1
|
Zhao C, Sinkkonen A, Jumpponen A, Hui N. Neighborhood plant community, airborne microbiota transferred indoors and prevalence of respiratory diseases are interrelated: A cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176978. [PMID: 39419227 DOI: 10.1016/j.scitotenv.2024.176978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Airborne microbiota transferred indoors (AMTI) is linked to human respiratory health. Yet, the factors influencing these microorganisms and their connections to the prevalence of respiratory diseases (RDs) remain unclear. In this study, we examined plant communities and AMTI using VenTube, next-generation sequencing and quantitative polymerase chain reaction (qPCR) in 72 Shanghai neighborhoods in warm and cold seasons, respectively. To determine the prevalence of RDs, we collected 1026 questionnaires, enlisting 30 ± 5 volunteers aged 40-80, residing in the area for more than a decade, with an equal gender balance. Our results demonstrated that the AMTI communities were less diverse in the cold season than in the warm season, which is in agreement with the changes of garden plant diversity between seasons. Along the reduction of AMTI diversity, greater relative abundances of RDs-associated microbes (e.g., Pseudomonas and Streptococcus) was transferred indoors during the cold season. The questionnaire survey showed that the most prevalent symptom was shortness of breath (25.6 %), followed by rhinitis (20.8 %) and wheeze (14.4 %), with generally no prevalence difference between urban and peri-urban neighborhoods. Notably, despite the sparse garden plant community in the cold season, the abundance of Oleaceae trees showed an inverse relationship with the RDs-associated microbes as well as the prevalences of RDs based on the structural equation model results. This finding was largely supported by the negative effect of Oleaceae trees on the population of Streptococcus anginosus (qPCR) which was a dominant species transferred indoors in the cold season, given that S. anginosus is highly associated with rhinitis and rhinoconjunctivitis. Taken together, our findings suggest a strong association between the Oleaceae trees, the AMTI and the prevalence of RDs, which can shed some lights in the ecological development towards respiratory safe environment in cities.
Collapse
Affiliation(s)
- Chang Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China.
| | - Aki Sinkkonen
- Horticulture Technologies, Unit of Production Systems, Natural Resources Institute Finland, Turku, Finland.
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., 200240 Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| |
Collapse
|
2
|
Pokhriyal A, Kapoor N, Negi S, Sharma G, Chandra S, Gambhir L, Douglas Melo Coutinho H. Endophytic Fungi: Cellular factories of novel medicinal chemistries. Bioorg Chem 2024; 150:107576. [PMID: 38901278 DOI: 10.1016/j.bioorg.2024.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inflammation and associated disorders have been a major contributing factor to mortality worldwide. The augmented mortality rate and emerging resistance against the approved therapeutics necessitate the discovery of novel chemistries destined for multiple clinical settings. Cellular factories including endophytic fungi have been tapped for chemical diversity with therapeutic potential. The emerging evidence has suggested the potential of bioactive compounds isolated from the endophytic fungi as putative agents to combat inflammation-associated disorders. The review summarizesand assists the readers in comprehending the structural and functional aspects of the medicinal chemistries identified from endophytic fungi as anticancer, antiobesity, antigout, and immunomodulatory agents.
Collapse
Affiliation(s)
- Ankita Pokhriyal
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur 302015, India
| | - Sanskriti Negi
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur 302015, India
| | - Subhash Chandra
- Department of Pharmaceutical Chemistry, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India.
| | - Lokesh Gambhir
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun 248001, India.
| | | |
Collapse
|
3
|
Xu M, Huang Z, Zhu W, Liu Y, Bai X, Zhang H. Fusarium-Derived Secondary Metabolites with Antimicrobial Effects. Molecules 2023; 28:molecules28083424. [PMID: 37110658 PMCID: PMC10142451 DOI: 10.3390/molecules28083424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal microbes are important in the creation of new drugs, given their unique genetic and metabolic diversity. As one of the most commonly found fungi in nature, Fusarium spp. has been well regarded as a prolific source of secondary metabolites (SMs) with diverse chemical structures and a broad spectrum of biological properties. However, little information is available concerning their derived SMs with antimicrobial effects. By extensive literature search and data analysis, as many as 185 antimicrobial natural products as SMs had been discovered from Fusarium strains by the end of 2022. This review first provides a comprehensive analysis of these substances in terms of various antimicrobial effects, including antibacterial, antifungal, antiviral, and antiparasitic. Future prospects for the efficient discovery of new bioactive SMs from Fusarium strains are also proposed.
Collapse
Affiliation(s)
- Meijie Xu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ziwei Huang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangjie Zhu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuelian Bai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Radkowski K, Fürstner A. A Sphingolipid Fatty Acid Constituent Made by Alkyne trans‐Hydrogenation: Total Synthesis of Symbioramide. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Chen YH, Wu X, Xu L, El-Shazly M, Ma C, Yuan S, Wang P, Luo L. Two New Cerebroside Metabolites from the Marine Fungus Hortaea werneckii. Chem Biodivers 2022; 19:e202200008. [PMID: 35218148 DOI: 10.1002/cbdv.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/25/2022] [Indexed: 11/11/2022]
Abstract
Two new cerebroside metabolites were isolated from the fermented sponge-derived fungus extract of Hortaea werneckii. They were hortacerebroside A (1) ((2R,3E)-N-[(2S,3R,4E,8E)-1-(β-D-glucopyranosyloxy)-3-hydroxy-9-methylhenicosa-4,8-dien-2-yl]-2-hydroxypentadec-3-enamide) and hortacerebroside B (2) ((2R)-N-[(2S,3R,4E,8E)-1-(β-D-glucopyranosyloxy)-3-hydroxy-9-methylhenicosa-4,8-dien-2-yl]-2-hydroxypentadecanamide). Their structures were elucidated by spectroscopic analysis and by comparison of the spectroscopic data with those of related cerebroside analogs. These two compounds showed significant inhibitory effect on NO produced by lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. The IC50 values of hortacerebroside A (1) and hortacerebroside B (2) were 7 and 5 μM, respectively. These results suggested the potential application of these cerebrosides as drug leads targeting inflammatory-related disorders.
Collapse
Affiliation(s)
- Yung-Husan Chen
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen, 361023, China.,Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, Xiamen, 361023, China
| | - Xiuna Wu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Li Xu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen, 361023, China.,Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, Xiamen, 361023, China
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo, 11566, Egypt.,Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, the German University in Cairo, Cairo, 11432, Egypt
| | - Chuwen Ma
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen, 361023, China.,Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, Xiamen, 361023, China
| | - Shijie Yuan
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen, 361023, China.,Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, Xiamen, 361023, China
| | - Panpan Wang
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen, 361023, China.,Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, Xiamen, 361023, China
| | - Lianzhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Xiamen Medical College, Xiamen, 361023, China.,Fujian Province Universities and Colleges Engineering Research Center for Marine Biomedical Resources Utilization, Xiamen Medical College, Xiamen, 361023, China
| |
Collapse
|
6
|
Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022; 10:microorganisms10020360. [PMID: 35208814 PMCID: PMC8876476 DOI: 10.3390/microorganisms10020360] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Plant-associated endophytes define an important symbiotic association in nature and are established bio-reservoirs of plant-derived natural products. Endophytes colonize the internal tissues of a plant without causing any disease symptoms or apparent changes. Recently, there has been a growing interest in endophytes because of their beneficial effects on the production of novel metabolites of pharmacological significance. Studies have highlighted the socio-economic implications of endophytic fungi in agriculture, medicine, and the environment, with considerable success. Endophytic fungi-mediated biosynthesis of well-known metabolites includes taxol from Taxomyces andreanae, azadirachtin A and B from Eupenicillium parvum, vincristine from Fusarium oxysporum, and quinine from Phomopsis sp. The discovery of the billion-dollar anticancer drug taxol was a landmark in endophyte biology/research and established new paradigms for the metabolic potential of plant-associated endophytes. In addition, endophytic fungi have emerged as potential prolific producers of antimicrobials, antiseptics, and antibiotics of plant origin. Although extensively studied as a “production platform” of novel pharmacological metabolites, the molecular mechanisms of plant–endophyte dynamics remain less understood/explored for their efficient utilization in drug discovery. The emerging trends in endophytic fungi-mediated biosynthesis of novel bioactive metabolites, success stories of key pharmacological metabolites, strategies to overcome the existing challenges in endophyte biology, and future direction in endophytic fungi-based drug discovery forms the underlying theme of this article.
