M, Scoditti E, Carluccio MA, Kaltsatou A, Cicchella A. Effect of Cocoa Products and Its Polyphenolic Constituents on Exercise Performance and Exercise-Induced Muscle Damage and Inflammation: A Review of Clinical Trials. Nutrients 2019; 11:E1471. [PMID: 31261645 PMCID: PMC6683266 DOI: 10.3390/nu11071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years, the consumption of chocolate and, in particular, dark chocolate has been "rehabilitated" due to its high content of cocoa antioxidant polyphenols. Although it is recognized that regular exercise improves energy metabolism and muscle performance, excessive or unaccustomed exercise may induce cell damage and impair muscle function by triggering oxidative stress and tissue inflammation. The aim of this review was to revise the available data from literature on the effects of cocoa polyphenols on exercise-associated tissue damage and impairment of exercise performance. To this aim, PubMed and Web of Science databases were searched with the following keywords: "intervention studies", "cocoa polyphenols", "exercise training", "inflammation", "oxidative stress", and "exercise performance". We selected thirteen randomized clinical trials on cocoa ingestion that involved a total of 200 well-trained athletes. The retrieved data indicate that acute, sub-chronic, and chronic cocoa polyphenol intake may reduce exercise-induced oxidative stress but not inflammation, while mixed results are observed in terms of exercise performance and recovery. The interpretation of available results on the anti-oxidative and anti-inflammatory activities of cocoa polyphenols remains questionable, likely due to the variety of physiological networks involved. Further experimental studies are mandatory to clarify the role of cocoa polyphenol supplementation in exercise-mediated inflammation.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy.
| | - Egeria Scoditti
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy
| | - Maria Annunziata Carluccio
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy
| | - Antonia Kaltsatou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala 42100, Greece
| | - Antonio Cicchella
- Department for Quality of Life Studies, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
21
|
Nocella C, Cammisotto V, Pigozzi F, Borrione P, Fossati C, D'Amico A, Cangemi R, Peruzzi M, Gobbi G, Ettorre E, Frati G, Cavarretta E, Carnevale R. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes' Health. Nutrients 2019; 11:E1353. [PMID: 31208096 PMCID: PMC6627820 DOI: 10.3390/nu11061353] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
The role of oxidative stress, an imbalance between reactive oxygen species production (ROS) and antioxidants, has been described in several patho-physiological conditions, including cardiovascular, neurological diseases and cancer, thus impacting on individuals' lifelong health. Diet, environmental pollution, and physical activity can play a significant role in the oxidative balance of an organism. Even if physical training has proved to be able to counteract the negative effects caused by free radicals and to provide many health benefits, it is also known that intensive physical activity induces oxidative stress, inflammation, and free radical-mediated muscle damage. Indeed, variations in type, intensity, and duration of exercise training can activate different patterns of oxidant-antioxidant balance leading to different responses in terms of molecular and cellular damage. The aim of the present review is to discuss (1) the role of oxidative status in athletes in relation to exercise training practice, (2) the implications for muscle damage, (3) the long-term effect for neurodegenerative disease manifestations, (4) the role of antioxidant supplementations in preventing oxidative damages.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00161 Rome, Italy.
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Alessandra D'Amico
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Roberto Cangemi
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Giuliana Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), Anatomy and Histology Unit, University of Parma, Ospedale Maggiore, 43126 Parma, Italy.
| | - Evaristo Ettorre
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- IRCCS Neuromed, 86077 Pozzilli IS, Italy.
