1
|
Adepu S, Siju CR, Kaki S, Bagannagari S, Khandelwal M, Bharti VK. Review on need for designing sustainable and biodegradable face masks: Opportunities for nanofibrous cellulosic filters. Int J Biol Macromol 2024; 283:137627. [PMID: 39547626 DOI: 10.1016/j.ijbiomac.2024.137627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The surge in microbial illnesses, notably seen during the COVID-19 pandemic, has led to the global use of face masks-cloth, surgical, medical, and respirator types-to curb respiratory pathogen spread. Widely used by the public, patients, and healthcare workers, masks play a key role in reducing airborne transmission. However, synthetic, non-biodegradable materials in these masks have sparked environmental concerns due to disposal issues. Moreover, challenges like limited microbial filtration, poor fit, breathing resistance, and low reusability raise further issues, as does the failure to neutralize trapped microbes. Addressing these issues calls for high-performance, biodegradable masks crafted from renewable nanofibrous materials using advanced technology. Antimicrobial nanomaterial coatings can further reduce contamination risks for users and the environment. Nanofibrous materials, with their high surface area, enhance filtration, allow customization, and improve capture efficiency. Research is progressing on sustainable, biodegradable filters, particularly with cellulose materials. This review outlines mask types and limitations, spotlighting nanofibrous filters for their filtration efficiency, breathability, and sustainability. It also delves into nanofiber manufacturing and assesses bacterial cellulose-a promising renewable nanofibrous material suited for air filtration.
Collapse
Affiliation(s)
- Shivakalyani Adepu
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - C R Siju
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Samuel Kaki
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Sharanya Bagannagari
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India
| | - Mudrika Khandelwal
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Vikram Kishore Bharti
- Cellulose & Composites Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| |
Collapse
|
2
|
Lin SP, Hong L, Hsieh CC, Lin YH, Chou YC, Santoso SP, Hsieh CW, Tsai TY, Cheng KC. In situ modification of foaming bacterial cellulose with chitosan and its application to active food packaging. Int J Biol Macromol 2024; 279:135114. [PMID: 39233147 DOI: 10.1016/j.ijbiomac.2024.135114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Owing to a lack of specific biological functions, bacterial cellulose (BC) has been restricted in its application to the field of active packaging. In this study, we developed antimicrobial packaging materials using foaming BC (FBC) with chitosan (CS) and applied it to the preservation of chilled sea bass. The material property analysis demonstrated that 1.5 % CS/FBC maintained a high water content of 91 %, a swelling ratio of 75.6 %, great stress of 1.61 MPa, and great strain of 1.87 %. CS incorporation into FBC also decreased its crystallinity from 73.39 % to 69.3 %. Meanwhile, 1.5 % CS/FBC also provided great antimicrobial ability against Escherichia coli and Staphylococcus aureus by approximately 2 log colony-forming units/mL inhibition utilizing contact-killing. Results of the preservation assessment indicated that 1.5 % CS/FBC efficiently inhibited Shewanella putrefaciens growth, reduced total volatile basic nitrogen release, and slightly inhibited lipid oxidation. Based on the above results, CS/FBC is an ecofriendly biomaterial produced from a microorganism that possesses high absorbency and strong antibacterial properties, making it suitable for development as antibacterial active packaging.
Collapse
Affiliation(s)
- Shin-Ping Lin
- School of Food Safety, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Ling Hong
- Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan; Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Yun-Hsin Lin
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
| | - Yu-Chieh Chou
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, 37 Kalijudan, Surabaya 60114, Indonesia
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Optometry, Asia University, 500 Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
3
|
Shishparenok AN, Petryaev ER, Koroleva SA, Dobryakova NV, Zlotnikov ID, Komedchikova EN, Kolesnikova OA, Kudryashova EV, Zhdanov DD. Bacterial Cellulose-Chitosan Composite for Prolonged-Action L-Asparaginase in Treatment of Melanoma Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1727-1743. [PMID: 39523112 DOI: 10.1134/s0006297924100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Abstract
A significant challenge associated with the therapeutic use of L-ASP for treatment of tumors is its rapid clearance from plasma. Effectiveness of L-ASP is limited by the dose-dependent toxicity. Therefore, new approaches are being developed for L-ASP to improve its therapeutic properties. One of the approaches to improve properties of the enzymes, including L-ASP, is immobilization on various types of biocompatible polymers. Immobilization of enzymes on a carrier could improve stability of the enzyme and change duration of its enzymatic activity. Bacterial cellulose (BC) is a promising carrier for various drugs due to its biocompatibility, non-toxicity, high porosity, and high drug loading capacity. Therefore, this material has high potential for application in biomedicine. Native BC is known to have a number of disadvantages related to structural stability, which has led to consideration of the modified BC as a potential carrier for immobilization of various proteins, including L-ASP. In our study, a BC-chitosan composite in which chitosan is cross-linked with glutaraldehyde was proposed for immobilization of L-ASP. Physicochemical characteristics of the BC-chitosan films were found to be superior to those of native BC films, resulting in increase in the release time of L-ASP in vitro from 8 to 24 h. These films exhibited prolonged toxicity (up to 10 h) against the melanoma cell line. The suggested strategy for A-ASP immobilization on the BC-chitosan films could be potentially used for developing therapeutics for treatment of surface types of cancers including melanomas.