Collapse
|
7
|
Jantaharn P, Mongkolthanaruk W, Suwannasai N, Senawong T, Tontapha S, Amornkitbumrung V, Boonmak J, Youngme S, McCloskey S. Anti-inflammatory and anti-proliferative activities of chemical constituents from fungus Biscogniauxia whalleyi SWUF13-085. PHYTOCHEMISTRY 2021; 191:112908. [PMID: 34388664 DOI: 10.1016/j.phytochem.2021.112908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The fungus Biscogniauxia whalleyi SWUF13-085 from the Graphostomataceae family was studied for potential anti-inflammatory and anticancer agents. A diverse array of natural products was identified. Six of which were undescribed compounds, including xylariterpenoids L-N, (1R,2S,6R,7S)-1,2-dihydroxy-α-bisabolol, 6-[(1R)-1-hydroxy-1-methyl-2-propenyl]-4-methoxy-3-methyl-2H-pyran-2-one and (1R*,4S*,5S*,7S*,10R*)-guaia-11 (12)-en-7,10-diol. Several of the isolated compounds such as bergamotene, guaiane and phthalide derivatives showed activity in both the inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values in the range of 2.48-10.82 μg/mL and anti-proliferation against HeLa cells with IC50 values in the range of 8.64-31.16 μg/mL. While compounds such as cerebrosides A and C only exhibited inhibitory effects on NO production with IC50 values in the range of 4.45-10.28 μg/mL.
Collapse
Affiliation(s)
- Phongphan Jantaharn
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wiyada Mongkolthanaruk
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttika Suwannasai
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thanaset Senawong
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarawut Tontapha
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Vittaya Amornkitbumrung
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Institute of Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jaursup Boonmak
- Materials Chemistry Research Center, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sujittra Youngme
- Materials Chemistry Research Center, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirirath McCloskey
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
8
|
Chingizova EA, Menchinskaya ES, Chingizov AR, Pislyagin EA, Girich EV, Yurchenko AN, Guzhova IV, Mikhailov VV, Aminin DL, Yurchenko EA. Marine Fungal Cerebroside Flavuside B Protects HaCaT Keratinocytes against Staphylococcus aureus Induced Damage. Mar Drugs 2021; 19:md19100553. [PMID: 34677452 PMCID: PMC8538176 DOI: 10.3390/md19100553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Cerebrosides are glycosylated sphingolipids, and in mammals they contribute to the pro-/anti-inflammatory properties and innate antimicrobial activity of the skin and mucosal surfaces. Staphylococcus aureus infection can develop, not only from minor scratches of the skin, but this pathogen can also actively promote epithelial breach. The effect of cerebroside flavuside B from marine sediment-derived fungus Penicillium islandicum (Aniva Bay, the Sea of Okhotsk) on viability, apoptosis, total caspase activity, and cell cycle in human epidermal keratinocytes HaCaT line co-cultivated with S. aureus, as well as influence of flavuside B on LPS-treated HaCaT cells were studied. Influence of flavuside B on bacterial growth and biofilm formation of S. aureus and its effect on the enzymatic activity of sortase A was also investigated. It was found S. aureus co-cultivated with keratinocytes induces caspase-depended apoptosis and cell death, arrest cell cycle in the G0/G1 phase, and increases in cellular immune inflammation. Cerebroside flavuside B has demonstrated its antimicrobial and anti-inflammatory properties, substantially eliminating all the negative consequences caused by co-cultivation of keratinocytes with S. aureus or bacterial LPS. The dual action of flavuside B may be highly effective in the treatment of bacterial skin lesions and will be studied in the future in in vivo experiments.
Collapse
Affiliation(s)
- Ekaterina A. Chingizova
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladivostoku 159, Vladivostok 690022, Russia; (E.A.C.); (E.S.M.); (E.A.P.); (D.L.A.)
| | - Ekaterina S. Menchinskaya
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladivostoku 159, Vladivostok 690022, Russia; (E.A.C.); (E.S.M.); (E.A.P.); (D.L.A.)
| | - Artur R. Chingizov
- Laboratory of Microbiology, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladi-vostoku 159, Vladivostok 690022, Russia; (A.R.C.); (V.V.M.)
| | - Evgeny A. Pislyagin
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladivostoku 159, Vladivostok 690022, Russia; (E.A.C.); (E.S.M.); (E.A.P.); (D.L.A.)
| | - Elena V. Girich
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladivostoku 159, Vladivostok 690022, Russia; (E.V.G.); (A.N.Y.)
| | - Anton N. Yurchenko
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladivostoku 159, Vladivostok 690022, Russia; (E.V.G.); (A.N.Y.)
| | - Irina V. Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave., 4, St. Petersburg 194064, Russia;
| | - Valery V. Mikhailov
- Laboratory of Microbiology, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladi-vostoku 159, Vladivostok 690022, Russia; (A.R.C.); (V.V.M.)
| | - Dmitry L. Aminin
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladivostoku 159, Vladivostok 690022, Russia; (E.A.C.); (E.S.M.); (E.A.P.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Ekaterina A. Yurchenko
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prosp. 100 Let Vladivostoku 159, Vladivostok 690022, Russia; (E.A.C.); (E.S.M.); (E.A.P.); (D.L.A.)
- Correspondence: ; Tel.: +7-423-231-9932
| |
Collapse
|
9
|
Kant K, Lal UR, Rawat R, Kumar A, Ghosh M. Genus Arisaema: A Review of Traditional Importance, Chemistry and Biological Activities. Comb Chem High Throughput Screen 2021; 23:624-648. [PMID: 32297572 DOI: 10.2174/1386207323666200416150754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND The Arisaema (Araceae) is a genus of approximately 180 perennial herbs widely distributed in the evergreen and deciduous forests. This genus (Arisaema) has been used as a medicinal agent since ancient times. Experimental investigations have shown a promising positive correlation with its folklore claim and this encourages us to report updated medicinal review (genus Arisaema) for future research. OBJECTIVE This review aimed to summarize the ethnobotany, folklore uses, chemistry and biological activities. CONCLUSION The comprehensive literature on genus Arisaema indicates the presence of terpenoids, flavonoids, and glycosphingolipids as the principal chemical constituents. Additionally, phytosterols, alkaloids, carboline derivatives and miscellaneous compounds were documented in plants of genus Arisaema. Biological investigations led to the credentials of antioxidant, anticancer, insecticidal, antimicrobial, anthelmintic and hepatoprotective activities. Following, several plant species are promising candidates for the treatment of cancer, parasitic diseases and microbial infection complications. Though, a lot of facets of this genus like phytoconstituents identification, mechanistic profile, adverse effects and clinical studies are still quite limited. Thus, this systematic review may act as a powerful tool in future studies for promoting health benefits against various health hazards.
