1
|
Naranbat D, Brassard LÀ, Lawandy N, Tripathi A. Peripheral blood to next-generation sequencing ready DNA library: a novel engineering design for automation. BMC Genomics 2024; 25:987. [PMID: 39438788 PMCID: PMC11494769 DOI: 10.1186/s12864-024-10892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Whole genome sequencing (WGS) has become a gold standard for diagnosing genomic variation. Peripheral blood is a common sample source for the extraction of nucleic acids for Next-Generation Sequencing (NGS) applications. Here, we present an integrated and fully automated device design that uses new concepts of fluid mechanics, heat-mass transfer, and thermodynamics of enzymatic reactions to extract nucleic acids from the blood and perform DNA library preparation from a pre-filled plate. We demonstrate that the presented device effectively extracts dsDNA with an average of 25.03 µg/mL and 25.91 µg/mL yield from citrate-stabilized human peripheral blood stored in Fresh (4 °C) and Frozen (-20 °C) conditions, respectively. Furthermore, our method automatically extracts nucleic acids and creates a high-quality sequence-ready DNA library from blood stabilized with citrate and EDTA for 8 samples simultaneously in a single run with a total operation time of ~ 7 h. Our results show the required coverage and depth of the genome, highlighting an essential application of this device in processing blood samples for genome sequencing.
Collapse
Affiliation(s)
- Dulguunnaran Naranbat
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Lothar À Brassard
- Revvity Chemagen Technologie GmbH, Arnold-Sommerfeld-Ring 2, 52499, Baesweiler, Germany
| | - Nabil Lawandy
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
2
|
Velankar KY, Gawalt ES, Wen Y, Meng WS. Pharmaceutical proteins at the interfaces and the role of albumin. Biotechnol Prog 2024; 40:e3474. [PMID: 38647437 DOI: 10.1002/btpr.3474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
A critical measure of the quality of pharmaceutical proteins is the preservation of native conformations of the active pharmaceutical ingredients. Denaturation of the active proteins in any step before administration into patients could lead to loss of potency and/or aggregation, which is associated with an increased risk of immunogenicity of the products. Interfacial stress enhances protein instability as their adsorption to the air-liquid and liquid-solid interfaces are implicated in the formation of denatured proteins and aggregates. While excipients in protein formulations have been employed to reduce the risk of aggregation, the roles of albumin as a stabilizer have not been reviewed from practical and theoretical standpoints. The amphiphilic nature of albumin makes it accumulate at the interfaces. In this review, we aim to bridge the knowledge gap between interfacial instability and the influence of albumin as a surface-active excipient in the context of reducing the immunogenicity risk of protein formulations.
Collapse
Affiliation(s)
- Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Herrera AW, Bellesi FA, Pilosof AMR. In situ interaction of pea peptides and bile salts under in vitro digestion: Potential impact on lipolysis. Food Res Int 2024; 190:114624. [PMID: 38945578 DOI: 10.1016/j.foodres.2024.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.
Collapse
Affiliation(s)
- Anashareth W Herrera
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Fernando A Bellesi
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Ana M R Pilosof
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
4
|
Buckley T, Vuong T, Karanam K, Vo PHN, Shukla P, Firouzi M, Rudolph V. Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L concentrations. WATER RESEARCH 2023; 239:120028. [PMID: 37209512 DOI: 10.1016/j.watres.2023.120028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023]
Abstract
PFAS are biologically recalcitrant compounds that are persistent in the environment and have subsequently contaminated groundwater, landfill leachate and surface water. Due to their persistence and toxicity, there are environmental concentration limits imposed on some PFAS compounds that extend down to a few nanograms per litre and even proposals for reducing these to picogram per litre levels. Since PFAS concentrates at water-air interfaces as a result of their amphiphilic nature, this characteristic is important for the successful modelling and prediction of transport behaviour of PFAS through various systems. Here we present a procedure for using a foam fractionation method to experimentally determine the PFAS adsorption behaviour at ng/L and µg/L concentrations in the presence of salts. The equilibrium air-water adsorption coefficients for PFHxS and PFOA at different salinities and concentrations are experimentally shown to be constant across the range of PFAS concentrations investigated (approx. 0.1-100 µg/L). The adsorption isotherms may consequently be modelled by Henry or Langmuir style equations at these low concentrations.
Collapse
Affiliation(s)
- Thomas Buckley
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia, 4067.