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| |
Collapse
|
22
|
Francavilla VC, Vitale F, Ciaccio M, Bongiovanni T, Marotta C, Caldarella R, Todaro L, Zarcone M, Muratore R, Bellia C, Francavilla G, Mazzucco W. Use of Saliva in Alternative to Serum Sampling to Monitor Biomarkers Modifications in Professional Soccer Players. Front Physiol 2018; 9:1828. [PMID: 30618836 PMCID: PMC6306404 DOI: 10.3389/fphys.2018.01828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/06/2018] [Indexed: 01/05/2023] Open
Abstract
We aimed to investigate the correlation between serum and salivary concentrations of steroid hormones and IgA, and the variation in concentrations of these biomarkers, across a soccer competitive season in a sample of players playing for an Italian major League team. Thirty-five elite male soccer players were recruited and assessed for salivary hormones (cortisol, testosterone, T/C‰ and DHEA-S) and IgA at three different time-points: (t1) after the pre-season period and 16 official matches played; (t2) after a winter break and three official matches played; (t3) 2 days after the final match of the championship and 19 matches played. Players were also tested for blood biomarkers (ser-C, ser-T, ser-T/C‰, ser-IgA, ACTH) at two detection times (t1 and t3). Blood samples were collected immediately after saliva sampling. The Spearman’s rank correlation was used to explore the correlation between blood and salivary concentrations of cortisol, free testosterone and IgA in the different time points. One-way ANOVA and permutation test were performed to explore changes by time of hormones and IgA concentrations over the competitive season. We documented a positive correlation between serum and saliva concentrations for Cortisol at t1 (+58.2%; p-value = 0.002) and t3 (+54.2%; p-value = 0.018) and for Testosterone at t1 (+42.0%; p-value = 0.033). Moreover, a positive variation was documented across the season (D = t3–t1) for Cortisol (D = +6.83; SEM = ±2.70; Var% = +37.6; p-value = 0.032), Testosterone (D = +0.33; SEM = ±0.07; Var% = +27.3; p-value = 0.002) and DHEA-S (D = +44.48; SEM = ±18.54; Var% = +82.0; p-value = 0.042), while a decrease of sal-T/C ratio and no variation in salivary IgA concentrations were reported. In conclusion, our findings support for experimental use of saliva samples to monitor steroid hormones modifications in professional soccer players across a competitive season.
Collapse
Affiliation(s)
| | - Francesco Vitale
- Department of Science for Health Promotion and Mother to Child Care "G. D'Alessandro," University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, Palermo, Italy
| | - Tindaro Bongiovanni
- Nutrition, Hydration & Body Composition Department, Parma Calcio 1913, Parma, Italy
| | - Claudia Marotta
- Department of Science for Health Promotion and Mother to Child Care "G. D'Alessandro," University of Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Complex Unit of Laboratory Medicine, "P. Giaccone" University Hospital, Palermo, Italy
| | | | - Maurizio Zarcone
- Clinical Epidemiology and Cancer Registry Unit, "P. Giaccone" University Hospital, Palermo, Italy
| | - Roberto Muratore
- Complex Unit of Laboratory Medicine, "P. Giaccone" University Hospital, Palermo, Italy
| | - Chiara Bellia
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, Palermo, Italy
| | - Giuseppe Francavilla
- Department of Surgical, Anatomical and Oncological Disciplines, University of Palermo, Palermo, Italy
| | - Walter Mazzucco
- Department of Science for Health Promotion and Mother to Child Care "G. D'Alessandro," University of Palermo, Palermo, Italy
| |
Collapse
|
23
|
Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers. Sports (Basel) 2018; 6:sports6040153. [PMID: 30486243 PMCID: PMC6315493 DOI: 10.3390/sports6040153] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/17/2018] [Accepted: 11/21/2018] [Indexed: 11/17/2022] Open
Abstract
Regular exercise with the appropriate intensity and duration may improve an athlete’s physical capacities by targeting different performance determinants across the endurance–strength spectrum aiming to delay fatigue. The mechanisms of muscle fatigue depend on exercise intensity and duration and may range from substrate depletion to acidosis and product inhibition of adenosinetriphosphatase (ATPase) and glycolysis. Fatigue mechanisms have been studied in isolated muscles; single muscle fibers (intact or skinned) or at the level of filamentous or isolated motor proteins; with each approach contributing to our understanding of the fatigue phenomenon. In vivo methods for monitoring fatigue include the assessment of various functional indices supported by the use of biochemical markers including blood lactate levels and more recently redox markers. Blood lactate measurements; as an accompaniment of functional assessment; are extensively used for estimating the contribution of the anaerobic metabolism to energy expenditure and to help interpret an athlete’s resistance to fatigue during high intensity exercise. Monitoring of redox indices is gaining popularity in the applied sports performance setting; as oxidative stress is not only a fatigue agent which may play a role in the pathophysiology of overtraining syndrome; but also constitutes an important signaling pathway for training adaptations; thus reflecting training status. Careful planning of sampling and interpretation of blood biomarkers should be applied; especially given that their levels can fluctuate according to an athlete’s lifestyle and training histories.