Collapse
Affiliation(s)
| | | | - Svetlana A Koroleva
- Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | | | - Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena N Komedchikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga A Kolesnikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
4
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
5
|
Hameed A, Tariq M, Sadia S, Alam MR, Haider A, Wahedi HM. Aloesin-loaded chitosan/cellulose-based scaffold promotes skin tissue regeneration. Int J Biol Macromol 2024; 273:133030. [PMID: 38857730 DOI: 10.1016/j.ijbiomac.2024.133030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Skin wound healing and regeneration is very challenging across the world as simple or acute wounds can be transformed into chronic wounds or ulcers due to foreign body invasion, or diseases like diabetes or cancer. The study was designed to develop a novel bioactive scaffold, by loading aloesin to chitosan-coated cellulose scaffold, to cure full-thickness skin wounds. The physiochemical characterization of the scaffold was carried out using scanning electron microscopy (SEM) facilitated by energy-dispersive spectrophotometer (EDS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results indicated the successful coating of chitosan and aloesin on cellulose without any physical damage. The drug release kinetics confirmed the sustained release of aloesin by showing a cumulative release of up to 88 % over 24 h. The biocompatibility of the aloesin-loaded chitosan/cellulose (AlCsCFp) scaffold was evaluated by the WST-8 assay that confirmed the significantly increased adherence and proliferation of fibroblasts on the AlCsCFp scaffold. The in vivo wound healing study showed that both 0.05 % and 0.025 % AlCsCFp scaffolds have significantly higher wound closure rates (i.e. 88.2 % and 95.6 % approximately) as compared to other groups. This showed that novel composite scaffold has a wound healing ability. Furthermore, histological and gene expression analysis demonstrated that the scaffold also induced cell migration, angiogenesis, re-epithelialization, collagen deposition, and tissue granulation formation. Thus, it is concluded that the aloesin-loaded chitosan/cellulose-based scaffold has great therapeutic potential for being used in wound healing applications in the clinical setting in the future.
Collapse
Affiliation(s)
- Aasia Hameed
- Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan; Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Mehreen Tariq
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Sobia Sadia
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - M Rizwan Alam
- Department of Biochemistry, Quaid-I-Azam University, Islamabad Capital Territory 45320, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Road, 46000 Rawalpindi, Pakistan
| | - Hussain Mustatab Wahedi
- Department of Biomedicine, Atta-ur-Rehman School of Applied Biosciences, National University of Sciences & Technology, Sector H-12, 44000 Islamabad, Pakistan.
| |
Collapse
|
6
|
Tunsound V, Krasian T, Daranarong D, Punyodom W, Jantanasakulwong K, Ross S, Tipduangta P, Rachtanapun P, Ross G, Jantrawut P, Amnuaypanich S, Worajittiphon P. Enhanced mechanical properties and biocompatibility of bacterial cellulose composite films with inclusion of 2D MoS 2 and helical carbon nanotubes for use as antimicrobial drug carriers. Int J Biol Macromol 2023; 253:126712. [PMID: 37673164 DOI: 10.1016/j.ijbiomac.2023.126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bacterial cellulose (BC) is a biomaterial being investigated for a range of applications. Herein, BC films derived from nata de coco pieces are reinforced by two-dimensional molybdenum disulfide (MoS2) and helical carbon nanotubes (HCNTs) to enhance their tensile mechanical properties, and the biocompatibility of the BC composite films is demonstrated. A simple preparation is presented using a kitchen blender to disperse and blend the BC fibers and additives in a common fabrication medium, followed by vacuum filtration. The mechanical properties of the BC/MoS2/HCNTs composite films are enhanced due to the synergistic effect of MoS2 and HCNTs embedded in the BC films. The MoS2/HCNTs binary additive (1 phr) is capable of increasing the strength and Young's modulus by 148 % and 333 %, respectively, relative to the BC films. The cell cytotoxicity of the BC/MoS2/HCNTs films was assessed using an MTT assay. The composite films are biocompatible with a cell viability of L929 fibroblast cells >70 %, coupled with observations of direct cell attachment on the films. The composite films also exhibited good performance in absorbing and releasing gentamicin antibiotics to inhibit the growth of Escherichia coli and Staphylococcus aureus. The BC/MoS2/HCNTs films are thus potential BC-based candidates as biocompatible robust antibiotic carriers.
Collapse
Affiliation(s)
- Vasuphat Tunsound
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Gareth Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pensak Jantrawut
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sittipong Amnuaypanich
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
7
|
Jing S, Wu L, Siciliano AP, Chen C, Li T, Hu L. The Critical Roles of Water in the Processing, Structure, and Properties of Nanocellulose. ACS NANO 2023; 17:22196-22226. [PMID: 37934794 DOI: 10.1021/acsnano.3c06773] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The cellulose industry depends heavily on water owing to the hydrophilic nature of cellulose fibrils and its potential for sustainable and innovative production methods. The emergence of nanocellulose, with its excellent properties, and the incorporation of nanomaterials have garnered significant attention. At the nanoscale level, nanocellulose offers a higher exposure of hydroxyl groups, making it more intimate with water than micro- and macroscale cellulose fibers. Gaining a deeper understanding of the interaction between nanocellulose and water holds the potential to reduce production costs and provide valuable insights into designing functional nanocellulose-based materials. In this review, water molecules interacting with nanocellulose are classified into free water (FW) and bound water (BW), based on their interaction forces with surface hydroxyls and their mobility in different states. In addition, the water-holding capacity of cellulosic materials and various water detection methods are also discussed. The review also examines water-utilization and water-removal methods in the fabrication, dispersion, and transport of nanocellulose, aiming to elucidate the challenges and tradeoffs in these processes while minimizing energy and time costs. Furthermore, the influence of water on nanocellulose properties, including mechanical properties, ion conductivity, and biodegradability, are discussed. Finally, we provide our perspective on the challenges and opportunities in developing nanocellulose and its interplay with water.
Collapse
Affiliation(s)
- Shuangshuang Jing
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Lianping Wu
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Amanda P Siciliano
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Materials Innovation, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Potočnik V, Gorgieva S, Trček J. From Nature to Lab: Sustainable Bacterial Cellulose Production and Modification with Synthetic Biology. Polymers (Basel) 2023; 15:3466. [PMID: 37631523 PMCID: PMC10459212 DOI: 10.3390/polym15163466] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial cellulose (BC) is a macromolecule with versatile applications in medicine, pharmacy, biotechnology, cosmetology, food and food packaging, ecology, and electronics. Although many bacteria synthesize BC, the most efficient BC producers are certain species of the genera Komagataeibacter and Novacetimonas. These are also food-grade bacteria, simplifying their utilization at industrial facilities. The basic principles of BC synthesis are known from studies of Komagataeibacter xylinus, which became a model species for studying BC at genetic and molecular levels. Cellulose can also be of plant origin, but BC surpasses its purity. Moreover, the laboratory production of BC enables in situ modification into functionalized material with incorporated molecules during its synthesis. The possibility of growing Komagataeibacter and Novacetimonas species on various organic substrates and agricultural and food waste compounds also follows the green and sustainable economy principles. Further intervention into BC synthesis was enabled by genetic engineering tools, subsequently directing it into the field of synthetic biology. This review paper presents the development of the fascinating field of BC synthesis at the molecular level, seeking sustainable ways for its production and its applications towards genetic modifications of bacterial strains for producing novel types of living biomaterials using the flexible metabolic machinery of bacteria.