Collapse
Affiliation(s)
- Kamal Kant
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Uma R Lal
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ravi Rawat
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Anoop Kumar
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
10
|
Orhan IE, Deniz FSS. Natural Products and Extracts as Xantine Oxidase Inhibitors - A Hope for Gout Disease? Curr Pharm Des 2021; 27:143-158. [PMID: 32723252 DOI: 10.2174/1381612826666200728144605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Xanthine oxidase (EC 1.17.3.2) (XO) is one of the main enzymatic sources that create reactive oxygen species (ROS) in the living system. It is a dehydrogenase enzyme that performs electron transfer to nicotinamide adenine dinucleotide (NAD+), while oxidizing hypoxanthin, which is an intermediate compound in purine catabolism, first to xanthine and then to uric acid. XO turns into an oxidant enzyme that oxidizes thiol groups under certain stress conditions in the tissue. The last metabolic step, in which hypoxanthin turns into uric acid, is catalyzed by XO. Uric acid, considered a waste product, can cause kidney stones and gouty-type arthritis as it is crystallized, when present in high concentrations. Thus, XO inhibitors are one of the drug classes used against gout, a purine metabolism disease that causes urate crystal storage in the joint and its surroundings caused by hyperuricemia. Urate-lowering therapy includes XO inhibitors that reduce uric acid production as well as uricosuric drugs that increase urea excretion. Current drugs that obstruct uric acid synthesis through XO inhibition are allopurinol, febuxostat, and uricase. However, since the side effects, safety and tolerability problems of some current gout medications still exist, intensive research is ongoing to look for new, effective, and safer XO inhibitors of natural or synthetic origins for the treatment of the disease. In the present review, we aimed to assess in detail XO inhibitory capacities of pure natural compounds along with the extracts from plants and other natural sources via screening Pubmed, Web of Science (WoS), Scopus, and Google Academic. The data pointed out to the fact that natural products, particularly phenolics such as flavonoids (quercetin, apigenin, and scutellarein), tannins (agrimoniin and ellagitannin), chalcones (melanoxethin), triterpenes (ginsenoside Rd and ursolic acid), stilbenes (resveratrol and piceatannol), alkaloids (berberin and palmatin) have a great potential for new XO inhibitors capable of use against gout disease. In addition, not only plants but other biological sources such as microfungi, macrofungi, lichens, insects (silk worms, ants, etc) seem to be the promising sources of novel XO inhibitors.
Collapse
Affiliation(s)
- Ilkay E Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Fatma S S Deniz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| |
Collapse
|
11
|
Hussain H, Mamadalieva NZ, Ali I, Elizbit, Green IR, Wang D, Zou L, Simal-Gandara J, Cao H, Xiao J. Fungal glycosides: Structure and biological function. Trends Food Sci Technol 2021; 110:611-651. [DOI: 10.1016/j.tifs.2021.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Li M, Yu R, Bai X, Wang H, Zhang H. Fusarium: a treasure trove of bioactive secondary metabolites. Nat Prod Rep 2020; 37:1568-1588. [PMID: 32785347 DOI: 10.1039/d0np00038h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering up to December 2019Fusarium, one of the most common fungal genera, has received considerable attention because of its biosynthetic exuberance, the result of many unique gene clusters involved in the production of secondary metabolites. This review provides the first comprehensive analysis of the secondary metabolites unique to the genus Fusarium, describing their occurrence, bioactivity, and genome features.
Collapse
Affiliation(s)
- Mingzhu Li
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | |
Collapse
|
13
|
Toghueo RMK. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 2019; 11:1-21. [PMID: 32128278 PMCID: PMC7033707 DOI: 10.1080/21501203.2019.1645053] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
Endophytic fungi became an attractive source for the discovery of new leads, because of the complexity and the structural diversity of their secondary metabolites. The genus Fusarium comprising about 70 species is extremely variable in terms of genetics, biology, ecology, and consequently, secondary metabolism and have been isolated from countless plants genera from diverse habitats. These endophytic microbes may provide protection and survival strategies in their host plants with production of a repertoire of chemically diverse and structurally unprecedented secondary metabolites reported to exhibit an incredible array of biological activities including antimicrobial, anticancer, antiviral, antioxidants, antiparasitics, immunosuppressants, immunomodulatory, antithrombotic, and biocontrol ability against plants pathogens and nematodes. This review comprehensively highlights over the period 1981-2019, the bioactive potential of metabolites produced by endophytes from Fusarium genus. Abbreviations: AIDS: Acquired immune deficiency syndrome; BAPT: C-13 phenylpropanoid side chain-CoA acyltransferase; CaBr2: Calcium bromide; DBAT: 10-deacetylbaccatin III-10-O-acetyl transferase; DNA: Deoxyribonucleic acid; EI-MS: Electron ionization mass spectrometer; EN: Enniatin; ERK: Extracellular regulated protein kinase; EtOAc: Ethyl acetate; FDA: Food and Drug Administration; GAE/g: Gallic acid equivalent per gram; GC-MS: Gas chromatography-mass spectrometry; HA: Hyperactivation; HCV: Hepatitis C Virus; HCVPR: Hepatitis C Virus protease; HeLa: Human cervical cancer cell line; HIV: Human immunodeficiency viruses; HPLC: High Performance Liquid Chromatography; IAA: Indole-3-acetic acid; IARC: International Agency for Research on Cancer; IC50: Half maximal inhibitory concentration; LC50: Concentration of the compound that is lethal for 50% of exposed population; LC-MS: Liquid chromatography-mass spectrometry; MCF-7: Human breast cancer cell line; MDR: Multidrug-resistant; MDRSA: Multidrug-resistant S. aureus; MFC: Minimum fungicidal concentration; MIC: Minimum inhibitory concentration; MRSA: Multidrug-resistant S. aureus; MTCC: Microbial type culture collection; PBMCs: Peripheral blood mononuclear cells; PCR: Polymerase chain reaction; TB: Tuberculosis; TLC: Thin layer chromatography; TNF: Tumor necrosis factor; WHO: World Health Organization http://www.zoobank.org/urn:lsid:zoobank.org:pub:D0A7B2D8-5952-436D-85C8-C79EAAD1013C.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
14
|
Singh K, Dwivedi GR, Sanket AS, Pati S. Therapeutic Potential of Endophytic Compounds: A Special Reference to Drug Transporter Inhibitors. Curr Top Med Chem 2019; 19:754-783. [DOI: 10.2174/1568026619666190412095105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/11/2022]
Abstract
From the discovery to the golden age of antibiotics (miracle), millions of lives have been saved. The era of negligence towards chemotherapeutic agents gave birth to drug resistance. Among all the regulators of drug resistance, drug transporters are considered to be the key regulators for multidrug resistance. These transporters are prevalent from prokaryotes to eukaryotes. Endophytes are one of the unexplored wealths of nature. Endophytes are a model mutualistic partner of plants. They are the reservoir of novel therapeutics. The present review deals with endophytes as novel drug resistance reversal agents by inhibiting the drug transporters across the genera. This review also focuses on drug transporters, and mutualistic chemical diversity, exploring drug transporter modulating potential of endophytes.