| | - Thinh Vuong
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia, 4067
| | - Kavitha Karanam
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, Brisbane, Australia, 4067
| | - Phong H N Vo
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, Brisbane, Australia, 4067
| | - Pradeep Shukla
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, Brisbane, Australia, 4067
| | - Mahshid Firouzi
- College of Engineering Science and Environment, The University of Newcastle, Callaghan, Australia, 2308
| | - Victor Rudolph
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia, 4067
| |
Collapse
|
5
|
Air-water interfacial properties and quantitative description of pea protein isolate-Tween 20. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Lauser KT, Rueter AL, Calabrese MA. Polysorbate identity and quantity dictate the extensional flow properties of protein‐excipient solutions. AIChE J 2022. [DOI: 10.1002/aic.17850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kathleen T. Lauser
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| | - Amy L. Rueter
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| | - Michelle A. Calabrese
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota
| |
Collapse
|
7
|
CMC determination using isothermal titration calorimetry for five industrially significant non-ionic surfactants. Colloids Surf B Biointerfaces 2022; 211:112320. [PMID: 35042120 DOI: 10.1016/j.colsurfb.2022.112320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Surfactants are used in a vast array of products including pharmaceuticals, cosmetics and household formulations. From an industrial perspective, non-ionic surfactants are ideal for inclusion within such products as they are non-toxic, simple to formulate and economic to use. This study considers five non-ionic surfactants (Tween 20, Tween 80, Crodasol, Croduret and Etocas 35) to determine the critical micellar concentration (CMC) for each using isothermal titration calorimetry, thus avoiding issues regarding poor accuracy found with other techniques. Furthermore, this methodology has not previously been applied to this group of surfactants. For the most commonly used non-ionics (Tween 20 and Tween 80) a further study was undertaken to consider the influence of surfactant purity on the CMC determined, using standard grade (Tween 20 and 80), high purity (Tween 20 HP and Tween 80 HP) and Super Refined (SR PS20 and SR PS80). Results permitted calculation of the CMC for the surfactants whereupon the values were determined to range from 1.0 mM for Tween 20 HP to 2.9 mM for Tween 80 HP. Such information regarding the CMC event is useful from a formulation perspective as it can ensure that the most optimum concentration of surfactant is included within a formulation to maximize its efficacy.
Collapse
|
8
|
Guan Y. Liquid Foaming Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Erfani A, Khosharay S, Flynn NH, Ramsey JD, Aichele CP. Effect of zwitterionic betaine surfactant on interfacial behavior of bovine serum albumin (BSA). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Garidel P, Blech M, Buske J, Blume A. Surface Tension and Self-association Properties of Aqueous Polysorbate 20 HP and 80 HP Solutions: Insights into Protein Stabilisation Mechanisms. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09488-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Tein YS, Zhang Z, Wagner NJ. Competitive Surface Activity of Monoclonal Antibodies and Nonionic Surfactants at the Air-Water Interface Determined by Interfacial Rheology and Neutron Reflectometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7814-7823. [PMID: 32551695 DOI: 10.1021/acs.langmuir.0c00797] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Interfacial stresses can destabilize therapeutic formulations containing monoclonal antibodies (mAbs), which is proposed to be a result of adsorption and aggregation at the air-water interface. To increase protein stability, pharmaceutical industries add surfactants, such as Polysorbate 20 (PS20), into protein formulations to minimize mAb adsorption at the interface but rarely quantify this process. We determine that mAb adsorption in surfactant-free solutions creates a monolayer with significant viscoelasticity, which can influence measurements of bulk mAb solution viscosity. In contrast, PS20 absorption leads to an interface with negligible interfacial viscosity that protects the air-water interface from mAb adsorption. These studies were performed through a combined study of surface tensiometry, interfacial rheology, capillary viscometry, and neutron reflectometry to determine the surface activity of a model surfactant, PS20, and mAb system, which can be useful for the successful formulation developments of biotherapeutics.
Collapse
Affiliation(s)
- Y Summer Tein
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Zhenhuan Zhang
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Norman J Wagner
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Giménez-Ribes G, Sagis LM, Habibi M. Interfacial viscoelasticity and aging effect on droplet formation and breakup. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Bansal S, Sen P. Electrowetting based local sensing of liquid properties using relaxation dynamics of stretched liquid interface. J Colloid Interface Sci 2020; 568:8-15. [PMID: 32086011 DOI: 10.1016/j.jcis.2020.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
HYPOTHESIS Monitoring progression of biochemical processes is required for medical and industrial applications. Spatiotemporal changes in fluid properties can be measured to determine progress of biochemical processes like blood coagulation. Localised electrowetting-on-dielectric (EWOD) actuates a part of droplet contact line, allowing local measurement of fluid properties without inducing bulk fluid motion, which is unlike full droplet oscillation-based techniques. EXPERIMENTS In this work, narrow electrodes (50-450 μm) were used to actuate a portion of drop interface. Dynamics of interface actuation and relaxation was used to estimate the local visco-elastic properties of the droplet. FINDINGS For local interface motion, theory predicts a generic dispersion relation ω=cqn. In agreement with theory, decay time was found to be proportional to viscosity and inversely proportional to surface tension. Interface displacement remained almost constant for different viscosities, but it decreased with increase in surface tension. Capability to measure spatiotemporal dynamics of chemical process was demonstrated for sugar dissolution in a droplet of water. For full droplet oscillation-based techniques, the induced bulk flows adversely affect the monitored process. Localised EWOD reduces bulk flows in the sample. So, this technique was applied to study blood coagulation dynamics, enlightening the future prospect of developing biomedical sensors.