Collapse
Affiliation(s)
- Vid Potočnik
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
| | - Selestina Gorgieva
- Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, University of Maribor, 2000 Maribor, Slovenia;
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
9
|
Guimarães DT, de Oliveira Barros M, de Araújo E Silva R, Silva SMF, de Almeida JS, de Freitas Rosa M, Gonçalves LRB, Brígida AIS. Superabsorbent bacterial cellulose film produced from industrial residue of cashew apple juice processing. Int J Biol Macromol 2023; 242:124405. [PMID: 37100327 DOI: 10.1016/j.ijbiomac.2023.124405] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The industrial residue of cashew apple juice processing (MRC) was evaluated as an alternative medium for bacterial cellulose (BC) production by Komagataeibacter xylinus ATCC 53582 and Komagataeibacter xylinus ARS B42. The synthetic Hestrin-Schramm medium (MHS) was used as a control for growing and BC production. First, BC production was assessed after 4, 6, 8, 10, and 12 days under static culture. After 12 days of cultivation, K. xylinus ATCC 53582 produced the highest BC titer in MHS (3.1 g·L-1) and MRC (3 g·L-1), while significant productivity was attained at 6 days of fermentation. To understand the effect of culture medium and fermentation time on the properties of the obtained films, BC produced at 4, 6, or 8 days were submitted to infrared spectroscopy with Fourier transform, thermogravimetry, mechanical tests, water absorption capacity, scanning electron microscopy, degree of polymerization and X-ray diffraction. The properties of BC synthesized in MRC were identical to those of BC from MHS, according to structural, physical, and thermal studies. MRC, on the other hand, allows the production of BC with a high water absorption capacity when compared to MHS. Despite the lower titer (0.88 g·L-1) achieved in MRC, the BC from K. xylinus ARS B42 presented a high thermal resistance and a remarkable absorption capacity (14664 %), suggesting that it might be used as a superabsorbent biomaterial.
Collapse
Affiliation(s)
- Darlyson Tavares Guimarães
- Rede Nordeste de Biotecnologia, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Matheus de Oliveira Barros
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Renata de Araújo E Silva
- Universidade Estadual do Ceará, Departamento de Ciência e Tecnologia, Av. Dr. Silas Munguba, 1700, Bairro Itaperi, Fortaleza, CE CEP 60714-903, Brazil
| | - Sarah Maria Frota Silva
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Jessica Silva de Almeida
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Morsyleide de Freitas Rosa
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CE CEP 60511-110, Brazil
| | - Luciana Rocha Barros Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, bloco 709, Fortaleza, CE CEP 60455-760, Brazil
| | - Ana Iraidy Santa Brígida
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, Fortaleza, CE CEP 60511-110, Brazil.
| |
Collapse
|
10
|
Abu Hasan NS, Mohamad S, Sy Mohamad SF, Arzmi MH, Supian NNI. Ex-Situ Development and Characterization of Composite Film Based on Bacterial Cellulose Derived from Oil Palm Frond Juice and Chitosan as Food Packaging. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The development of alternative food packaging films using bio-based residues is in great demand for replacing petroleum-based packaging materials. However, large-scale application is severely limited by costly production and poor performance. This study investigates the ex-situ modification of bacterial cellulose (BC) produced by Acetobacter xylinum in oil palm fronds juice to obtain BC-Chitosan (BCC) films. FTIR revealed the structure of amide I and II bands, confirming the presence of chitosan in BCC films. The FE-SEM images of BCC films showed the formation of a thick chitosan layer with increasing chitosan incorporated into the BC surface structure. The coated chitosan layer observed improved mechanical properties in BCC films due to the disappearance of empty pores between BC fibers. Increments in chitosan concentration slightly decreased the thermal behavior of BCC. The antimicrobial effects of BCC films were effective against Gram-positive bacteria (Staphylococcus aureus) when the concentration of chitosan incorporated was above 0.6 %w/v. This study reveals the potential of extending the application of BC derived from oil palm frond juice (OPFJ) for developing food packaging materials.
Collapse
|
11
|
Lan J, Chen J, Zhu R, Lin C, Ma X, Cao S. Antibacterial and antiviral chitosan oligosaccharide modified cellulosic fibers with durability against washing and long-acting activity. Int J Biol Macromol 2023; 231:123587. [PMID: 36758766 PMCID: PMC9907796 DOI: 10.1016/j.ijbiomac.2023.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The worldwide outbreak of SARS-CoV-2 has attracted extensive attention to antibacterial and antivirus materials. Cellulose is the most potential candidate for the preparation of green, environmentally friendly antibacterial and antiviral materials. Herein, modified cellulosic fibers with sustained antibacterial and antiviral performance was prepared by introducing chitosan oligosaccharide onto the fibers. The two-step method is proved to be more effective than the one-step method for enhanced chitosan oligosaccharide loadings and antibacterial and antiviral activity. In this instance, the modified fibers with 61.77 mg/g chitosan oligosaccharide loadings can inhibit Staphylococcus aureus and Escherichia coli by 100 % after contacting with bacteria for 12 h and reduce the bacteriophage MS2 by 99.19 % after 1 h of contact. More importantly, the modified fibers have washing durable antibacterial and antiviral activity; the modified fibers have 100 % antibacterial and 98.38 % antiviral activity after 20 washing cycles. Benefiting from the excellent performance of the individual fibers, the paper prepared from the modified fibers show great antibacterial (100 %) and antiviral performance (99.01 %) and comparable mechanical strength. The modified fibers have potential applications in the manufacture of protective clothing and protective hygiene products.