Collapse
Affiliation(s)
- Khusbu Singh
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - A. Swaroop Sanket
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
15
|
Tian Y, Li Y, Zhao F, Meng C. Engineered Pichia pastoris production of fusaruside, a selective immunomodulator. BMC Biotechnol 2019; 19:37. [PMID: 31208387 PMCID: PMC6580515 DOI: 10.1186/s12896-019-0532-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUD Fusaruside is an immunomodulatory fungal sphingolipid which has medical potentials for treating colitis and liver injury, but its poor natural abundance limits its further study. RESULTS In this study, we described a synthetic biology approach for fusaruside production by engineered Pichia pastoris that was based on polycistronic expression. Two fusaruside biosynthesis genes (Δ3(E)-sd and Δ10(E)-sd), were introduced into P. pastoris to obtain fusaruside producing strain FUS2. To further enhance the yield of fusaruside, three relevant biosynthetic genes (Δ3(E)-sd, Δ10(E)-sd and gcs) were subsequently introduced into P. pastoris to obtain FUS3. All of the biosynthetic genes were successfully co-expressed in FUS2 and FUS3. Compared to that produced by FUS2, fusaruside achieved from FUS3 were slightly increased. In addition, the culture conditions including pH, temperature and methanol concentration were optimized to improve the fusaruside production level. CONCLUSIONS Here a novel P. pastoris fusaruside production system was developed by introducing the biosynthetic genes linked by 2A peptide gene sequences into a polycistronic expression construct, laying a foundation for further development and application of fusaruside.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China.
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China
| | - Fengchun Zhao
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Chao Meng
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China
| |
Collapse
|
16
|
Vieira ER, Xisto MIDDS, Pele MA, Alviano DS, Alviano CS, Barreto-Bergter E, de Campos-Takaki GM. Monohexosylceramides from Rhizopus Species Isolated from Brazilian Caatinga: Chemical Characterization and Evaluation of Their Anti-Biofilm and Antibacterial Activities. Molecules 2018; 23:molecules23061331. [PMID: 29865153 PMCID: PMC6100016 DOI: 10.3390/molecules23061331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 11/16/2022] Open
Abstract
Monohexosylceramides (CMHs) are highly conserved fungal glycosphingolipids playing a role in several cellular processes such as growth, differentiation and morphological transition. In this study, we report the isolation, purification and chemical characterization of CMHs from Rhizopus stolonifer and R. microspores. Using positive ion mode ESI-MS, two major ion species were observed at m/z 750 and m/z 766, respectively. Both ion species consisted of a glucose/galactose residue attached to a ceramide moiety containing 9-methyl-4,8-sphingadienine with an amidic linkage to a hydroxylated C16:0 fatty acid. The antimicrobial activity of CMH was evaluated against Gram positive and Gram negative bacteria using the agar diffusion assay. CMH from both Rhizopus species inhibited the growth of Bacillus terrae, Micrococcus luteus (M. luteus) and Pseudomonas stutzeri (P. stutzeri) with a MIC50 of 6.25, 6.25 and 3.13 mg/mL, respectively. The bactericidal effect was detected only for M. luteus and P. stutzeri, with MBC values of 25 and 6.25 mg/mL, respectively. Furthermore, the action of CMH on the biofilm produced by methicillin-resistant Staphylococcus aureus (MRSA) was analyzed using 12.5 and 25 mg/mL of CMH from R. microsporus. Total biofilm biomass, biofilm matrix and viability of the cells that form the biofilm structure were evaluated. CMH from R. microsporus was able to inhibit the MRSA biofilm formation in all parameters tested.
Collapse
Affiliation(s)
- Edson Rodrigues Vieira
- Núcleo de Pesquisa em Ciências Ambientais e Biotecnologia, Universidade Católica de Pernambuco, Recife 50050-590, PE, Brazil.
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil.
| | - Milagre Américo Pele
- Núcleo de Pesquisa em Ciências Ambientais e Biotecnologia, Universidade Católica de Pernambuco, Recife 50050-590, PE, Brazil.
| | - Daniela Sales Alviano
- Laboratório de Estrutura de Microrganismos, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil.
| | - Celuta Sales Alviano
- Laboratório de Estrutura de Microrganismos, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil.
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro 21941-902, RJ, Brazil.
| | - Galba Maria de Campos-Takaki
- Núcleo de Pesquisa em Ciências Ambientais e Biotecnologia, Universidade Católica de Pernambuco, Recife 50050-590, PE, Brazil.
| |
Collapse
|
17
|
Endophytic fungi of Tinospora cordifolia with anti-gout properties. 3 Biotech 2018; 8:264. [PMID: 29805954 DOI: 10.1007/s13205-018-1290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/15/2018] [Indexed: 10/16/2022] Open
Abstract
Targeting xanthine oxidase inhibition has been a prime strategy for exploration and development of non-purine based drugs for anti-hyperuricemic therapy. Recent studies from our laboratory have suggested that fungal endophytes from medicinal plants could play a pivotal role in exploration of novel therapeutic moieties. In the present study, 19 fungal endophytes were isolated from the medicinal plant Tinospora cordifolia and evaluated for their XO inhibitory activity. In the qualitative assay, Out of 19 fungal endophytes, 7 endophytes exhibited > 30% XO inhibition, of which isolates #1 TCSTITPLM, #53 TCSTITPLM, #105 TCSTITPLM and #83 TCSTITPLM were found to exhibit XO inhibition in the range of 38-45%. Further, ethyl acetate extract of #1TCSTITPLM exhibited 69% XO inhibitory activity followed by chloroform extract of #53 TCSTITPLM with 63% XOI activity in the in vitro uric acid estimation assay. In the quantitative NBT titer plate assay, both extracts exhibited 85% of XO inhibition. The present study is the first report of fungal endophytes isolated from T. cordifolia exhibiting XO inhibitory activity. Ethyl acetate and chloroform extract of #1 TCSTITPLM and #53 TCSTITPLM demonstrated potent XO inhibitory action. Further studies are warranted for purification and characterization of the XO inhibiting moieties.
Collapse
|
18
|
Tanvir R, Javeed A, Rehman Y. Fatty acids and their amide derivatives from endophytes: new therapeutic possibilities from a hidden source. FEMS Microbiol Lett 2018; 365:4992302. [DOI: 10.1093/femsle/fny114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rabia Tanvir
- University Diagnostic Lab (UDL), Department of Microbiology, University of Veterinary and Animal Sciences (UVAS), 54000 Lahore, Punjab, Pakistan
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Punjab, Pakistan
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences (UVAS), 54000 Lahore, Punjab, Pakistan
| | - Yasir Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Punjab, Pakistan
| |
Collapse
|
19
|
Essarioui A, LeBlanc N, Kistler HC, Kinkel LL. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere. MICROBIAL ECOLOGY 2017; 74:157-167. [PMID: 28058470 DOI: 10.1007/s00248-016-0907-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be critical to mediating the coevolutionary dynamics and selective trajectories for inhibitory and nutrient use phenotypes among Streptomyces and Fusarium populations in soil, with significant implications for microbial community functional characteristics.
Collapse
Affiliation(s)
- Adil Essarioui
- Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA.