Collapse
Affiliation(s)
- Shubhi Bansal
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, India; University of Sussex, UK.
| | - Prosenjit Sen
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
Container Surfaces Control Initiation of Cavitation and Resulting Particle Formation in Protein Formulations After Application of Mechanical Shock. J Pharm Sci 2020; 109:1270-1280. [DOI: 10.1016/j.xphs.2019.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
|
15
|
Kanthe AD, Krause M, Zheng S, Ilott A, Li J, Bu W, Bera MK, Lin B, Maldarelli C, Tu RS. Armoring the Interface with Surfactants to Prevent the Adsorption of Monoclonal Antibodies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9977-9988. [PMID: 32013386 DOI: 10.1021/acsami.9b21979] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pharmaceutical industry uses surface-active agents (excipients) in protein drug formulations to prevent the aggregation, denaturation, and unwanted immunological response of therapeutic drugs in solution as well as at the air/water interface. However, the mechanism of adsorption, desorption, and aggregation of proteins at the interface in the presence of excipients remains poorly understood. The objective of this work is to explore the molecular-scale competitive adsorption process between surfactant-based excipients and two monoclonal antibody (mAb) proteins, mAb-1 and mAb-2. We use pendant bubble tensiometry to measure the ensemble average adsorption dynamics of mAbs with and without the excipient. The surface tension measurements allow us to quantify the rate at which the molecules "race" to the interface in single-component and mixed systems. These results define the phase space, where coadsorption of both mAbs and excipients occurs onto the air/water interface. In parallel, we use X-ray reflectivity (XR) measurements to understand the molecular-scale dynamics of competitive adsorption, revealing the surface-adsorbed amounts of the antibody and excipient. XR has revealed that at a sufficiently high surface concentration of the excipient, mAb adsorption to the surface and subsurface domains was inhibited. In addition, despite the fact that both mAbs adsorb via a similar mechanistic pathway and with similar dynamics, a key finding is that the competition for the interface directly correlates with the surface activity of the two mAbs, resulting in a fivefold difference in the concentration of the excipient needed to displace the antibody.
Collapse
Affiliation(s)
- Ankit D Kanthe
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
| | - Mary Krause
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Songyan Zheng
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Andrew Ilott
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Jinjiang Li
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Wei Bu
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Mrinal K Bera
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Binhua Lin
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Charles Maldarelli
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
- Levich Institute , The City College of New York , New York , New York 10031 United States
| | - Raymond S Tu
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
| |
Collapse
|
16
|
Le TTY, Hussain S, Lin SY. A study on the determination of the critical micelle concentration of surfactant solutions using contact angle data. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Mayer M, Hahn M, Gerstl F, Köwer T, Rink S, Kunz W, Duerkop A, Baeumner AJ. Shedding Light on the Diversity of Surfactant Interactions with Luminol Electrochemiluminescence for Bioanalysis. Anal Chem 2019; 91:13080-13087. [PMID: 31524378 DOI: 10.1021/acs.analchem.9b03275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Luminol is a major probe for chemiluminescence (CL) and electrochemiluminescence (ECL) detection technologies in (bio)analysis. Surfactants are added to ECL assay cocktails to enhance signals or are present, owing to given bioassay protocols, yet little is known regarding their effects on luminol ECL. In-depth understanding is provided here through a broad study with bioanalytically relevant surfactants (cationic, anionic, and nonionic), four common electrode materials, and two luminol derivatives. Naturally, in ECL, surface effects are dominant; however, bulk solution, diffusion, and luminescence-stabilization processes also contribute significantly to the overall reaction. It was found that in contrast to CL the effect surfactants have on luminol ECL cannot be linked to general surfactant characteristics such as ionic nature, hydrophilic lipophilic balance (HLB) value, and critical micellar concentration (CMC). Instead, surfactants act in an all-encompassing mechanism, including surface electrochemistry, their solution and interfacial phases, and the chemical luminescence pathway. This leads to dramatic differences in signals obtained, ranging from 5-fold increases to total quenching. Within this complexity, we defined six guiding principles that are extrapolated from the underlying mechanisms and selection guides for surfactant, electrode, and environmental condition combinations. Those will now assist in developing highly sensitive luminol-ECL-based bioassays, because the surfactant selection can be based not only on properties needed for the assay protocol but also on identifying the optimal electrode-surfactant pair to maximize detection efficiency.
Collapse
Affiliation(s)
- Michael Mayer
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Maximilian Hahn
- Institute of Physical and Theoretical Chemistry , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Florian Gerstl
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Thomas Köwer
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Simone Rink
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Werner Kunz
- Institute of Physical and Theoretical Chemistry , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Axel Duerkop
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany
| |
Collapse
|
18
|
Morales R, Martinez M, Pilosof A. Caseinglycomacropeptide and polysorbate interactions allow the design of smart gelled emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Investigating the Influence of Polysorbate 20/80 and Polaxomer P188 on the Surface & Interfacial Properties of Bovine Serum Albumin and Lysozyme. Pharm Res 2019; 36:107. [DOI: 10.1007/s11095-019-2631-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
|
20
|
Arrabito G, Cavaleri F, Porchetta A, Ricci F, Vetri V, Leone M, Pignataro B. Printing Life-Inspired Subcellular Scale Compartments with Autonomous Molecularly Crowded Confinement. ACTA ACUST UNITED AC 2019; 3:e1900023. [PMID: 32648672 DOI: 10.1002/adbi.201900023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Indexed: 12/16/2022]
Abstract
A simple, rapid, and highly controlled platform to prepare life-inspired subcellular scale compartments by inkjet printing has been developed. These compartments consist of fL-scale aqueous droplets (few µm in diameter) incorporating biologically relevant molecular entities with programmed composition and concentration. These droplets are ink-jetted in nL mineral oil drop arrays allowing for lab-on-chip studies by fluorescence microscopy and fluorescence life time imaging. Once formed, fL-droplets are stable for several hours, thus giving the possibility of readily analyze molecular reactions and their kinetics and to verify molecular behavior and intermolecular interactions. Here, this platform is exploited to unravel the behavior of different molecular probes and biomolecular systems (DNA hairpins, enzymatic cascades, protein-ligand couples) within the compartments. The fL-scale size induces the formation of molecularly crowded confined shell structures (hundreds of nanometers in thickness) at the droplet surface, allowing discovery of specific features (e.g., heterogeneity, responsivity to molecular triggers) that are mediated by the intermolecular interactions in these peculiar environments. The presented results indicate the possibility of using this platform for designing nature-inspired confined reactors allowing for a deepened understanding of molecular confinement effects in living subcellular compartments.