Collapse
Affiliation(s)
| | | | | | | | - Xiaojuan Ma
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shilin Cao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
12
|
Pasaribu KM, Ilyas S, Tamrin T, Radecka I, Swingler S, Gupta A, Stamboulis AG, Gea S. Bioactive bacterial cellulose wound dressings for burns with collagen in-situ and chitosan ex-situ impregnation. Int J Biol Macromol 2023; 230:123118. [PMID: 36599383 DOI: 10.1016/j.ijbiomac.2022.123118] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) is a biopolymer that commonly used for wound dressings regarding to its high in-vitro and in-vivo biocompatibility. Moreover, the three-dimensional fibers in BC become an advantageous for bioactive wound dressing application as they serve as templates for impregnation other supportive materials. Chitosan and collagen are two of the materials that can be impregnated to optimize the BC properties for serve as wound dressing material. Collagen can help skin cells grow on the wound sites, where chitosan has anti-bacterial properties and can bind red blood cells. BC-based wound dressings were made by impregnating collagen via in-situ method followed by immersing chitosan via ex-situ method into BC fibers for 24 h. The intermolecular interactions of amine groups in the wound dressing were confirmed by FTIR. The XRD diffractogram showed wider peaks at 14.2°, 16.6°, and 22.4° due to the presence of collagen and chitosan molecules in the BC fibers. SEM images confirmed that chitosan and collagen could penetrate BC fibers well. Other tests, such as water content, porosity, antibacterial properties, and haemocompatibility, indicated that the wound dressing was non-hemolytic. In-vivo test indicated that BC/collagen/chitosan wound dressing supported the wound healing process on second degree burn.
Collapse
Affiliation(s)
- Khatarina Meldawati Pasaribu
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Syafruddin Ilyas
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia.
| | - Tamrin Tamrin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia.
| | - Izabela Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; School of Allied Health and Midwifery, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Jerome K Jerome Building, Gorway Road, Walsall WS1 3BD, UK.
| | - Artemis G Stamboulis
- Biomaterials Research Group, School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2SE, United Kingdom
| | - Saharman Gea
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia; Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia.
| |
Collapse
|
13
|
A Review of Properties of Nanocellulose, Its Synthesis, and Potential in Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147090] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellulose is the most venerable and essential natural polymer on the planet and is drawing greater attention in the form of nanocellulose, considered an innovative and influential material in the biomedical field. Because of its exceptional physicochemical characteristics, biodegradability, biocompatibility, and high mechanical strength, nanocellulose attracts considerable scientific attention. Plants, algae, and microorganisms are some of the familiar sources of nanocellulose and are usually grouped as cellulose nanocrystal (CNC), cellulose nanofibril (CNF), and bacterial nanocellulose (BNC). The current review briefly highlights nanocellulose classification and its attractive properties. Further functionalization or chemical modifications enhance the effectiveness and biodegradability of nanocellulose. Nanocellulose-based composites, printing methods, and their potential applications in the biomedical field have also been introduced herein. Finally, the study is summarized with future prospects and challenges associated with the nanocellulose-based materials to promote studies resolving the current issues related to nanocellulose for tissue engineering applications.
Collapse
|
14
|
Khan S, Ul-Islam M, Ullah MW, Zhu Y, Narayanan KB, Han SS, Park JK. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int J Biol Macromol 2022; 209:9-30. [PMID: 35381280 DOI: 10.1016/j.ijbiomac.2022.03.191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/20/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022]
Abstract
Bacterial cellulose (BC), an extracellular polysaccharide, is a versatile biopolymer due to its intrinsic physicochemical properties, broad-spectrum applications, and remarkable achievements in different fields, especially in the biomedical field. Presently, the focus of BC-related research is on the development of scaffolds containing other materials for in-vitro and in-vivo biomedical applications. To this end, prime research objectives concern the biocompatibility of BC and the development of three-dimensional (3D) BC-based scaffolds. This review summarizes the techniques used to develop 3D BC scaffolds and discusses their potential merits and limitations. In addition, we discuss the various biomedical applications of BC-based scaffolds for which the 3D BC matrix confers desired structural and conformational features. Overall, this review provides comprehensive coverage of the idea, requirements, synthetic strategies, and current and prospective applications of 3D BC scaffolds, and thus, should be useful for researchers working with polysaccharides, biopolymers, or composite materials.
Collapse
Affiliation(s)
- Shaukat Khan
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, 2509, Salalah, Sultanate of Oman
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Youlong Zhu
- Materials Science Institute, The PCFM and GDHPRC Laboratory, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Joong Kon Park
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
15
|
Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology. Polym J 2022. [DOI: 10.1038/s41428-021-00606-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Ambaye TG, Vaccari M, Prasad S, van Hullebusch ED, Rtimi S. Preparation and applications of chitosan and cellulose composite materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113850. [PMID: 34619590 DOI: 10.1016/j.jenvman.2021.113850] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 05/28/2023]
Abstract
Chitosan is a natural fiber, chemically cellulose-like biopolymer, which is processed from chitin. Its use as a natural polymer is getting more attention because it is non-toxic, renewable, and biocompatible. However, its poor mechanical and thermal strength, particle size, and surface area restrict its industrial use. Consequently, to improve these properties, cellulose and/or inorganic nanoparticles have been used. This review discusses the recent progress of chitosan and cellulose composite materials, their preparation, and their applications in different industrial sectors. It also discusses the modification of chitosan and cellulose composite materials to allow their use on a large scale. Finally, the recent development of chitosan composite materials for drug delivery, food packaging, protective coatings, and wastewater treatment are discussed. The challenges and perspectives for future research are also considered. This review suggests that chitosan and cellulose nano-composite are promising, low-cost products for environmental remediation involving a simple production process.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute New Delhi, 110012, India
| | - Eric D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, UMR 7154, F-75238, Paris, France
| | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH, 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Mahendiran B, Muthusamy S, Selvakumar R, Rajeswaran N, Sampath S, Jaisankar SN, Krishnakumar GS. Decellularized natural 3D cellulose scaffold derived from Borassus flabellifer (Linn.) as extracellular matrix for tissue engineering applications. Carbohydr Polym 2021; 272:118494. [PMID: 34420749 DOI: 10.1016/j.carbpol.2021.118494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/02/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
In this study, Borassus flabellifer (Linn.) (BF) immature endosperm was decellularized to produce three dimensional (3D) cellulose scaffolds that can support mammalian 3D cell culture. To this regard, we first evaluated the chemical composition, nutritive profile and pharmacological activities of BF endosperm. The results demonstrated that the BF tissue represented a complex concoction of polysaccharides with intrinsic phyto-ingredients which provide excellent pharmacological properties. Furthermore cellulosic scaffolds (CS) obtained from BF was treated with chitosan to produce cellulose-chitosan (CS/CHI) hybrid scaffolds. The comparative investigation on both scaffolds exhibited adequate swelling with controlled porosity and pore-size distribution. The physiochemical characterization showed reduced biodegradation, improved thermal stability and enhanced compressive strength in CS/CHI group. Biological studies reported favorable adhesion and proliferation of fibroblasts with evident cellular penetration and colonization on the both scaffolds. Taken together, plant derived cellulosic scaffolds could be used as an alternative scaffolding material in regenerative medicine.
