Gu L, Zhang GF, Kombu RS, Allen F, Kutz G, Brewer WU, Roe CR, Brunengraber H. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile.
Am J Physiol Endocrinol Metab 2010;
298:E362-71. [PMID:
19903863 PMCID:
PMC2822475 DOI:
10.1152/ajpendo.00384.2009]
[Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anaplerotic odd-medium-chain triglyceride triheptanoin is used in clinical trials for the chronic dietary treatment of patients with long-chain fatty acid oxidation disorders. We previously showed (Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H. Am J Physiol Endocrinol Metab 291: E860-E866, 2006) that the intravenous infusion of triheptanoin increases lipolysis traced by the turnover of glycerol. In this study, we tested whether lipolysis induced by triheptanoin infusion is accompanied by the potentially harmful release of long-chain fatty acids. Rats were infused with heptanoate +/- glycerol or triheptanoin. Intravenous infusion of triheptanoin at 40% of caloric requirement markedly increased glycerol endogenous R(a) but not oleate endogenous R(a). Thus, the activation of lipolysis was balanced by fatty acid reesterification in the same cells. The liver acyl-CoA profile showed the accumulation of intermediates of heptanoate beta-oxidation and C(5)-ketogenesis and a decrease in free CoA but no evidence of metabolic perturbation of liver metabolism such as propionyl overload. Our data suggest that triheptanoin, administered either intravenously or intraduodenally, could be used for intensive care and nutritional support of metabolically decompensated long-chain fatty acid oxidation disorders.
Collapse