Collapse
Affiliation(s)
- Giuseppe Arrabito
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Felicia Cavaleri
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Alessandro Porchetta
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Valeria Vetri
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Maurizio Leone
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| |
Collapse
|
21
|
Lea-Banks H, O'Reilly MA, Hynynen K. Ultrasound-responsive droplets for therapy: A review. J Control Release 2019; 293:144-154. [PMID: 30503398 PMCID: PMC6459400 DOI: 10.1016/j.jconrel.2018.11.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
The last two decades have seen the development of acoustically activated droplets, also known as phase-change emulsions, from a diagnostic tool to a therapeutic agent. Through bubble effects and triggered drug release, these superheated agents have found potential applications from oncology to neuromodulation. The aim of this review is to summarise the key developments in therapeutic droplet design and use, to discuss the current challenges slowing clinical translation, and to highlight the new frontiers progressing towards clinical implementation. The literature is summarised by addressing the droplet design criteria and by carrying out a multiparametric study of a range of droplet formulations and their associated vaporisation thresholds.
Collapse
Affiliation(s)
- H Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - M A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - K Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Bhagia S, Wyman CE, Kumar R. Impacts of cellulase deactivation at the moving air-liquid interface on cellulose conversions at low enzyme loadings. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:96. [PMID: 31044009 PMCID: PMC6477705 DOI: 10.1186/s13068-019-1439-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/13/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND We recently confirmed that the deactivation of T. reesei cellulases at the air-liquid interface reduces microcrystalline cellulose conversion at low enzyme loadings in shaken flasks. It is one of the main causes for lowering of cellulose conversions at low enzyme loadings. However, supplementing cellulases with small quantities of surface-active additives in shaken flasks can increase cellulose conversions at low enzyme loadings. It was also shown that cellulose conversions at low enzyme loadings can be increased in unshaken flasks if the reactions are carried for a longer time. This study further explores these recent findings to better understand the impact of air-liquid interfacial phenomena on enzymatic hydrolysis of cellulose contained in Avicel, Sigmacell, α-cellulose, cotton linters, and filter paper. The impacts of solids and enzyme loadings, supplementation with nonionic surfactant Tween 20 and xylanases, and application of different types of mixing and reactor designs on cellulose hydrolysis were also evaluated. RESULTS Avicel cellulose conversions at high solid loading were more than doubled by minimizing loss of cellulases to the air-liquid interface. Maximum cellulose conversions were high for surface-active supplemented shaken flasks or unshaken flasks because of low cellulase deactivation at the air-liquid interface. The nonionic surfactant Tween 20 was unable to completely prevent cellulase deactivation in shaken flasks and only reduced cellulose conversions at unreasonably high concentrations. CONCLUSIONS High dynamic interfacial areas created through baffles in reactor vessels, low volumes in high-capacity vessels, or high shaking speeds severely limited cellulose conversions at low enzyme loadings. Precipitation of cellulases due to aggregation at the air-liquid interface caused their continuous deactivation in shaken flasks and severely limited solubilization of cellulose.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - Charles E. Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
23
|
Rigamonti MG, Song Y, Li H, Saadatkhah N, Sauriol P, Patience GS. Influence of atomization conditions on spray drying lithium iron phosphate nanoparticle suspensions. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marco G. Rigamonti
- Department of Chemical EngineeringPolytechnique Montréal C.P. 6079, Succ. CV Montréal QC, H3C 3A7 Canada
| | - Yu‐Xiang Song
- Department of Chemical EngineeringPolytechnique Montréal C.P. 6079, Succ. CV Montréal QC, H3C 3A7 Canada
| | - He Li
- Department of Chemical EngineeringPolytechnique Montréal C.P. 6079, Succ. CV Montréal QC, H3C 3A7 Canada
| | - Nooshin Saadatkhah
- Department of Chemical EngineeringPolytechnique Montréal C.P. 6079, Succ. CV Montréal QC, H3C 3A7 Canada
| | - Pierre Sauriol
- Department of Chemical EngineeringPolytechnique Montréal C.P. 6079, Succ. CV Montréal QC, H3C 3A7 Canada
| | - Gregory S. Patience
- Department of Chemical EngineeringPolytechnique Montréal C.P. 6079, Succ. CV Montréal QC, H3C 3A7 Canada
| |
Collapse
|
24
|
|
25
|
Competitive adsorption of surfactant–protein mixtures in a continuous stripping mode foam fractionation column. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Lu B, Vayssade M, Miao Y, Chagnault V, Grand E, Wadouachi A, Postel D, Drelich A, Egles C, Pezron I. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations. Colloids Surf B Biointerfaces 2016; 145:79-86. [PMID: 27137806 DOI: 10.1016/j.colsurfb.2016.04.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/16/2016] [Accepted: 04/23/2016] [Indexed: 11/29/2022]
Abstract
Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels.