Collapse
Affiliation(s)
- Balaji Mahendiran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Shalini Muthusamy
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - R Selvakumar
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Narmadha Rajeswaran
- Tissue Engineering Laboratory, PSG Institute of Advanced Studies, Coimbatore, Tamil Nadu, India
| | - Sowndarya Sampath
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| | - S N Jaisankar
- Department of Polymer Science and Technology, Council of Scientific and Industrial Research-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| | | |
Collapse
|
18
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
19
|
Drozd R, Szymańska M, Przygrodzka K, Hoppe J, Leniec G, Kowalska U. The Simple Method of Preparation of Highly Carboxylated Bacterial Cellulose with Ni- and Mg-Ferrite-Based Versatile Magnetic Carrier for Enzyme Immobilization. Int J Mol Sci 2021; 22:ijms22168563. [PMID: 34445267 PMCID: PMC8395317 DOI: 10.3390/ijms22168563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/19/2023] Open
Abstract
The bacterial cellulose (BC) is a versatile biopolymer of microbial origin characterized by high purity and unusual water and material properties. However, the native BC contains a low number of functional groups, which significantly limits its further application. The main goal of its effective modification is to use methods that allow the unusual properties of BC to be retained and the desired functional group to be efficiently introduced. In the present study, the new magnetic carrier based on functionalized citric acid (CA) bacterial cellulose was developed and tested to support critical industrial enzymes such as lipase B from Candida antarctica and phospholipase A from Aspergillus oryzae. The applied method allowed BC to be effectively modified by citric acid and a sufficient number of carboxylic groups to be introduced, up to 3.6 mmol of COOH per gram of dry mass of the prepared carrier. The DSC and TGA analyses revealed carrier stability at operational temperatures in the range of 20 °C to 100 °C and substantially influenced the amount of the introduced carboxyl groups on carrier properties. Both enzymes’ immobilization significantly improves their thermal stability at 60 °C without a significant thermal and pH optima effect. The analyzed enzymes showed good operational stability with a significant residual activity after ten cycles of repeated uses. The new magnetic carrier based on highly carboxylated bacterial cellulose has a high application capability as matrix for immobilization the various enzymes of industrial interest.
Collapse
Affiliation(s)
- Radosław Drozd
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (M.S.); (K.P.)
- Correspondence: ; Tel.: +48-517-456-798
| | - Magdalena Szymańska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (M.S.); (K.P.)
| | - Katarzyna Przygrodzka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 45 Piastów Avenue, 71-311 Szczecin, Poland; (M.S.); (K.P.)
| | - Jakub Hoppe
- Faculty of Chemistry, Adam Mickiewicz University, UL. Umultowska 89b, 61-614 Poznań, Poland;
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46 Str., 61-612 Poznan, Poland
| | - Grzegorz Leniec
- Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 48 Piastów Avenue, 70-311 Szczecin, Poland;
| | - Urszula Kowalska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, 35 Klemensa Janickiego Str., 71-270 Szczecin, Poland;
| |
Collapse
|
20
|
Nguyen VT, Tran AX, Le VAT. Microencapsulation of phenolic-enriched extract from cocoa pod husk (Theobroma cacao L.). POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum annuum L. PLANTS 2021; 10:plants10061144. [PMID: 34199718 PMCID: PMC8227464 DOI: 10.3390/plants10061144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022]
Abstract
Waste generation is a global issue that necessitates effective management for both human and animal health as well as environment. There are several ways to reduce waste, but recycling appears to be the best choice. By recycling, not only will the problem of pollution be resolved, but valuable compounds could be generated to be used as nutrients for plants. In this study, eco-friendly methods were established to produce α- and β-chitosan (CS) (as a source of nitrogen) with different degrees of deacetylation from shrimp shells and squid pin waste, phosphorous through degreasing and calcination of bovine bone and potassium from evaporation of banana peels Kolakhar. The waste bulk products were physically characterized and dry-milled into nano-powders. Different concentrations of the produced nano-NPK fertilizer (10%, 25%, 50% and 100%) were foliar-applied to Capsicum annum L. cv. Cordoba plants and compared to commercial chemical fertilizer and untreated control plants. The obtained results revealed that the nano-composite NPK with 25% concentration significantly promoted growth, yield and harvest of C. annuum as compared with the control and chemical fertilizer-treated plants. This study demonstrated that the use of an eco-friendly preparation of waste NPK composites, with a low concentration, could be applied as foliar fertilizer over chemical fertilizer to enhance the growth and productivity of Capsicum.
Collapse
|
22
|
Extraction of Chitosan from Crab Shell and Fungi and Its Antibacterial Activity against Urinary Tract Infection Causing Pathogens. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, shells of sea crab and fungus Aspergillus niger were subjected for chitosan extraction which has been done following demineralization, deproteination and deacetylation. Chitosan yield from crab shell and fungi was 37.5% and 39.3% respectively and water binding capacity was 58.44% and 60.21% respectively. The extracted chitosan was characterized using Fourier transform infrared spectroscopy (FTIR) and subjected for antibacterial activity against Urinary tract infection (UTI) pathogens – Klebsiella pneumoniae, Proteus mirabilis and E. coli. Chitosan of crab shell showed better antibacterial activity than fungal derived chitosan. Chitosan gel was prepared using the extracted chitosan where it was also showing good antibacterial activity.