- National Institute of Agronomic Research, Regional Center of Errachidia, Errachidia, Morocco.
| | - Nicholas LeBlanc
- Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Harold C Kistler
- Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA
- Cereal Disease Lab, USDA-ARS, 1551 Lindig Street, St Paul, MN, USA
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Mbosso Teinkela J, Siwe Noundou X, Fannang S, Meyer F, Vardamides J, Mpondo Mpondo E, Krause R, Azebaze A, Nguedia J. In vitro antimicrobial activity of the methanol extract and compounds from the wood of Ficus elastica Roxb. ex Hornem. aerial roots. SOUTH AFRICAN JOURNAL OF BOTANY 2017; 111:302-306. [DOI: 10.1016/j.sajb.2017.03.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
21
|
Kapoor N, Saxena S. Xanthine oxidase inhibitory and antioxidant potential of Indian Muscodor species. 3 Biotech 2016; 6:248. [PMID: 28330320 PMCID: PMC5114212 DOI: 10.1007/s13205-016-0569-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/11/2016] [Indexed: 10/27/2022] Open
Abstract
Xanthine oxidase is a key enzyme responsible for hyperuricemia, a pre-disposing factor for Gout and oxidative stress-related diseases. Only two clinically approved xanthine oxidase inhibitors Allopurinol and Febuxostat are currently used for treatment of hyperuricemia. However, owing to their side effects there is a need for new non-purine-based selective inhibitors of xanthine oxidase. In the process of exploring novel xanthine oxidase inhibitors and anti-oxidants, we screened the culture filtrate of 07 novel species of Muscodor, a sterile endophytic fungi isolated from Cinnamomum and Aegle marmelos. Chloroform extract of M. darjeelingensis exhibited the maximum xanthine oxidase inhibition in the qualitative and quantitative assays. The IC50 of chloroform extract of M. darjeelingensis was 0.54 µg/ml which was much lower to Allopurinol but higher when compared to Febuxostat. 88% reduction in uric acid production was recorded by M. darjeelingensis chloroform extract which was similar to allopurinol. The maximum anti-oxidant activity was exhibited by M. indica against the gallic acid standard in the DPPH-free radical assay. Anti-oxidant activity index of M. indica was 7.7, which was followed by M. kashayum with 5.4. M. darjeelingensis exhibited a moderate anti-oxidant activity with anti-oxidant activity index of 1.63 in the DPPH assay. The present study is the very first report of Muscodor species exhibiting xanthine oxidase inhibitory and anti-oxidant activity together. Chloroform extract of M. darjeelingensis and M. indica stand out as potential candidates for isolation and characterization of the xanthine oxidase inhibitor and anti-oxidant compound, respectively.
Collapse
|
22
|
Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum. Int J Mol Sci 2016; 17:ijms17091541. [PMID: 27649145 PMCID: PMC5037815 DOI: 10.3390/ijms17091541] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/29/2016] [Accepted: 09/07/2016] [Indexed: 11/27/2022] Open
Abstract
This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS) sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43), Margalef index D′ (6.1351), Shannon–Wiener index H′ (3.2743), Simpson diversity index Ds (0.9476), PIE index (0.9486), and evenness Pielou index J (0.8705) but a low dominant index λ (0.0524). Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ) method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.
Collapse
|
23
|
Patil RH, Patil MP, Maheshwari VL. Bioactive Secondary Metabolites From Endophytic Fungi. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63601-0.00005-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Tian Y, Zhao GY, Fang W, Xu Q, Tan RX. Δ10(E)-Sphingolipid Desaturase Involved in Fusaruside Mycosynthesis and Stress Adaptation in Fusarium graminearum. Sci Rep 2015; 5:10486. [PMID: 25994332 PMCID: PMC4440215 DOI: 10.1038/srep10486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/15/2015] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids are biologically important and structurally distinct cell membrane components. Fusaruside (1) is a 10,11-unsaturated immunosuppressive fungal sphingolipid with medical potentials for treating liver injury and colitis, but its poor natural abundance bottlenecks its druggability. Here, fusaruside is clarified biosynthetically, and its efficacy-related 10,11-double bond can be generated under the regioselective catalysis of an unprecedented Δ10(E)-sphingolipid desaturase (Δ10(E)-SD). Δ10(E)-SD shares 17.7% amino acid sequence similarity with a C9-unmethylated Δ10-sphingolipid desaturase derived from a marine diatom, and 55.7% with Δ8(E)-SD from Fusarium graminearum. Heterologous expression of Δ10(E)-SD in Pichia pastoris has been established to facilitate a reliable generation of 1 through the Δ10(E)-SD catalyzed desaturation of cerebroside B (2), an abundant fungal sphingolipid. Site directed mutageneses show that the conserved histidines of Δ10(E)-SD are essential for the 10,11-desaturation catalysis, which is also preconditioned by the C9-methylation of the substrate. Moreover, Δ10(E)-SD confers improved survival and faster growth to fungal strains at low temperature and high salinity, in parallel with to higher contents of 1 in the mycelia. Collectively, the investigation describes a new Δ10(E)-sphingolipid desaturase with its heterologous expression fundamentalizing a biotechnological supply of 1, and eases the follow-up clarification of the immunosuppression and stress-tolerance mechanism.
Collapse
Affiliation(s)
- Yuan Tian
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Guo Y. Zhao
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Fang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Qiang Xu
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| | - Ren X. Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
25
|
Guo W, Hu S, Elgehama A, Shao F, Ren R, Liu W, Zhang W, Wang X, Tan R, Xu Q, Sun Y, Jiao R. Fumigaclavine C ameliorates dextran sulfate sodium-induced murine experimental colitis via NLRP3 inflammasome inhibition. J Pharmacol Sci 2015; 129:101-6. [PMID: 26320672 DOI: 10.1016/j.jphs.2015.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/07/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022] Open
Abstract
In the present study, the effect of Fumigaclavine C, a fungal metabolite, on murine experimental colitis induced by dextran sulfate sodium (DSS) and its possible mechanism were examined in vivo and vitro. Oral administration of Fumigaclavine C dose-dependently attenuated the loss of body weight and shortening of colon length induced by DSS. The disease activity index, histopathologic scores of musco was also significantly reduced by Fumigaclavine C treatment. Protein and mRNA levels of DSS-induced pro-inflammatory cytokines in colon, including TNF-α, IL-1β and IL-17A, were markedly suppressed by Fumigaclavine C. At the same time, decreased activation of caspase-1 in peritoneal macrophages was detected in Fumigaclavine C -treated mice which suggested that the NLRP3 inflammasome activation was suppressed. Furthermore, in the LPS plus ATP cell model, we found that Fumigaclavine C dose-dependent inhibited IL-1β release and caspase-1 activation. Taken together, our results demonstrate the ability of Fumigaclavine C to inhibit NLRP3 inflammasome activation and give some evidence for its potential use in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Wenjie Guo
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Shasha Hu
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ahmed Elgehama
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Fenli Shao
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ren Ren
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wen Liu
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wenjing Zhang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xinlei Wang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Renxiang Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Qiang Xu
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yang Sun
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China.
| | - Ruihua Jiao
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
26
|
Deshmukh SK, Verekar SA, Bhave SV. Endophytic fungi: a reservoir of antibacterials. Front Microbiol 2015; 5:715. [PMID: 25620957 PMCID: PMC4288058 DOI: 10.3389/fmicb.2014.00715] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the under developed countries of the world. The most important microorganisms that have seen a geometric rise in numbers are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relevant to the problem. New, very specific and effective antibiotics are needed but also at an affordable price! A Herculean task for researchers all over the world! In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda have been effective as "handed down data" in family generations. May need a second, third and more "in-depth investigations?"