Collapse
Affiliation(s)
- Biao Lu
- Sorbonne Université, Université de Technologie de Compiègne, UMR CNRS 7338 BMBI, Rue du Dr Schweitzer, 60200 Compiègne, France; Sorbonne Université, Université de Technologie de Compiègne, EA TIMR 4297 UTC/ESCOM, Rue du Dr Schweitzer, 60200 Compiègne, France
| | - Muriel Vayssade
- Sorbonne Université, Université de Technologie de Compiègne, UMR CNRS 7338 BMBI, Rue du Dr Schweitzer, 60200 Compiègne, France
| | - Yong Miao
- Université de Picardie Jules Verne, LG2A, CNRS FRE 3517, Institut de Chimie de Picardie CNRS FR 3085, 33 rue Saint Leu, 80039 Amiens cedex, France
| | - Vincent Chagnault
- Université de Picardie Jules Verne, LG2A, CNRS FRE 3517, Institut de Chimie de Picardie CNRS FR 3085, 33 rue Saint Leu, 80039 Amiens cedex, France
| | - Eric Grand
- Université de Picardie Jules Verne, LG2A, CNRS FRE 3517, Institut de Chimie de Picardie CNRS FR 3085, 33 rue Saint Leu, 80039 Amiens cedex, France
| | - Anne Wadouachi
- Université de Picardie Jules Verne, LG2A, CNRS FRE 3517, Institut de Chimie de Picardie CNRS FR 3085, 33 rue Saint Leu, 80039 Amiens cedex, France
| | - Denis Postel
- Université de Picardie Jules Verne, LG2A, CNRS FRE 3517, Institut de Chimie de Picardie CNRS FR 3085, 33 rue Saint Leu, 80039 Amiens cedex, France
| | - Audrey Drelich
- Sorbonne Université, Université de Technologie de Compiègne, EA TIMR 4297 UTC/ESCOM, Rue du Dr Schweitzer, 60200 Compiègne, France
| | - Christophe Egles
- Sorbonne Université, Université de Technologie de Compiègne, UMR CNRS 7338 BMBI, Rue du Dr Schweitzer, 60200 Compiègne, France; Tufts University, Department of Oral and Maxillofacial Pathology, School of Dental Medicine, Boston, MA, United States
| | - Isabelle Pezron
- Sorbonne Université, Université de Technologie de Compiègne, EA TIMR 4297 UTC/ESCOM, Rue du Dr Schweitzer, 60200 Compiègne, France.
| |
Collapse
|
27
|
Zhang L, Lipik V, Miserez A. Complex coacervates of oppositely charged co-polypeptides inspired by the sandcastle worm glue. J Mater Chem B 2016; 4:1544-1556. [DOI: 10.1039/c5tb02298c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Complex coacervates of oppositely charged co-polypeptides inspired by sandcastle worm glue as a suitable modality for water-resistant bioadhesives.
Collapse
Affiliation(s)
- Lihong Zhang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- Center for Biomimetic Sensor Science
| | - Vitali Lipik
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- Center for Biomimetic Sensor Science
| | - Ali Miserez
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- Center for Biomimetic Sensor Science
| |
Collapse
|
28
|
Stedtfeld RD, Liu YC, Stedtfeld TM, Kostic T, Kronlein M, Srivannavit O, Khalife WT, Tiedje JM, Gulari E, Hughes M, Etchebarne B, Hashsham SA. Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomed Microdevices 2015; 17:89. [PMID: 26260693 PMCID: PMC4531140 DOI: 10.1007/s10544-015-9994-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A microfluidic card is described for simultaneous and rapid genetic detection of multiple microbial pathogens. The hydrophobic surface of native acrylic and a novel microfluidic mechanism termed "airlock" were used to dispense sample into a series of 64 reaction wells without the use of valves, external pumping peripherals, multiple layers, or vacuum assistance. This airlock mechanism was tested with dilutions of whole human blood, saliva, and urine, along with mock samples of varying viscosities and surface tensions. Samples spiked with genomic DNA (gDNA) or crude lysates from clinical bacterial isolates were tested with loop mediated isothermal amplification assays (LAMP) designed to target virulence and antibiotic resistance genes. Reactions were monitored in real time using the Gene-Z, which is a portable smartphone-driven system. Samples loaded correctly into the microfluidic card in 99.3% of instances. Amplification results confirmed no carryover of pre-dispensed primer between wells during sample loading, and no observable diffusion between adjacent wells during the 60 to 90 min isothermal reaction. Sensitivity was comparable between LAMP reactions tested within the microfluidic card and in conventional vials. Tests demonstrate that the airlock card works with various sample types, manufacturing techniques, and can potentially be used in many point-of-care diagnostics applications.