Collapse
|
23
|
|
24
|
|
25
|
Sommer A, Dederko-Kantowicz P, Staroszczyk H, Sommer S, Michalec M. Enzymatic and Chemical Cross-Linking of Bacterial Cellulose/Fish Collagen Composites-A Comparative Study. Int J Mol Sci 2021; 22:ijms22073346. [PMID: 33805875 PMCID: PMC8037045 DOI: 10.3390/ijms22073346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
This article compares the properties of bacterial cellulose/fish collagen composites (BC/Col) after enzymatic and chemical cross-linking. In our methodology, two transglutaminases are used for enzymatic cross-linking—one recommended for the meat and the other proposed for the fish industry—and pre-oxidated BC (oxBC) is used for chemical cross-linking. The structure of the obtained composites is characterized by scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and Fourier transform infrared spectroscopy, and their functional properties by mechanical and water barrier tests. While polymer chains in uncross-linked BC/Col are intertwined by H-bonds, new covalent bonds in enzymatically cross-linked ones are formed—resulting in increased thermal stability and crystallinity of the material. The C2–C3 bonds cleavage in D-glucose units, due to BC oxidation, cause secondary alcohol groups to vanish in favor of the carbonyl groups’ formation, thus reducing the number of H-bonded OHs. Thermal stability and crystallinity of oxBC/Col remain lower than those of BC/Col. The BC/Col formation did not affect tensile strength and water vapor permeability of BC, but enzymatic cross-linking with TGGS improved them significantly.
Collapse
Affiliation(s)
- Agata Sommer
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
| | - Paulina Dederko-Kantowicz
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
- Laboratory of Molecular Diagnostics and Biochemistry, Plant Breeding and Acclimatization Institute—National Research Institute, Bonin Research Center, Bonin 3, 76-009 Bonin, Poland
| | - Hanna Staroszczyk
- Department of Chemistry, Technology and Biotechnology of Food, Chemical Faculty, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland; (A.S.); (P.D.-K.)
- Correspondence:
| | - Sławomir Sommer
- Department of Automotive Engineering, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland;
| | - Marek Michalec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| |
Collapse
|
26
|
Vázquez M, Velazquez G, Cazón P. UV-Shielding films of bacterial cellulose with glycerol and chitosan. Part 2: Structure, water vapor permeability, spectral and thermal properties. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1870565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago De Compostela, Lugo, Spain
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Querétaro, México
| | - Patricia Cazón
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago De Compostela, Lugo, Spain
| |
Collapse
|
27
|
Vázquez M, Velazquez G, Cazón P. UV-Shielding films of bacterial cellulose with glycerol and chitosan. Part 1: equilibrium moisture content and mechanical properties. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1870566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago De Compostela, Lugo, Spain
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional, CICATA Unidad Querétaro, Querétaro, México
| | - Patricia Cazón
- Department of Analytical Chemistry, Faculty of Veterinary, University of Santiago De Compostela, Lugo, Spain
| |
Collapse
|
28
|
Novikov IV, Pigaleva MA, Naumkin AV, Badun GA, Levin EE, Kharitonova EP, Gromovykh TI, Gallyamov MO. Green approach for fabrication of bacterial cellulose-chitosan composites in the solutions of carbonic acid under high pressure CO 2. Carbohydr Polym 2021; 258:117614. [PMID: 33593532 DOI: 10.1016/j.carbpol.2021.117614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 02/02/2023]
Abstract
The functionalization of the bacterial cellulose (BC) surface with a chitosan biopolymer to expand the areas of possible applications of the modified BC is an important scientific task. The creation of such composites in the carbonic acid solutions that were performed in this work has several advantages in terms of being biocompatible and eco-friendly. Quantitative analysis of chitosan content in the composite was conducted by tritium-labeled chitosan radioactivity detection method and this showed three times increased chitosan loading. Different physicochemical methods showed successful incorporation of chitosan into the BC matrix and interaction with it through hydrogen bonds. Microscopy results showed that the chitosan coating with a thickness of around 10 nm was formed in the bulk of BC, covering each microfibril. It was found that the inner specific surface area increased 1.5 times on deposition of chitosan from the solutions in carbonic acid.
Collapse
Affiliation(s)
- Ilya V Novikov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, Moscow, 119991, Russian Federation.
| | - Marina A Pigaleva
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, Moscow, 119991, Russian Federation.
| | - Alexander V Naumkin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow, 119991, Russian Federation.
| | - Gennady A Badun
- Faculty of Chemistry, Lomonosov Moscow State University, 1-2 Leninskie gory, Moscow, 119991, Russian Federation.
| | - Eduard E Levin
- Faculty of Chemistry, Lomonosov Moscow State University, 1-2 Leninskie gory, Moscow, 119991, Russian Federation; FSRC "Crystallography and Photonics" RAS, Leninsky Prospekt 59, 119333, Moscow, Russian Federation.
| | - Elena P Kharitonova
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, Moscow, 119991, Russian Federation.
| | - Tatiana I Gromovykh
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Bolshaya Pirogovskaya st., Moscow, 119991, Russian Federation.
| | - Marat O Gallyamov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1-2, Moscow, 119991, Russian Federation; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow, 119991, Russian Federation.