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- Department of Natural Products, Piramal Enterprises LimitedMumbai, India
| | | | | |
Collapse
|
27
|
Li J, Jie HB, Lei Y, Gildener-Leapman N, Trivedi S, Green T, Kane LP, Ferris RL. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res 2014; 75:508-518. [PMID: 25480946 DOI: 10.1158/0008-5472.can-14-1215] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immune rejection of tumors is mediated by IFNγ production and T-cell cytolytic activity. These processes are impeded by PD-1, a coinhibitory molecule expressed on T cells that is elevated in tumor-infiltrating lymphocytes (TIL). PD-1 elevation may reflect T-cell exhaustion marked by decreased proliferation, production of type I cytokines, and poor cytolytic activity. Although anti-PD-1 antibodies enhance IFNγ secretion after stimulation of the T-cell receptor (TCR), the mechanistic link between PD-1 and its effects on T-cell help (Tc1/Th1 skewing) remains unclear. In prospectively collected cancer tissues, we found that TIL exhibited dampened Tc1/Th1 skewing and activation compared with peripheral blood lymphocytes (PBL). When PD-1 bound its ligand PD-L1, we observed a marked suppression of critical TCR target genes and Th1 cytokines. Conversely, PD-1 blockade reversed these suppressive effects of PD-1:PD-L1 ligation. We also found that the TCR-regulated phosphatase SHP-2 was expressed higher in TIL than in PBL, tightly correlating with PD-1 expression and negative regulation of TCR target genes. Overall, these results defined a PD-1/SHP-2/STAT1/T-bet signaling axis mediating the suppressive effects of PD-1 on Th1 immunity at tumor sites. Our findings argue that PD-1 or SHP-2 blockade will be sufficient to restore robust Th1 immunity and T-cell activation and thereby reverse immunosuppression in the tumor microenvironment.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hyun-Bae Jie
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Lei
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tony Green
- University of Pittsburgh Health Sciences
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.,Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Potential Xanthine Oxidase Inhibitory Activity of Endophytic Lasiodiplodia pseudotheobromae. Appl Biochem Biotechnol 2014; 173:1360-74. [DOI: 10.1007/s12010-014-0927-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
|
29
|
|
30
|
Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells. Mar Drugs 2013; 11:5063-86. [PMID: 24351905 PMCID: PMC3877903 DOI: 10.3390/md11125063] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 01/03/2023] Open
Abstract
Recently, much attention has been given to discovering natural compounds as potent anti-cancer candidates. In the present study, the anti-cancer effects of fumigaclavine C, isolated from a marine-derived fungus, Aspergillus fumigatus, was evaluated in vitro. In order to investigate the impact of fumigaclavine C on inhibition of proliferation and induction of apoptosis in breast cancer, MCF-7 cells were treated with various concentrations of fumigaclavine C, and fumigaclavine C showed significant cytotoxicity towards MCF-7 cells. Anti-proliferation was analyzed via cell mobility and mitogen-activated protein kinase (MAPK) signaling pathway. In addition, fumigaclavine C showed potent inhibition on the protein and gene level expressions of MMP-2, -9 in MCF-7 cells which were manifested in Western blot and reverse transcription polymerase chain reaction (RT-PCR) results. The apoptosis induction abilities of the fumigaclvine C was studied by analyzing the expression of apoptosis related proteins, cell cycle analysis, DNA fragmentation and molecular docking studies. It was found that fumigaclavine C fragmented the MCF-7 cell DNA and arrested the cell cycle by modulating the apoptotic protein expressions. Moreover, fumigaclavine C significantly down-regulated the NF-kappa-B cell survival pathway. Collectively, data suggest that fumigaclavine C has a potential to be developed as a therapeutic candidate for breast cancer.
Collapse
|
31
|
Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 2013; 17:963-71. [DOI: 10.1007/s00792-013-0578-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022]
|
32
|
Li HX, Xiao Y, Cao LL, Yan X, Li C, Shi HY, Wang JW, Ye YH. Cerebroside C increases tolerance to chilling injury and alters lipid composition in wheat roots. PLoS One 2013; 8:e73380. [PMID: 24058471 PMCID: PMC3772805 DOI: 10.1371/journal.pone.0073380] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/20/2013] [Indexed: 12/21/2022] Open
Abstract
Chilling tolerance was increased in seed germination and root growth of wheat seedlings grown in media containing 20 µg/mL cerebroside C (CC), isolated from the endophytic Phyllosticta sp. TG78. Seeds treated with 20 µg/mL CC at 4 °C expressed the higher germination rate (77.78%), potential (23.46%), index (3.44) and the shorter germination time (6.19 d); root growth was also significantly improved by 13.76% in length, 13.44% in fresh weight and 6.88% in dry mass compared to controls. During the cultivation process at 4 °C for three days and the followed 24 h at 25 °C, lipid peroxidation, expressed by malondialdehyde (MDA) content and relative membrane permeability (RMP) was significantly reduced in CC-treated roots; activities of lipoxygenase (LOX), phospholipid C (PLC) and phospholipid D (PLD) were inhibited by 13.62-62.26%, 13.54-63.93% and 13.90-61.17%, respectively; unsaturation degree of fatty acids was enhanced through detecting the contents of CC-induced linoleic acid, linolenic acid, palmitic acid and stearic acid using GC-MS; capacities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were individually increased by 7.69-46.06%, 3.37-37.96%, and -7.00-178.07%. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation and alternation of lipid composition of roots in the presence of CC.
Collapse
Affiliation(s)
- Hong-Xia Li
- College of Plant Protection, Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
- School of Pharmacy, Jilin University, Changchun, P. R. China
| | - Yu Xiao
- College of Plant Protection, Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Ling-Ling Cao
- College of Plant Protection, Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Xu Yan
- College of Plant Protection, Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Cong Li
- College of Plant Protection, Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Hai-Yan Shi
- College of Plant Protection, Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| | - Jian-Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, P. R. China
| | - Yong-Hao Ye
- College of Plant Protection, Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, P. R. China
| |
Collapse
|
33
|
Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Madhuca indica Gmel. at different locations in India. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0707-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Radić N, Strukelj B. Endophytic fungi: the treasure chest of antibacterial substances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1270-84. [PMID: 23079233 DOI: 10.1016/j.phymed.2012.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/05/2012] [Indexed: 05/13/2023]
Abstract
Over more than 20 years, the endophytic fungi have been explored as "biofactories" of novel bioactive substances, and they have not disappointed. Among the extracts and pure substances obtained from the culture broths or fungal biomass, some have exerted antibacterial activity ranging from moderate to powerful when tested on the bacterial strains resistant to the antibiotics currently in use. In this article we review the accumulated data on endophytic fungi isolated from plants that produce metabolites with antibacterial activity against human pathogenic bacteria.