Collapse
|
24
|
Dark Chocolate Intake Positively Modulates Redox Status and Markers of Muscular Damage in Elite Football Athletes: A Randomized Controlled Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4061901. [PMID: 30584461 PMCID: PMC6280237 DOI: 10.1155/2018/4061901] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/18/2018] [Indexed: 02/05/2023]
Abstract
Intensive physical exercise may cause increase oxidative stress and muscular injury in elite football athletes. The aim of this study was to exploit the effect of cocoa polyphenols on oxidative stress and muscular injuries induced by intensive physical exercise in elite football players. Oxidant/antioxidant status and markers of muscle damage were evaluated in 24 elite football players and 15 controls. Furthermore, the 24 elite football players were randomly assigned to either a dark chocolate (>85% cocoa) intake (n = 12) or a control group (n = 12) for 30 days in a randomized controlled trial. Oxidative stress, antioxidant status, and muscle damage were assessed at baseline and after 30 days of chocolate intake. Compared to controls, elite football players showed lower antioxidant power and higher oxidative stress paralleled by an increase in muscle damage markers. After 30 days of dark chocolate intake, an increased antioxidant power was found in elite athletes assuming dark chocolate. Moreover, a significant reduction in muscle damage markers (CK and LDH, p < 0.001) was observed. In the control group, no changes were observed with the exception of an increase of sNox2-dp, H2O2, and myoglobin. A simple linear regression analysis showed that sNox2-dp was associated with a significant increase in muscle damage biomarker release (p = 0.001). An in vitro study also confirmed that polyphenol extracts significantly decreased oxidative stress in murine myoblast cell line C2C12-derived. These results indicate that polyphenol-rich nutrient supplementation by means of dark chocolate positively modulates redox status and reduced exercise-induced muscular injury biomarkers in elite football athletes. This trial is registered with NCT03288623.
Collapse
|
25
|
Farjallah MA, Hammouda O, Ben Mahmoud L, Graja A, Ghattassi K, Boudaya M, Jammoussi K, Sahnoun Z, Souissi N. Melatonin supplementation ameliorates oxidative stress, antioxidant status and physical performances recovery during a soccer training camp. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1533749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Omar Hammouda
- Research Center on Sport and Movement (Centre de Recherches sur le Sport et le Mouvement, CeRSM), UPL, Univ Paris Nanterre, UFR STAPS, Nanterre, France
- Faculty of medicine of Sfax, Research Unit, Molecular Bases of Human Pathology, Sfax, Tunisia
| | - Lobna Ben Mahmoud
- Faculty of Medicine, pharmacology department., Sfax University, Sfax, Tunisia
| | - Ahmed Graja
- High Institute of Sport and Physical Education, Manouba University, Tunis, Tunisia
| | - Kais Ghattassi
- High Institute of Sport and Physical Education, Manouba University, Tunis, Tunisia
| | - Mariem Boudaya
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Kamel Jammoussi
- Biochemistry Laboratory, CHU Hedi Chaker, University of Sfax, Sfax, Tunisia
| | - Zouheir Sahnoun
- Faculty of Medicine, pharmacology department., Sfax University, Sfax, Tunisia
| | - Nizar Souissi
- High Institute of Sport and Physical Education, Manouba University, Tunis, Tunisia
| |
Collapse
|
26
|
Becatti M, Taddei N, Fiorillo C. Oxidative stress management during non-invasive ventilation in acute respiratory failure. Intern Emerg Med 2018; 13:141-142. [PMID: 29270832 DOI: 10.1007/s11739-017-1779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/14/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
27
|
A Biochemical Approach to Detect Oxidative Stress in Infertile Women Undergoing Assisted Reproductive Technology Procedures. Int J Mol Sci 2018; 19:ijms19020592. [PMID: 29462946 PMCID: PMC5855814 DOI: 10.3390/ijms19020592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress plays a major role in critical biological processes in human reproduction. However, a reliable and biologically accurate indicator of this condition does not yet exist. On these bases, the aim of this study was to assess and compare the blood and follicular fluid (FF) redox status of 45 infertile subjects (and 45 age-matched controls) undergoing in vitro fertilization (IVF), and explore possible relationships between the assessed redox parameters and IVF outcomes. Reactive Oxygen Species (ROS) production, assessed by flow cytometry analysis in blood leukocytes and granulosa cells, significantly increased (p < 0.05) in infertile patients. Also, oxidative stress markers—ThioBarbituric Acid-Reactive Substances (TBARS) as an index of lipid peroxidation, and Oxygen Radical Absorbance Capacity (ORAC) to account for total antioxidant capacity, both assayed by fluorometric procedures—in blood and FF were significantly (p < 0.001) modified in infertile patients compared to the control group. Moreover, a significant correlation between blood redox markers and FF redox markers was evident. An ORAC/TBARS ratio, defined as the redox index (RI), was obtained in the plasma and FF of the patients and controls. In the patients, the plasma RI was about 3.4-fold (p < 0.0001) lower than the control, and the FF RI was about six-fold (p < 0.0001) lower than the control. Interestingly, both the plasma RI and FF RI results were significantly correlated (p < 0.05) to the considered outcome parameters (metaphase II, fertilization rate, and ongoing pregnancies). Given the reported findings, a strict monitoring of redox parameters in assisted reproductive techniques and infertility management is recommended.