| |
Collapse
|
29
|
A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohydr Polym 2021; 252:117123. [DOI: 10.1016/j.carbpol.2020.117123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
|
30
|
Cui J, Wang X, Yu S, Zhong C, Wang N, Meng J. Facile fabrication of chitosan-based adsorbents for effective removal of cationic and anionic dyes from aqueous solutions. Int J Biol Macromol 2020; 165:2805-2812. [PMID: 33736283 DOI: 10.1016/j.ijbiomac.2020.10.161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
To develop chitosan-based adsorbents for the treatment of dye wastewater, poly acrylic acid (PAA) and poly acrylamide (PAM) were simultaneously grafted onto the chitosan (CTS) chain to obtain a grafted-crosslinked material g-CCTS, and then, Fe-g-CCTS was prepared via coordination of Fe(III) onto the prepared g-CCTS. Two adsorbents g-CCTS and Fe-g-CCTS were fully characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Nitrogen adsorption and desorption, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis. In adsorption experiment, g-CCTS exhibited effective adsorption towards cationic dye methylene blue (MB), and Fe-g-CCTS showed effective adsorption towards anionic dye reactive brilliant red (RBR). The effects of solution pH, salt concentration and temperature on the adsorption process were investigated. The maximum adsorption capacity of g-CCTS for MB was up to 79.09 mg/g at pH 12, and that of Fe-g-CCTS for RBR reached 918.53 mg/g at pH 2. It was observed that both adsorption processes were monolayer adsorption, and conformed to the pseudo-second-order model and the Langmuir isotherm model. This research provided a facile and accurate method for effective dyes removal from wastewater.
Collapse
Affiliation(s)
- Jianlan Cui
- School of Chemical Engineering and Technology, North University of China, Shanxi 030051, China.
| | - Xiao Wang
- School of Chemical Engineering and Technology, North University of China, Shanxi 030051, China
| | - Siyuan Yu
- School of Chemical Engineering and Technology, North University of China, Shanxi 030051, China.
| | - Congshan Zhong
- School of Chemical Engineering and Technology, North University of China, Shanxi 030051, China
| | - Ning Wang
- School of Chemical Engineering and Technology, North University of China, Shanxi 030051, China
| | - Jian Meng
- School of Chemical Engineering and Technology, North University of China, Shanxi 030051, China
| |
Collapse
|
31
|
Sriplai N, Pinitsoontorn S. Bacterial cellulose-based magnetic nanocomposites: A review. Carbohydr Polym 2020; 254:117228. [PMID: 33357842 DOI: 10.1016/j.carbpol.2020.117228] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023]
Abstract
Bacterial cellulose (BC) is a natural polymer that has unique and interesting structural, physical and chemical properties. These characteristics make it very attractive as a starting point for several novel developments in innovative research. However, the pristine BC lacks certain properties, in particular, magnetic property, which can be imparted to BC by incorporation of several types of magnetic nanoparticles. Magnetic nanocomposites based on BC exhibit additional magnetic functionality on top of the excellent properties of pristine BC, which make them promising materials with potential uses in various medical and environmental applications, as well as in advanced electronic devices. This review has compiled information about all classes of BC magnetic nanocomposites fabricated by various synthesis approaches and an overview of applications as well as improved features of these materials. A summary of the key developments of BC magnetic nanocomposites and emphasis on novel advances in this field is presented.
Collapse
Affiliation(s)
- Nipaporn Sriplai
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supree Pinitsoontorn
- Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), NANOTEC-KKU RNN on Nanomaterials Research and Innovation for Energy, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
32
|
Sajjad W, He F, Ullah MW, Ikram M, Shah SM, Khan R, Khan T, Khalid A, Yang G, Wahid F. Fabrication of Bacterial Cellulose-Curcumin Nanocomposite as a Novel Dressing for Partial Thickness Skin Burn. Front Bioeng Biotechnol 2020; 8:553037. [PMID: 33072719 PMCID: PMC7531241 DOI: 10.3389/fbioe.2020.553037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
The current study aimed to fabricate curcumin-loaded bacterial cellulose (BC-Cur) nanocomposite as a potential wound dressing for partial thickness burns by utilizing the therapeutic features of curcumin and unique structural, physico-chemical, and biological features of bacterial cellulose (BC). Characterization analyses confirmed the successful impregnation of curcumin into the BC matrix. Biocompatibility studies showed the better attachment and proliferation of fibroblast cells on the BC-Cur nanocomposite. The antibacterial potential of curcumin was tested against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella typhimurium (S. typhimurium), and Staphylococcus aureus (S. aureus). Wound healing analysis of partial-thickness burns in Balbc mice showed an accelerated wound closure up to 64.25% after 15 days in the BC-Cur nanocomposite treated group. Histological studies showed healthy granulation tissues, fine re-epithelialization, vascularization, and resurfacing of wound bed in the BC-Cur nanocomposite group. These results indicate that combining BC with curcumin significantly improved the healing pattern. Thus, it can be concluded that the fabricated biomaterial could provide a base for the development of promising alternatives for the conventional dressing system in treating burns.
Collapse
Affiliation(s)
- Wasim Sajjad
- Department of Biomedical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Shahid Masood Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ayesha Khalid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Fazli Wahid
- Department of Biomedical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| |
Collapse
|
33
|
Vachanont Tangsatianpan, Torgbo S, Sukyai P. Release Kinetic Model and Antimicrobial Activity of Freeze-Dried Curcumin-loaded Bacterial Nanocellulose Composite. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20030153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Naturally-occurring bacterial cellulose-hyperbranched cationic polysaccharide derivative/MMP-9 siRNA composite dressing for wound healing enhancement in diabetic rats. Acta Biomater 2020; 102:298-314. [PMID: 31751808 DOI: 10.1016/j.actbio.2019.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
Abstract
The anomalous high expression of matrix metalloproteinase 9 (MMP-9) is one important factor that impedes diabetic wound healing. Therefore, inhibition of MMP-9 expression in a diabetic wound could be a feasible method to promote wound healing. In this study, we studied the possibility of self-therapy using wound dressings that contain bacterial cellulose-hyperbranched cationic polysaccharide (BC-HCP) derivatives that encapsulate siRNA (BC-HCP/siMMP-9) and have controlled release properties. Herein, we used four HCPs (Gly-DMAPA, Gly-D4, Amyp-DMAPA, Amyp-D4) as gene carriers. Our results showed that all HCP derivatives were minimally toxic to cells in vitro, while the cationic properties of HCP could be used as a complexation agent for MMP-9 siRNA (siMMP-9). Upon exposure to bacterial cellulose (BC), the BC slowly released HCP/siMMP-9. The released siMMP-9 effectively reduced the gene expression and protein levels of MMP-9 in a human immortalized epithelial cell line (HaCAT) and in diabetic rat wounds. Inhibition of MMP-9 in the wounds of diabetic rats resulted in a significant enhancement of wound healing, suggesting that the BC-HCP/siMMP-9 composite dressing could be used as a safe and effective dressing to promote wound healing in diabetic rats. STATEMENT OF SIGNIFICANCE: In this work, we evaluated the possibility of using bacterial cellulose-hyperbranched cationic polysaccharide derivatives (BC-HCP) as a self-therapeutic wound dressing with siRNA encapsulated and controlled release properties. Our results showed that the BC-HCP/siMMP-9 composite dressing slowly released HCP/siMMP-9. The released siMMP-9 effectively reduced the gene expression and protein level of MMP-9 in human immortalized epithelial cell line and in the wound of diabetic rats. The BC-HCP/siMMP-9 composite dressing promoted diabetic wound healing by the unique nanostructure of BC and by releasing siMMP-9 for specific MMP-9 inhibition. Therefore, it could be used as a safe and effective dressing to promote wound healing in diabetic rats. This is the first evidence on the study of using BC as a dressing composite by encapsulating HCP/siRNA complexes for efficient RNAi gene silencing for better wound healing in diabetic rats.
