1
|
Entrenas-Castillo M, Entrenas-Costa LM, Pata MP, Gamez BJ, Muñoz-Corroto C, Gómez-Rebollo C, Mira-Padilla E, Bouillon R, Quesada-Gomez JM. Latent Class Analysis Reveals, in patient profiles, COVID-19-related better prognosis by calcifediol treatment than glucocorticoids. J Steroid Biochem Mol Biol 2025; 245:106609. [PMID: 39218235 DOI: 10.1016/j.jsbmb.2024.106609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Calcifediol and glucocorticoids have been repositioned for the treatment of COVID-19 and may reduce severity, the need for intensive care unit admission and death. OBJECTIVE to identify class or profiles of patients hospitalized and treated with COVID-19 pneumonia using latent class clustering methods to assess the clinical and prognostic relevance of the resulting patients' profiles. Poor prognosis was defined as death or need for ICU admission, good prognosis, the opposite. With special interest in differential responses to calcifediol. SETTING Reina Sofia University Hospital, Córdoba Spain. PATIENTS Retrospective observational cohort study of patients admitted for COVID-19. CLINICALTRIALS gov public database (NCT05819918). INCLUSION CRITERIA (i) Age ≥ 18 and ≤ 90 years, (ii) Pneumonia characterized by the presence of infiltrates on chest X-ray or CT scan, (iii) SARS-CoV-2 infection, confirmed, and (iv) CURB Scale 65 >1. DESIGN Latent class analysis, for obtaining homogeneous clusters, without specifying a priori the belonging group, and selecting the optimal number of clusters by minimizing information criteria. Evaluating the differences between groups for each variable by means of chi-square, Fisher's exact test and Kruskal-Wallis test. RESULTS 707 patients hospitalized from 10 March 2020 until 4 March 2022 were included. For the treatment variable, differences were found between class 3 (60 % treated with calcifediol only) and classes 1 (less than 1 % calcifediol only vs. 82 % treated with both), 2 (less than 1 % calcifediol only vs. 82 % treated with both) and 4 (1 % calcifediol only vs. 84 % treated with both). Class 3, (60 % with calcifediol), had a significantly better prognosis compared to patients treated with glucocorticoids alone (OR: 15.2, 95 % CI: [3.73-142], p<0.001) or no treatment (OR: 7.38, 95 % CI: [2.63-30.2], p<0.001). CONCLUSIONS our real-life study shows that calcifediol treatment significantly reduces the need for ICU admission and improved prognosis in patients hospitalized for COVID-19 pneumonia, especially in the profile of patients receiving it without glucocorticoids.
Collapse
Affiliation(s)
- Marta Entrenas-Castillo
- Hospital QuironSalud Córdoba, Córdoba 14004, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain
| | - Luis Manuel Entrenas-Costa
- Hospital QuironSalud Córdoba, Córdoba 14004, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain; Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | | | - Bernabe Jurado Gamez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain; Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Cristina Muñoz-Corroto
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain; Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Cristina Gómez-Rebollo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain; Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Estefanía Mira-Padilla
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain; Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven 3000, Belgium.
| | - Jose Manuel Quesada-Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba 14004, Spain; Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Córdoba 14004, Spain; CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid 28029, Spain; Departamento de Enfermería, Farmacología y Fisioterapia, Universidad de Córdoba, Córdoba 14004, Spain.
| |
Collapse
|
2
|
Sangeetha Vijayan P, Xavier J, Valappil MP. A review of immune modulators and immunotherapy in infectious diseases. Mol Cell Biochem 2024; 479:1937-1955. [PMID: 37682390 DOI: 10.1007/s11010-023-04825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
The human immune system responds to harmful foreign invaders frequently encountered by the body and employs defense mechanisms to counteract such assaults. Various exogenous and endogenous factors play a prominent role in maintaining the balanced functioning of the immune system, which can result in immune suppression or immune stimulation. With the advent of different immune-modulatory agents, immune responses can be modulated or regulated to control infections and other health effects. Literature provides evidence on various immunomodulators from different sources and their role in modulating immune responses. Due to the limited efficacy of current drugs and the rise in drug resistance, there is a growing need for new therapies for infectious diseases. In this review, we aim to provide a comprehensive overview of different immune-modulating agents and immune therapies specifically focused on viral infectious diseases.