Collapse
Affiliation(s)
- Robert D. Stedtfeld
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Yen-Cheng Liu
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Tiffany M. Stedtfeld
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Tanja Kostic
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
- />Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Strasse 24, A-3430 Tulln, Austria
| | - Maggie Kronlein
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Onnop Srivannavit
- />Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Walid T. Khalife
- />Department of Microbiology, Sparrow Laboratories, Sparrow Health System, Lansing, MI 48912 USA
| | - James M. Tiedje
- />The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824 USA
- />Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
| | - Erdogan Gulari
- />Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mary Hughes
- />Department of Osteopathic Medical Specialties, Section of Emergency Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Brett Etchebarne
- />Department of Osteopathic Medical Specialties, Section of Emergency Medicine, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Syed A. Hashsham
- />Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824 USA
- />The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
29
|
Jin L, Wu H, Morbidelli M. Synthesis of Water-Based Dispersions of Polymer/TiO₂ Hybrid Nanospheres. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:1454-1468. [PMID: 28347075 PMCID: PMC5304628 DOI: 10.3390/nano5031454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
We develop a strategy for preparing water-based dispersions of polymer/TiO₂ nanospheres that can be used to form composite materials applicable in various fields. The formed hybrid nanospheres are monodisperse and possess a hierarchical structure. It starts with the primary TiO₂ nanoparticles of about 5 nm, which first assemble to nanoclusters of about 30 nm and then are integrated into monomer droplets. After emulsion polymerization, one obtains the water-based dispersions of polymer/TiO₂ nanospheres. To achieve universal size, it is necessary to have treatments with intense turbulent shear generated in a microchannel device at different stages. In addition, a procedure combining synergistic actions of steric and anionic surfactants has been designed to warrant the colloidal stability of the process. Since the formed polymer/TiO₂ nanospheres are stable aqueous dispersions, they can be easily mixed with TiO₂-free polymeric nanoparticle dispersions to form new dispersions, where TiO₂-containing nanospheres are homogeneously distributed in the dispersions at the nanoscale, thus leading to various applications. As an example, the proposed strategy has been applied to generate polystyrene/TiO₂ nanospheres of about 100 nm in diameter.
Collapse
Affiliation(s)
- Lu Jin
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Hua Wu
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
30
|
Calabrese I, Merli M, Turco Liveri ML. Deconvolution procedure of the UV-vis spectra. A powerful tool for the estimation of the binding of a model drug to specific solubilisation loci of bio-compatible aqueous surfactant-forming micelle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 142:150-158. [PMID: 25703359 DOI: 10.1016/j.saa.2014.12.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
UV-vis-spectra evolution of Nile Red loaded into Tween 20 micelles with pH and [Tween 20] have been analysed in a non-conventional manner by exploiting the deconvolution method. The number of buried sub-bands has been found to depend on both pH and bio-surfactant concentration, whose positions have been associated to Nile Red confined in aqueous solution and in the three micellar solubilisation sites. For the first time, by using an extended classical two-pseudo-phases-model, the robust treatment of the spectrophotometric data allows the estimation of Nile Red binding constant to the available loci. Hosting capability towards Nile Red is exalted by the pH enhancement. Comparison between binding constant values classically evaluated and those estimated by the deconvolution protocol unveiled that overall binding values perfectly match with the mean values of the local binding sites. This result suggests that deconvolution procedure provides more precise and reliable values, which are more representative of drug confinement.
Collapse
Affiliation(s)
- Ilaria Calabrese
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze - Parco d'Orleans II - Pad. 17, 90128 Palermo, Italy
| | - Marcello Merli
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Maria Liria Turco Liveri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze - Parco d'Orleans II - Pad. 17, 90128 Palermo, Italy.
| |
Collapse
|
31
|
Horiuchi S, Winter G. CMC determination of nonionic surfactants in protein formulations using ultrasonic resonance technology. Eur J Pharm Biopharm 2015; 92:8-14. [DOI: 10.1016/j.ejpb.2015.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/24/2022]
|
32
|
|
33
|
Castellanos MM, Pathak JA, Colby RH. Both protein adsorption and aggregation contribute to shear yielding and viscosity increase in protein solutions. SOFT MATTER 2014; 10:122-131. [PMID: 24651563 DOI: 10.1039/c3sm51994e] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A combination of sensitive rotational rheometry and surface rheometry with a double-wall ring were used to identify the origins of the viscosity increase at low shear rates in protein solutions. The rheology of two high molecular weight proteins is discussed: Bovine Serum Albumin (BSA) in a Phosphate Buffered Saline solution and an IgG1 monoclonal antibody (mAb) in a formulation buffer containing small quantities of a non-ionic surfactant. For surfactant-free BSA solutions, the interfacial viscosity dominates the low shear viscosity measured in rotational rheometers, while the surfactant-laden mAb solution has an interfacial viscosity that is small compared to that from aggregation in the bulk. A viscoelastic film forms at the air/water interface in the absence of surfactant, contributing to an apparent yield stress (thus a low shear viscosity increase) in conventional bulk rheology measurements. Addition of surfactant eliminates the interfacial yield stress. Evidence of a bulk yield stress arising from protein aggregation is presented, and correlated with results from standard characterization techniques used in the bio-pharmaceutical industry. The protein film at the air/water interface and bulk aggregates both lead to an apparent viscosity increase and their contributions are quantified using a dimensionless ratio of the interfacial and total yield stress. While steady shear viscosities at shear rates below ∼1 s(-1) contain rich information about the stability of protein solutions, embodied in the measured yield stress, such low shear rate data are regrettably often not measured and reported in the literature.