Collapse
|
28
|
Cavalcante PAM, Gregnani MF, Henrique JS, Ornellas FH, Araújo RC. Aerobic but not Resistance Exercise Can Induce Inflammatory Pathways via Toll-Like 2 and 4: a Systematic Review. SPORTS MEDICINE - OPEN 2017; 3:42. [PMID: 29185059 PMCID: PMC5705532 DOI: 10.1186/s40798-017-0111-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Only a few studies have addressed the relationship between toll-like receptors 2 and 4 (TLR2 and TLR4) and the production of local and systemic cytokines in response to physical exercise, and they have produced conflicting results. We aimed to determine whether acute and chronic exercise outcomes are associated with changes in TLR2 and TLR4 expression and signaling and if so, the mechanisms that connect them. METHODS PubMed database were consulted. This systematic review selected 39 articles, 26 involving humans and 13 based on rodents. RESULTS In acute resistance exercise studies, 75% reported a decrease in TLR4 or TLR2 expression and 25% did not find differences. For chronic resistance exercise studies, 67% reported a reduction of expression and 33% did not find differences. Studies of both types reported reductions in pro-inflammatory cytokines. In acute aerobic exercise studies, 40% revealed a decline in the expression of the receptors, 7% reported no significant difference, 40% showed an increase, and 13% did not evaluate their expression. Fifty-eight percent of studies of chronic aerobic exercise revealed a reduction in expression, 17% did not find a difference, and 25% reported increases; they also suggested that the expression of the receptors might be correlated with that of inflammatory cytokines. In studies on combined exercise, 50% reported a decline in receptors expression and 50% did not find a difference. CONCLUSIONS The majority of the articles (54%) link different types of exercise to a decline in TLR4 and TLR2 expression. However, aerobic exercise may induce inflammations through its influence on these receptor pathways. Higher levels of inflammation were seen in acute sessions (40%) than regular sessions (25%).
Collapse
Affiliation(s)
- Paula Andréa Malveira Cavalcante
- Medicine (Nephrology) Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
- , Rua Pedro de Toledo, 669/9and., 04039-032, São Paulo, SP, Brazil.
| | - Marcos Fernandes Gregnani
- Molecular Biology Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jessica Salles Henrique
- Neurology/Neuroscience Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Exercise Neurophysiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fábio Henrique Ornellas
- Medicine (Nephrology) Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ronaldo Carvalho Araújo
- Medicine (Nephrology) Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Molecular Biology Program, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Laboratory of Exercise Genetics and Metabolism, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
29
|
Biolo G, Di Girolamo FG, Fiotti N, Mearelli F, Sarto P. Exercise-mediated reactive oxygen species generation in athletes and in patients with chronic disease. Intern Emerg Med 2017; 12:741-744. [PMID: 28567558 DOI: 10.1007/s11739-017-1689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Gianni Biolo
- Department of Medical, Surgical and Health Sciences, Clinica Medica, ASUITs, University of Trieste, Cattinara University Hospital, Strada di Fiume 447, 34149, Trieste, Italy.
| | - Filippo Giorgio Di Girolamo
- Department of Medical, Surgical and Health Sciences, Clinica Medica, ASUITs, University of Trieste, Cattinara University Hospital, Strada di Fiume 447, 34149, Trieste, Italy
| | - Nicola Fiotti
- Department of Medical, Surgical and Health Sciences, Clinica Medica, ASUITs, University of Trieste, Cattinara University Hospital, Strada di Fiume 447, 34149, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical, Surgical and Health Sciences, Clinica Medica, ASUITs, University of Trieste, Cattinara University Hospital, Strada di Fiume 447, 34149, Trieste, Italy
| | | |
Collapse
|