Collapse
Affiliation(s)
- P Sangeetha Vijayan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Joseph Xavier
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Mohanan Parayanthala Valappil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
3
|
Entrenas-Castillo M, Entrenas-Costa LM, Pata MP, Jurado-Gamez B, Muñoz-Corroto C, Gomez-Rebollo C, Mira-Padilla E, Bouillon R, Quesada-Gómez JM. Calcifediol or Corticosteroids in the Treatment of COVID-19: An Observational Study. Nutrients 2024; 16:1910. [PMID: 38931265 PMCID: PMC11206538 DOI: 10.3390/nu16121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Medical treatment of coronavirus 19 disease (COVID-19) is a therapeutic challenge. The available data strongly suggest that calcifediol treatment may reduce the severity of COVID-19, and corticosteroids are the treatment of choice worldwide for severe COVID-19. Both have a very similar action profile, and their combined use in patients may modify the contribution of each administered compound. OBJECTIVE To evaluate how treatment with calcifediol and/or corticosteroids in medical practice modified the need for ICU admission, death, or poor prognosis of patients hospitalized with COVID-19 during the first outbreaks. DESIGN, PATIENTS AND SETTING A retrospective observational cohort study of patients admitted for COVID-19 to the Pneumology Unit of the Hospital Universitario Reina Sofía (Córdoba, Spain). INTERVENTIONS Patients were treated with calcifediol or/and corticosteroids with the best available therapy and standard care, according to clinical practice guidelines. MEASUREMENTS Admission to the intensive care unit (ICU) or death during hospitalization and poor prognosis. RESULTS Seven hundred and twenty-eight patients were included. According to the treatment received, they were included in four groups: calcifediol (n = 68), glucocorticoids (n = 112), both (n = 510), or neither (n = 38). Of the 578 patients treated with calcifediol, 88 were admitted to the ICU (15%), while of the 150 not treated with calcifediol, 39 required ICU admission (26%) (p < 0.01). Among the patients taking calcifediol without glucocorticoids, only 4 of 68 (5.8%) required ICU admission, compared to 84 of 510 (16.5%) treated with both (p = 0.022). Of the 595 patients who had a good prognosis, 568 (82.01%) had received treatment with calcifediol versus the 133 patients with a poor prognosis, of whom 90 (67.66%) had received calcifediol (p < 0.001). This difference was not found for corticosteroids. INTERPRETATION The treatment of choice for hospitalized patients with moderate or mild COVID-19 could be calcifediol, not administering corticosteroids, until the natural history of the disease reaches a stage of hyperinflammation.
Collapse
Affiliation(s)
- Marta Entrenas-Castillo
- Hospital QuironSalud Córdoba, 14004 Córdoba, Spain; (M.E.-C.); (L.M.E.-C.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain;
| | - Luis Manuel Entrenas-Costa
- Hospital QuironSalud Córdoba, 14004 Córdoba, Spain; (M.E.-C.); (L.M.E.-C.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain;
- Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (C.M.-C.); (C.G.-R.); (E.M.-P.)
| | | | - Bernabe Jurado-Gamez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain;
- Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (C.M.-C.); (C.G.-R.); (E.M.-P.)
| | - Cristina Muñoz-Corroto
- Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (C.M.-C.); (C.G.-R.); (E.M.-P.)
| | - Cristina Gomez-Rebollo
- Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (C.M.-C.); (C.G.-R.); (E.M.-P.)
| | - Estefania Mira-Padilla
- Unidad de Gestión Clínica de Neumología, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain; (C.M.-C.); (C.G.-R.); (E.M.-P.)
| | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Jose Manuel Quesada-Gómez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14004 Córdoba, Spain;
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
- Departamento de Enfermería, Farmacología y Fisioterapia, Universidad de Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
4
|
de Carvalho JCS, da Silva-Neto PV, Toro DM, Fuzo CA, Nardini V, Pimentel VE, Pérez MM, Fraga-Silva TFC, Oliveira CNS, Degiovani AM, Ostini FM, Feitosa MR, Parra RS, da Rocha JJR, Feres O, Vilar FC, Gaspar GG, Santos IKFM, Fernandes APM, Maruyama SR, Russo EMS, Bonato VLD, Cardoso CRB, Dias-Baruffi M, Faccioli LH, Sorgi CA. The Interplay among Glucocorticoid Therapy, Platelet-Activating Factor and Endocannabinoid Release Influences the Inflammatory Response to COVID-19. Viruses 2023; 15:v15020573. [PMID: 36851787 PMCID: PMC9959303 DOI: 10.3390/v15020573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
COVID-19 is associated with a dysregulated immune response. Currently, several medicines are licensed for the treatment of this disease. Due to their significant role in inhibiting pro-inflammatory cytokines and lipid mediators, glucocorticoids (GCs) have attracted a great deal of attention. Similarly, the endocannabinoid (eCB) system regulates various physiological processes including the immunological response. Additionally, during inflammatory and thrombotic processes, phospholipids from cell membranes are cleaved to produce platelet-activating factor (PAF), another lipid mediator. Nonetheless, the effect of GCs on this lipid pathway during COVID-19 therapy is still unknown. This is a cross-sectional study involving COVID-19 patients (n = 200) and healthy controls (n = 35). Target tandem mass spectrometry of plasma lipid mediators demonstrated that COVID-19 severity affected eCBs and PAF synthesis. This increased synthesis of eCB was adversely linked with systemic inflammatory markers IL-6 and sTREM-1 levels and neutrophil counts. The use of GCs altered these lipid pathways by reducing PAF and increasing 2-AG production. Corroborating this, transcriptome analysis of GC-treated patients blood leukocytes showed differential modulation of monoacylglycerol lipase and phospholipase A2 gene expression. Altogether, these findings offer a breakthrough in our understanding of COVID-19 pathophysiology, indicating that GCs may promote additional protective pharmacological effects by influencing the eCB and PAF pathways involved in the disease course.
Collapse
Affiliation(s)
- Jonatan C. S. de Carvalho
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-901, SP, Brazil
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Pedro V. da Silva-Neto
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
| | - Diana M. Toro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
| | - Carlos A. Fuzo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Vinícius E. Pimentel
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Malena M. Pérez
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Thais F. C. Fraga-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Camilla N. S. Oliveira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Augusto M. Degiovani
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirao Preto 14085-000, SP, Brazil
| | - Fátima M. Ostini
- Hospital Santa Casa de Misericórdia de Ribeirão Preto, Ribeirao Preto 14085-000, SP, Brazil
| | - Marley R. Feitosa
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Rogerio S. Parra
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - José J. R. da Rocha
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Omar Feres
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14048-900, SP, Brazil
| | - Fernando C. Vilar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Gilberto G. Gaspar
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14049-900, SP, Brazil
| | - Isabel K. F. M. Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Ana P. M. Fernandes
- Departamento de Enfermagem Geral e Especializada, Escola de Enfermagem de Ribeirão Preto-EERP, Universidade de São Paulo-USP, Ribeirao Preto 14040-902, SP, Brazil
| | - Sandra R. Maruyama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos-UFSCar, Sao Carlos 13565-905, SP, Brazil
| | - Elisa M. S. Russo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Vânia L. D. Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
| | - Cristina R. B. Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Lúcia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto-FCFRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-903, SP, Brazil
| | - Carlos A. Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-901, SP, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada-PPGIBA, Instituto de Ciências Biológicas, Universidade Federal do Amazonas-UFAM, Manaus 69080-900, AM, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP, Ribeirao Preto 14040-900, SP, Brazil
- Correspondence: ; Tel.: +55-(16)-3315-9176
| | | |
Collapse
|
5
|
Strokotova AV, Grigorieva EV. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans. Int J Mol Sci 2022; 23:ijms232415678. [PMID: 36555315 PMCID: PMC9778983 DOI: 10.3390/ijms232415678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
Collapse
|
6
|
Bruscoli S, Puzzovio PG, Zaimi M, Tiligada K, Levi-Schaffer F, Riccardi C. Glucocorticoids and COVID-19. Pharmacol Res 2022; 185:106511. [PMID: 36243331 PMCID: PMC9556882 DOI: 10.1016/j.phrs.2022.106511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 19 (COVID-19) is associated with high morbidity and mortality rates globally, representing the greatest health and economic challenge today. Several drugs are currently approved for the treatment of COVID-19. Among these, glucocorticoids (GCs) have received particular attention due to their anti-inflammatory and immunosuppressive effects. In fact, GC are widely used in current clinical practice to treat inflammatory, allergic and autoimmune diseases. Major mechanisms of GC action include inhibition of innate and adaptive immune activity. In particular, an important role is played by the inhibition of pro-inflammatory cytokines and chemokines, and the induction of proteins with anti-inflammatory activity. Overall, as indicated by various national and international regulatory agencies, GCs are recommended for the treatment of COVID-19 in patients requiring oxygen therapy, with or without mechanical ventilation. Regarding the use of GCs for the COVID-19 treatment of non-hospitalized patients at an early stage of the disease, many controversial studies have been reported and regulatory agencies have not recommended their use. The decision to start GC therapy should be based not only on the severity of COVID-19 disease, but also on careful considerations of the benefit/risk profile in individual patients, including monitoring of adverse events. In this review we summarize the effects of GCs on the major cellular and molecular components of the inflammatory/immune system, the benefits and the adverse common reactions in the treatment of inflammatory/autoimmune diseases, as well as in the management of COVID-19.