Collapse
Affiliation(s)
- Maria Monica Castellanos
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
34
|
Understanding interactions between immunoassay excipient proteins and surfactants at air–aqueous interface. Colloids Surf B Biointerfaces 2014; 113:285-94. [DOI: 10.1016/j.colsurfb.2013.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/01/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022]
|
35
|
Yohe ST, Freedman JD, Falde EJ, Colson YL, Grinstaff MW. A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes. ADVANCED FUNCTIONAL MATERIALS 2013; 23:3628-3637. [PMID: 25309305 PMCID: PMC4191864 DOI: 10.1002/adfm.201203111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate- co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications.
Collapse
Affiliation(s)
- Stefan T. Yohe
- Departments of Biomedical Engineering and Chemistry Boston University Boston, MA 02215, USA
| | - Jonathan D. Freedman
- Departments of Biomedical Engineering and Chemistry Boston University Boston, MA 02215, USA
| | - Eric J. Falde
- Departments of Biomedical Engineering and Chemistry Boston University Boston, MA 02215, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery Department of Surgery Brigham and Women’s Hospital Boston, MA 02215, USA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry Boston University Boston, MA 02215, USA
| |
Collapse
|
36
|
Lutz B, Liang T, Fu E, Ramachandran S, Kauffman P, Yager P. Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. LAB ON A CHIP 2013; 13:2840-7. [PMID: 23685876 PMCID: PMC3710703 DOI: 10.1039/c3lc50178g] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.
Collapse
Affiliation(s)
- Barry Lutz
- University of Washington, Department of Bioengineering, 3720 15th Ave NE, Box 355061, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
37
|
The effect of UV irradiation on air/water interfacial activity of Tween 20–coumarin conjugates. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-2966-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Wu C, Lim JY, Fuller GG, Cegelski L. Disruption of Escherichia coli amyloid-integrated biofilm formation at the air-liquid interface by a polysorbate surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:920-926. [PMID: 23259693 PMCID: PMC3557966 DOI: 10.1021/la304710k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Functional amyloid fibers termed curli contribute to bacterial adhesion and biofilm formation in Escherichia coli . We discovered that the nonionic surfactant Tween 20 inhibits biofilm formation by uropathogenic E. coli at the air-liquid interface, referred to as pellicle formation, and at the solid-liquid interface. At Tween 20 concentrations near and above the critical micelle concentration, the interfacial viscoelastic modulus is reduced to zero as cellular aggregates at the air-liquid interface are locally disconnected and eventually eliminated. Tween 20 does not inhibit the production of curli but prevents curli-integrated film formation. Our results support a model in which the hydrophobic curli fibers associated with bacteria near the air-liquid interface require access to the gas phase to formed strong physical entanglements and to form a network that can support shear stress.
Collapse
Affiliation(s)
- Cynthia Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Ji Youn Lim
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
39
|
Zhang H, Xu G, Liu T, Xu L, Zhou Y. Foam and interfacial properties of Tween 20–bovine serum albumin systems. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2012.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Glawdel T, Ren CL. Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:026308. [PMID: 23005855 DOI: 10.1103/physreve.86.026308] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Indexed: 05/20/2023]
Abstract
This study extends our previous work on droplet generation in microfluidic T-junction generators to include dynamic interfacial tension effects created by the presence of surfactants. In Paper I [T. Glawdel, C. Elbuken, and C. L. Ren, Phys. Rev. E 85, 016322 (2012)], we presented experimental findings regarding the formation process in the squeezing-to-transition regime, and in Paper II [T. Glawdel, C. Elbuken, and C. L. Ren, Phys. Rev. E 85, 016323 (2012)] we developed a theoretical model that describes the performance of T-junction generators without surfactants. Here we study dynamic interfacial tension effects for two surfactants, one with a small molecular weight that adsorbs quickly, and the other with a large molecular weight that adsorbs slowly. Using the force balance developed in Paper II we extract the dynamic interfacial tension from high speed videos obtained during experiments. We then develop a theoretical model to predict the dynamic interfacial tension in microfluidic T-junction generators as a function of the surfactant properties, flow conditions, and generator design. This model is then incorporated into the overall model for generator performance to effectively predict the size of droplets produced when surfactants are present.