Collapse
Affiliation(s)
- Nataša Radić
- Celica, Biomedical Center, Technology Park, Ljubljana, Slovenia.
| | | |
Collapse
|
35
|
Rebuilding the balance of STAT1 and STAT3 signalings by fusaruside, a cerebroside compound, for the treatment of T-cell-mediated fulminant hepatitis in mice. Biochem Pharmacol 2012; 84:1164-73. [DOI: 10.1016/j.bcp.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/27/2012] [Accepted: 08/09/2012] [Indexed: 01/13/2023]
|
36
|
Wu X, Guo W, Wu L, Gu Y, Gu L, Xu S, Wu X, Shen Y, Ke Y, Tan R, Sun Y, Xu Q. Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. THE JOURNAL OF IMMUNOLOGY 2012; 189:3497-507. [PMID: 22942432 DOI: 10.4049/jimmunol.1201006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The side effects of current immunosuppressive drugs have impeded the development of therapies for immune diseases. Selective regulation of STAT signaling is an attractive strategy for treating immune disorders. In this study, we used a small-molecule compound to explore possible means of targeting STAT1 for the treatment of Th1-mediated inflammation. Selective regulation of STAT1 signaling in T cells from C57BL/6 mice was accomplished using fusaruside, a small-molecule compound that triggers the tyrosine phosphorylation of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2). The interaction of tyrosine phosphorylated SHP-2 (pY-SHP-2) with cytosolic STAT1 prevented the recruitment of STAT1 to IFN-γR and specifically inhibited STAT1 signaling, resulting in a reduction in Th1 cytokine production and an improvement in 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis in mice. Blocking the pY-SHP-2-STAT1 interaction, with SHP-2 inhibitor NSC-87877 or using T cells from conditional SHP-2 knockout mice, reversed the effects of fusaruside, resulting in STAT1 activation and worsened colitis. The fusaruside-induced ability of pY-SHP-2 to selectively sequestrate STAT1 from recruitment to the receptor is independent of its function as a phosphatase, demonstrating a novel role for SHP-2 in regulating both STAT1 signaling and Th1-type immune responses. These findings could lead to increased options for the treatment of Crohn's disease and other Th1-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN, Kumar A. Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-011-0146-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Sourcing the Fungal Endophytes: A Beneficial Transaction of Biodiversity, Bioactive Natural Products, Plant Protection and Nanotechnology. MICROORGANISMS IN SUSTAINABLE AGRICULTURE AND BIOTECHNOLOGY 2012. [PMCID: PMC7120178 DOI: 10.1007/978-94-007-2214-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Endophytes are the group of microorganisms that reside to internal and healthy tissues without causing negative symptoms to their host plant. Endophytes are extremely diverse and range from fungi, bacteria and actinomycetes. Development of drug resistance to pathogenic forms of bacteria, fungi and other microbes, emergence of lethal viruses, the perpetuating epidemics in developing and under developing countries, and multifold fungal infection, enhancement in human population globally, all shows our inability to overcome these biomedical problems. In addition to this, we are also unable to assure people towards enough food security in specific regions of the earth due to infestation of different plant diseases. Since the fungal endophytes are relatively less studied group of microbial flora, but are responsible for several prospects such as biodiversity, ecology, bioactive metabolites (metabolomics) and nanotechnology, may enable us to overcome the above mentioned problems. Fungal endophytes represent a dependable source of specific secondary metabolites and can be manipulated both physicochemically and genetically to increase yield of desired compounds and to produce novel analogues of active metabolites. In this chapter, we have discussed several bioactive compounds and classified them in to different classes as per their properties such as antifungal, antibacterial, antiviral, antimalarial, anticancer, antioxidants, antidiabetic and immunosuppressive agents derived from fungal endophytes with their hosts and made the chemical structures for 73 compounds using chemdraw 3D ultra version 7.0. These bioactive products are related to human health with MIC/EC/IC50 values less that 50 μg/mL. This article also discusses nematicidal, some antimicrobial volatile compounds (VOCs) that are related to plant protection and faecal disposal. Therefore, this chapter is not very specific and covers almost prospects of fungal endophytes which could be useful in biodiversity, agrochemicals, biotechnology, biomedical and nanotechnology in ecofriendly manner.
Collapse
|
39
|
Peng X, Wang Y, Sun K, Liu P, Yin X, Zhu W. Cerebrosides and 2-pyridone alkaloids from the halotolerant fungus Penicillium chrysogenum grown in a hypersaline medium. JOURNAL OF NATURAL PRODUCTS 2011; 74:1298-1302. [PMID: 21381678 DOI: 10.1021/np1008976] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Five new cerebrosides, chrysogesides A-E (1-5), and two new 2-pyridone alkaloids, chrysogedones A and B (6 and 7), were isolated from the fermentation broth of Penicillium chrysogenum PXP-55, a halotolerant fungus grown in a hypersaline medium. Among them, chrysogesides B-D (2-4) are the first cerebrosides that contain an unsaturated C(19)-fatty acid. Their structures were identified by spectroscopic and chemical methods, including CD spectroscopy as well as the modified Mosher's method. Compound 2 showed antimicrobial activity against Enterobacter aerogenes with an MIC value of 1.72 μM.
Collapse
Affiliation(s)
- Xiaoping Peng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Chemical constituents from endophytic fungus Fusarium oxysporum. Fitoterapia 2011; 82:777-81. [PMID: 21497643 DOI: 10.1016/j.fitote.2011.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/23/2011] [Accepted: 03/23/2011] [Indexed: 11/22/2022]
Abstract
A new oxysporidinone analogue (1) and a new 3-hydroxyl-2-piperidinone derivative (2), along with the known compounds (-)-4,6'-anhydrooxysporidinone (3), (+)-fusarinolic acid (4), gibepyrone D (5), beauvercin (6),cerevisterol (7), fusaruside (8), and (2S,2'R,3R,3'E,4E,8E)-1-O-D-glucopyranosyl-2-N-(2'-hydroxy-3'-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine (9) were isolated from Fusarium oxysporum. Compounds 1-9 were evaluated for cytotoxicity using the MTT method against cancer cell lines, PC-3, PANC-1, and A549. Beauvericin showed cytotoxicity against PC-3, PANC-1, and A549 with IC(50) value of 49.5 ± 3.8, 47.2 ± 2.9, and 10.4 ± 1.6μM, respectively. Beauvericin also exhibited anti-bacterial activity towards methicillin-resistant Staphylococcus aureus (MIC=3.125 μg/mL) and Bacillus subtilis (MIC=3.125 μg/mL).
Collapse
|
41
|
Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T. Identification of Glucosylceramides Containing Sphingatrienine in Maize and Rice Using Ion Trap Mass Spectrometry. Lipids 2010; 45:451-5. [DOI: 10.1007/s11745-010-3417-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/12/2010] [Indexed: 12/01/2022]
|
42
|
Vaz ABM, Mota RC, Bomfim MRQ, Vieira MLA, Zani CL, Rosa CA, Rosa LH. Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil. Can J Microbiol 2010; 55:1381-91. [PMID: 20029530 DOI: 10.1139/w09-101] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine antimicrobial activity of endophytic fungi isolated from the leaves, stems, and roots of 54 species of Orchidaceae collected in a Brazilian tropical ecosystem. In total, 382 filamentous fungi and 13 yeast isolates were obtained and cultured to examine the production of crude extracts. Thirty-three percent of the isolates displayed antimicrobial activity against at least one target microorganism. The multivariate statistical analyses conducted indicate that the extracts of endophytic fungi isolated from leaves of terrestrial orchids in semideciduous forest were more active against Escherichia coli, whereas extracts of endophytic fungi from roots of rupicolous orchids collected in rock fields were more active against Candida krusei and Candida albicans. Among the fungi that were screened in the study, 22 isolates held their antimicrobial activities after replication and were therefore selected for assessment of the minimum inhibitory concentration (MIC), which ranged from 62.5 to 250 microg/mL and 7.8 to 250 microg/mL against bacteria and fungi, respectively. One isolate of Alternaria sp. and one isolate of Fusarium oxysporum presented the strongest antibacterial activity. Three Fusarium isolates, Epicoccum nigrum, and Sclerostagonospora opuntiae showed the greatest MIC values against the pathogenic yeasts. This study is the first survey investigating the bioactive potential of endophytic fungi associated with tropical Orchidaceae species present in Brazilian ecosystems.