Collapse
Affiliation(s)
- Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maria Zaimi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Tiligada
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carlo Riccardi
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, Perugia, Italy.
| |
Collapse
|
7
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
8
|
Feldman C, Waterer G. When should corticosteroids be used for COVID-19 infection? Eur Respir J 2022; 60:60/1/2103222. [PMID: 35835475 DOI: 10.1183/13993003.03222-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Charles Feldman
- Dept of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Grant Waterer
- East Metropolitan Health Service, Perth, Australia.,Royal Perth Bentley Group, Perth, Australia.,University of Western Australia, Perth, Australia.,Northwestern University, Evanston, IL, USA.,Curtin University, Perth, Australia.,Edith Cowan University, Perth, Australia
| |
Collapse
|
9
|
Olivieri F, Sabbatinelli J, Bonfigli AR, Sarzani R, Giordano P, Cherubini A, Antonicelli R, Rosati Y, Del Prete S, Di Rosa M, Corsonello A, Galeazzi R, Procopio AD, Lattanzio F. Routine laboratory parameters, including complete blood count, predict COVID-19 in-hospital mortality in geriatric patients. Mech Ageing Dev 2022; 204:111674. [PMID: 35421418 PMCID: PMC8996472 DOI: 10.1016/j.mad.2022.111674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
To reduce the mortality of COVID-19 older patients, clear criteria to predict in-hospital mortality are urgently needed. Here, we aimed to evaluate the performance of selected routine laboratory biomarkers in improving the prediction of in-hospital mortality in 641 consecutive COVID-19 geriatric patients (mean age 86.6 ± 6.8) who were hospitalized at the INRCA hospital (Ancona, Italy). Thirty-four percent of the enrolled patients were deceased during the in-hospital stay. The percentage of severely frail patients, assessed with the Clinical Frailty Scale, was significantly increased in deceased patients compared to the survived ones. The age-adjusted Charlson comorbidity index (CCI) score was not significantly associated with an increased risk of death. Among the routine parameters, neutrophilia, eosinopenia, lymphopenia, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein, procalcitonin, IL-6, and NT-proBNP showed the highest predictive values. The fully adjusted Cox regressions models confirmed that high neutrophil %, NLR, derived NLR (dNLR), platelet-to-lymphocyte ratio (PLR), and low lymphocyte count, eosinophil %, and lymphocyte-to-monocyte ratio (LMR) were the best predictors of in-hospital mortality, independently from age, gender, and other potential confounders. Overall, our results strongly support the use of routine parameters, including complete blood count, in geriatric patients to predict COVID-19 in-hospital mortality, independent from baseline comorbidities and frailty.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine Unit, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | | | - Riccardo Sarzani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, Ancona, Italy
| | - Piero Giordano
- Internal Medicine and Geriatrics, Italian National Research Centre on Aging, Hospital "U. Sestilli", IRCCS INRCA, Ancona, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di Ricerca Per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| | | | | | | | - Mirko Di Rosa
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, Cosenza, Italy
| | - Andrea Corsonello
- Unit of Geriatric Pharmacoepidemiology and Biostatistics, IRCCS INRCA, Cosenza, Italy; Geriatric Medicine, IRCCS INRCA, 87100 Cosenza, Italy
| | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, Ancona, Italy
| | | |
Collapse
|
10
|
García-Lledó A, Gómez-Pavón J, González Del Castillo J, Hernández-Sampelayo T, Martín-Delgado MC, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Cantón R, De Lucas Ramos P, García-Botella A, Bouza E. Pharmacological treatment of COVID-19: an opinion paper. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35:115-130. [PMID: 34894208 PMCID: PMC8972693 DOI: 10.37201/req/158.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The precocity and efficacy of the vaccines developed so far against COVID-19 has been the most significant and saving advance against the pandemic. The development of vaccines has not prevented, during the whole period of the pandemic, the constant search for therapeutic medicines, both among existing drugs with different indications and in the development of new drugs. The Scientific Committee of the COVID-19 of the Illustrious College of Physicians of Madrid wanted to offer an early, simplified and critical approach to these new drugs, to new developments in immunotherapy and to what has been learned from the immune response modulators already known and which have proven effective against the virus, in order to help understand the current situation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas del Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBERES. Ciber de Enfermedades Respiratorias. Madrid, Spain.