Collapse
Affiliation(s)
- Tomasz Glawdel
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
41
|
The effect of Tween® 20 on silicone oil–fusion protein interactions. Int J Pharm 2012; 429:158-67. [DOI: 10.1016/j.ijpharm.2012.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 11/16/2022]
|
42
|
Helmdach L, Pertig D, Rüdiger S, Lee KS, Stelzer T, Ulrich J. Bubbles - Trouble-Makers in Crystallizers: Classical Problems during Inline Measurements. Chem Eng Technol 2012. [DOI: 10.1002/ceat.201100719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Levato R, Mateos-Timoneda MA, Planell JA. Preparation of biodegradable polylactide microparticles via a biocompatible procedure. Macromol Biosci 2012; 12:557-66. [PMID: 22362713 DOI: 10.1002/mabi.201100383] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/16/2011] [Indexed: 11/06/2022]
Abstract
PLA MPs are prepared via a novel and toxic-chemical-free fabrication route using ethyl lactate, a green solvent and FDA-approved aroma. MPs are obtained by a solution jet break-up and solvent displacement method. Adjusting flow parameters allows the tuning of MPs size between 60 and 180 µm, with reduced polydispersity. Morphological analysis shows microporous particles with Janus-like surface. A fluorophore is successfully loaded into the MPs during their formation step. This versatile green solvent-based procedure is proven to be suitable for drug encapsulation and delivery applications. The method may be extended to different droplet generation techniques.
Collapse
Affiliation(s)
- Riccardo Levato
- Institute for Bioengineering of Catalonia (IBEC) and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Edifici Helix, C/Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | | | | |
Collapse
|
44
|
Lochovsky C, Yasotharan S, Günther A. Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices. LAB ON A CHIP 2012; 12:595-601. [PMID: 22159026 DOI: 10.1039/c1lc20817a] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gas bubbles present a frequent challenge to the on-chip investigation and culture of biological cells and small organs. The presence of a single bubble can adversely impair biological function and often viability as it increases the wall shear stress in a liquid-perfused microchannel by at least one order of magnitude. We present a microfluidic strategy for in-plane trapping and removal of gas bubbles with volumes of 0.1-500 nL. The presented bubble trap is compatible with single-layer soft lithography and requires a footprint of less than ten square millimetres. Nitrogen bubbles were consistently removed at a rate of 0.14 μL min(-1). Experiments were complemented with analytical and numerical models to comprehensively characterize bubble removal for liquids with different wetting behaviour. Consistent long-term operation of the bubble trap was demonstrated by removing approximately 4000 bubbles during one day. In a case study, we successfully applied the bubble trap to the on-chip investigation of intact small blood vessels. Scalability of the design was demonstrated by realizing eight parallel traps at a total removal rate of 0.9 μL min(-1) (measured for nitrogen).
Collapse
Affiliation(s)
- Conrad Lochovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S3G9, Canada
| | | | | |
Collapse
|
45
|
Maldonado OS, Lucas R, Comelles F, Jesús González M, Parra JL, Medina I, Morales JC. Synthesis and characterization of phenolic antioxidants with surfactant properties: glucosyl- and glucuronosyl alkyl gallates. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.07.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Foam films from mixed solutions of bovine serum albumin and n-dodecyl-β-d-maltoside. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
O’Regan J, Mulvihill DM. Sodium caseinate–maltodextrin conjugate hydrolysates: Preparation, characterisation and some functional properties. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.03.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Lucas R, Comelles F, Alcántara D, Maldonado OS, Curcuroze M, Parra JL, Morales JC. Surface-active properties of lipophilic antioxidants tyrosol and hydroxytyrosol fatty acid esters: a potential explanation for the nonlinear hypothesis of the antioxidant activity in oil-in-water emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8021-8026. [PMID: 20524658 DOI: 10.1021/jf1009928] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Our group has recently observed a nonlinear tendency in antioxidant capacity of different hydroxytyrosol fatty acid esters in fish oil-in-water emulsions, where a maximum of antioxidant efficiency appeared for hydroxytyrosol octanoate. These results appear to disagree with the antioxidant polar paradox. Because the physical location of the antioxidants in an oil-water interface has been postulated as an important factor in explaining this behavior, we have prepared a series of tyrosol and hydroxytyrosol fatty acid esters with different chain length and studied their surface-active properties in water, because these physicochemical parameters could be directly related to the preferential placement at the interface. We have found that tyrosol and hydroxytyrosol fatty acid esters are relevant surfactants when the right hydrophilic-lipophilic balance (HLB) is attained and, in some cases, as efficient as emulsifiers commonly used in industry, such as Brij 30 or Tween 20. Moreover, a nonlinear dependency of surfactant effectiveness is observed with the increase in chain length of the lipophilic antioxidants. This tendency seems to fit quite well with the reported antioxidant activity in emulsions, and the best antioxidant of the series (hydroxytyrosol octanoate) is also a very effective surfactant. This potential explanation of the nonlinear hypothesis will help in the rational design of antioxidants used in oil-in-water emulsions.
Collapse
Affiliation(s)
- Ricardo Lucas
- Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, 49 Avda Americo Vespucio, 41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Ganidi N, Tyrrel S, Cartmell E. Anaerobic digestion foaming causes--a review. BIORESOURCE TECHNOLOGY 2009; 100:5546-54. [PMID: 19577922 DOI: 10.1016/j.biortech.2009.06.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 05/09/2023]
Abstract
Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming problem and to identify gaps in knowledge regarding the theory of foam formation in anaerobic digesters.
Collapse
Affiliation(s)
- Nafsika Ganidi
- Centre for Water Science, School of Applied Sciences, Bld. 40, Cranfield University, Cranfield, Beds MK43 0AL, UK
| | | | | |
Collapse
|