Collapse
Affiliation(s)
- Aline B M Vaz
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), C. P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Black FJ, Kocienski PJ. Synthesis of phalluside-1 and Sch II using 1,2-metallate rearrangements. Org Biomol Chem 2010; 8:1188-93. [DOI: 10.1039/b920285d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Wang W, Wang Y, Tao H, Peng X, Liu P, Zhu W. Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. JOURNAL OF NATURAL PRODUCTS 2009; 72:1695-1698. [PMID: 19685913 DOI: 10.1021/np9002299] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In order to search for structurally novel and bioactive natural compounds from marine-derived fungi, a halotolerant fungal strain (THW-18) identified as Alternaria raphani was isolated from sediment collected in the Hongdao sea salt field. From the ethyl acetate extract of Alternaria raphani, three new cerebrosides, alternarosides A-C (1-3), and a new diketopiperazine alkaloid, alternarosin A (4), together with 15 known compounds were isolated and identified by spectroscopic and chemical methods, as well as X-ray crystal diffraction analysis. Compounds 1-4 showed weak antibacterial activity against Escherichia coli, Bacillus subtilis, and Candida albicans with MIC values ranging from 70 to 400 muM.
Collapse
Affiliation(s)
- Wenliang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Wang JW, Zheng LP, Zhang B, Zou T. Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Appl Microbiol Biotechnol 2009; 85:285-92. [PMID: 19562334 DOI: 10.1007/s00253-009-2090-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
This work examined the accumulation of artemisinin and related secondary metabolism pathways in hairy root cultures of Artemisia annua L. induced by a fungal-derived cerebroside (2S,2'R,3R,3'E,4E,8E)-1-O-beta-D-glucopyranosyl-2-N-(2'-hydroxy-3'-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine. The presence of the cerebroside induced nitric oxide (NO) burst and artemisinin biosynthesis in the hairy roots. The endogenous NO generation was examined to be involved in the cerebroside-induced biosynthesis of artemisinin by using NO inhibitors, N (omega)-nitro-L-arginine methyl ester and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The gene expression and activity of 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate synthase were stimulated by the cerebroside, but more strongly by the potentiation of NO. While the mevalonate pathway inhibitor, mevinolin, only partially inhibited the induced artemisinin accumulation, the plastidic 2-C-methyl-D-erythritol 4-phosphate pathway inhibitor, fosmidomycin, nearly arrested artemisinin accumulation induced by cerebroside and the combination elicitation with an NO donor, sodium nitroprusside (SNP). With the potentiation by SNP at 10 microM, the cerebroside elicitor stimulated artemisinin production in 20-day-old hairy root cultures up to 22.4 mg/l, a 2.3-fold increase over the control. These results suggest that cerebroside plays as a novel elicitor and the involvement of NO in the signaling pathway of the elicitor activity for artemisinin biosynthesis.
Collapse
Affiliation(s)
- Jian Wen Wang
- School of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
| | | | | | | |
Collapse
|
46
|
Mbosso EJT, Ngouela S, Nguedia JCA, Penlap V, Rohmer M, Tsamo E. Spathoside, a cerebroside and other antibacterial constituents of the stem bark of Spathodea campanulata. Nat Prod Res 2008; 22:296-304. [PMID: 18322845 DOI: 10.1080/14786410701766281] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spathoside, a new cerebroside was isolated from the stem bark of Spathodea campanulata, besides known compounds (n-alkanes, linear aliphatic alcohols, sitosterol and their esters, beta-sitosterol-3-O-beta-D-glucopyranoside, oleanolic acid, pomolic acid, p-hydroxybenzoic acid and phenylethanol esters). The structures of the isolated compounds were established by spectroscopic studies. The antibacterial activity of the isolated compounds against a wide range of microorganisms was examined. They inhibited significantly the growth of some gram-positive and -negative bacteria.
Collapse
Affiliation(s)
- Emmanuel Jean Teinkela Mbosso
- Faculté des Sciences, Laboratoire de Substances Naturelles et Synthèse Organique, Département de Chimie Organique, Université de Yaoundé I, BP 812 Yaoundé, Cameroun
| | | | | | | | | | | |
Collapse
|
47
|
Wang FW, Hou ZM, Wang CR, Li P, Shi DH. Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9720-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Souza AD, Rodrigues-Filho E, Souza AQ, Pereira JO, Calgarotto AK, Maso V, Marangoni S, Da Silva SL. Koninginins, phospholipase A2 inhibitors from endophytic fungus Trichoderma koningii. Toxicon 2008; 51:240-50. [DOI: 10.1016/j.toxicon.2007.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 09/18/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
|
49
|
Zhang WK, Xu JK, Zhang XQ, Yao XS, Ye WC. Sphingolipids with neuritogenic activity from Euphorbia sororia. Chem Phys Lipids 2007; 148:77-83. [PMID: 17540352 DOI: 10.1016/j.chemphyslip.2007.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/06/2007] [Accepted: 04/13/2007] [Indexed: 11/27/2022]
Abstract
Two groups of sphingolipids 1 and 2 were isolated from the aerial parts of Euphorbia sororia. On the basis of spectroscopic data, chemical methods and GC-MS analysis, the structures of 1 and 2 were characterized as 1-O-beta-D-glucopyranosyl-(2S,3S,4R,8Z)-2-[(2'R)-2'-hydroxydocosanoyl approximately hexacosanoyl, octacosanoyl amino]-1,3,4-octadecanetriol-8-ene and (2S,3S,4R,8E)-2-[(2'R)-2'-hydroxyeicosanoyl approximately hexacosanoyl amino]-1,3,4-octadecanetriol-8-ene, respectively. Both of them exhibited marked neuritogenic activity on the rat pheochromocytoma PC12 cell line.
Collapse
Affiliation(s)
- Wei-Ku Zhang
- Department of Phytochemistry, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
50
|
Wang JW, Zheng LP, Tan RX. Involvement of nitric oxide in cerebroside-induced defense responses and taxol production in Taxus yunnanensis suspension cells. Appl Microbiol Biotechnol 2007; 75:1183-90. [PMID: 17375294 DOI: 10.1007/s00253-007-0927-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/03/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
This work was to characterize the generation of nitric oxide (NO) in Taxus yunnanensis cells induced by a fungal-derived cerebroside and the signal role of NO in the elicitation of plant defense responses and taxol production. (2S,2'R,3R,3'E,4E,8E)-1-O-beta-D-glucopyranosyl-2-N-(2'-hydroxy-3'-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine at 10 microg/ml induced a rapid and dose-dependent NO production in the Taxus cell culture, reaching a maximum within 5 h of the treatment. The NO donor sodium nitroprusside (SNP) potentiated cerebroside-induced H(2)O(2) production and cell death. Inhibition of nitric oxide synthase activity by phenylene-1,3-bis(ethane-2-isothiourea) dihydrobromide or scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide partially blocked the cerebroside-induced H(2)O(2) production and cell death. Moreover, NO enhanced cerebroside-induced activation of phenylalanine ammonium-lyase and accumulation of taxol in cell cultures. These results are suggestive of a role for NO as a new signal component for activating the cerebroside-induced defense responses and secondary metabolism activities of plant cells.
Collapse
Affiliation(s)
- Jian Wen Wang
- School of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, People's Republic of China
| | | | | |
Collapse
|