| |
Collapse
|
11
|
Pitfalls of Early Systemic Corticosteroids Home Therapy in Older Patients with COVID-19 Pneumonia. Geriatrics (Basel) 2022; 7:geriatrics7010021. [PMID: 35200526 PMCID: PMC8871955 DOI: 10.3390/geriatrics7010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Corticosteroids have been widely used for acute respiratory distress syndrome (ARDS), but their role in the early phase of SARS-CoV-2 infection is controversial. Our study aimed to determine the effectiveness of early corticosteroid therapy (ECT) in preventing the progression of disease, reducing the escalation of care and improving clinical outcome in older patients hospitalized for COVID-19 pneumonia. A total of 90 subjects (47.7% women; mean age = 82.3 ± 6.7 years) were enrolled. ECT was administered to 33 out of 90 patients before the hospitalization. At admission, no difference was detected in median SOFA score (2, IQR:2 vs. 2, IQR: 2). We found a significant difference in mean PaO2/FiO2 ratio during the first week of hospitalization between ECT patients and controls (F = 5.49, p = 0.002) and in mean PaO2/FiO2 ratio over time (F = 6.94, p < 0.0001). We detected no-significant differences in terms of in-hospital mortality and transfer to ICU between ECT patients and controls (27.1% vs. 22.8%, respectively, p = 0.63). ECT was associated with worse clinical outcomes, showing no benefit in attenuating the progression of the disease or reducing the escalation of care. These findings are crucial given the current pandemic, and further studies are needed to provide additional data on the optimal timing of initiating corticosteroid treatment.
Collapse
|
12
|
Sarzani R, Allevi M, Giulietti F, Di Pentima C, Re S, Giordano P, Spannella F. The Identikit of Patient at Risk for Severe COVID-19 and Death: The Dysregulation of Renin-Angiotensin System as the Common Theme. J Clin Med 2021; 10:5883. [PMID: 34945176 PMCID: PMC8704645 DOI: 10.3390/jcm10245883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Since the first months of the coronavirus disease 2019 (COVID-19) pandemic, several specific physiologic traits, such as male sex and older age, or health conditions, such as overweight/obesity, arterial hypertension, metabolic syndrome, and type 2 diabetes mellitus, have been found to be highly prevalent and associated with increased risk of adverse outcomes in hospitalized patients. All these cardiovascular morbidities are widespread in the population and often coexist, thus identifying a common patient phenotype, characterized by a hyper-activation of the "classic" renin-angiotensin system (RAS) and mediated by the binding of angiotensin II (Ang II) to the type 1-receptor. At the same time, the RAS imbalance was proved to be crucial in the genesis of lung injury after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, where angiotensin-converting-enzyme-2 (ACE2) is not only the receptor for SARS-CoV-2, but its down-regulation through internalization and shedding, caused by the virus binding, leads to a further dysregulation of RAS by reducing angiotensin 1-7 (Ang 1-7) production. This focused narrative review will discuss the main available evidence on the role played by cardiovascular and metabolic conditions in severe COVID-19, providing a possible pathophysiological link based on the disequilibrium between the two opposite arms of RAS.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy; (M.A.); (F.G.); (C.D.P.); (S.R.); (P.G.); (F.S.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Via Tronto 10/a, 60126 Ancona, Italy
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy; (M.A.); (F.G.); (C.D.P.); (S.R.); (P.G.); (F.S.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Via Tronto 10/a, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy; (M.A.); (F.G.); (C.D.P.); (S.R.); (P.G.); (F.S.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Via Tronto 10/a, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy; (M.A.); (F.G.); (C.D.P.); (S.R.); (P.G.); (F.S.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Via Tronto 10/a, 60126 Ancona, Italy
| | - Serena Re
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy; (M.A.); (F.G.); (C.D.P.); (S.R.); (P.G.); (F.S.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Via Tronto 10/a, 60126 Ancona, Italy
| | - Piero Giordano
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy; (M.A.); (F.G.); (C.D.P.); (S.R.); (P.G.); (F.S.)
| | - Francesco Spannella
- Internal Medicine and Geriatrics, IRCCS INRCA, Via della Montagnola 81, 60127 Ancona, Italy; (M.A.); (F.G.); (C.D.P.); (S.R.); (P.G.); (F.S.)
- Department of Clinical and Molecular Sciences, University “Politecnica delle Marche”, Via Tronto 10/a, 60126 Ancona, Italy
| |
Collapse
|