Collapse
|
35
|
McCarthy RR, Ullah MW, Booth P, Pei E, Yang G. The use of bacterial polysaccharides in bioprinting. Biotechnol Adv 2019; 37:107448. [DOI: 10.1016/j.biotechadv.2019.107448] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
|
36
|
Pădurețu CC, Isopescu R, Rău I, Apetroaei MR, Schröder V. Influence of the parameters of chitin deacetylation process on the chitosan obtained from crab shell waste. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0379-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Eslahi N, Mahmoodi A, Mahmoudi N, Zandi N, Simchi A. Processing and Properties of Nanofibrous Bacterial Cellulose-Containing Polymer Composites: A Review of Recent Advances for Biomedical Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1663210] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amin Mahmoodi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nafiseh Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
38
|
Fabrication of bacterial cellulose-collagen composite scaffolds and their osteogenic effect on human mesenchymal stem cells. Carbohydr Polym 2019; 219:210-218. [DOI: 10.1016/j.carbpol.2019.05.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 11/24/2022]
|
39
|
Ul-Islam M, Subhan F, Islam SU, Khan S, Shah N, Manan S, Ullah MW, Yang G. Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. Int J Biol Macromol 2019; 137:1050-1059. [DOI: 10.1016/j.ijbiomac.2019.07.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
|
40
|
Pan J, Cao D, Ma X, Yang J. Preparation, characterization and in vitro release properties of pectin-based curcumin film. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Torres F, Arroyo J, Troncoso O. Bacterial cellulose nanocomposites: An all-nano type of material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1277-1293. [DOI: 10.1016/j.msec.2019.01.064] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
|
42
|
Junka A, Żywicka A, Chodaczek G, Dziadas M, Czajkowska J, Duda-Madej A, Bartoszewicz M, Mikołajewicz K, Krasowski G, Szymczyk P, Fijałkowski K. Potential of Biocellulose Carrier Impregnated with Essential Oils to Fight Against Biofilms Formed on Hydroxyapatite. Sci Rep 2019; 9:1256. [PMID: 30718663 PMCID: PMC6362291 DOI: 10.1038/s41598-018-37628-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
In this research, bacterial cellulose (BC), one of the most promising biopolymers of the recent years, was saturated with thyme, eucalyptus and clove essential oils (EOs) and applied against staphylococcal and pseudomonal biofilms formed on hydroxyapatite (HA). BC dressings were thoroughly analyzed with regard to their physical properties. Moreover, the exact composition and ability of particular EO molecules to adhere to HA was assessed. Additionally, cytotoxicity of oil-containing, cellulose-based dressings towards osteoblasts and fibroblasts as well as their impact on reactive oxygen species (ROS) production by macrophages was assessed. The results revealed the high ability of BC dressings to absorb and subsequently release EOs from within their microstructure; the highest number of compounds able to adhere to HA was found in the thyme EO. The eucalyptus EO displayed low, while thyme and clove EOs displayed high cytotoxicity towards fibroblast and osteoblast cell lines. The clove EO displayed the highest eradication ability toward staphylococcal, while the thyme EO against pseudomonal biofilm. Taken together, the results obtained indicate the suitability of EO-saturated BC dressings to eradicate pseudomonal and staphylococcal biofilm on HA surface and moreover, to not trigger reactive oxygen species production by immune system effector cells. However, due to cytotoxic effects of thyme and clove EOs towards cell lines in vitro, the eucalyptus EO-saturated BC dressing is of highest potential to be further applied.
Collapse
Affiliation(s)
- Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Anna Żywicka
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland
| | - Grzegorz Chodaczek
- Laboratory of Confocal Microscopy, Polish Center for Technology Development PORT, Stablowicka 147, 54-066, Wrocław, Poland
| | - Mariusz Dziadas
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-353, Wrocław, Poland
| | - Joanna Czajkowska
- Laboratory of Microbiology, Polish Center for Technology Development PORT, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Anna Duda-Madej
- Department of Medical Microbiology, Wroclaw Medical University, Chałubińskiego 4, 50-534, Wrocław, Poland
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Katarzyna Mikołajewicz
- Laboratory of Confocal Microscopy, Polish Center for Technology Development PORT, Stablowicka 147, 54-066, Wrocław, Poland
| | | | - Patrycja Szymczyk
- Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Łukasiewicza 5, 50-371, Wrocław, Poland
| | - Karol Fijałkowski
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów 45, 70-311, Szczecin, Poland.
| |
Collapse
|
43
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Sajjad W, Khan T, Ul-Islam M, Khan R, Hussain Z, Khalid A, Wahid F. Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr Polym 2018; 206:548-556. [PMID: 30553356 DOI: 10.1016/j.carbpol.2018.11.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/14/2018] [Accepted: 11/08/2018] [Indexed: 11/26/2022]
Abstract
Bacterial cellulose (BC) is a promising biopolymer with wound healing and tissue regenerative properties but lack of antimicrobial property limits its biomedical applications. Therefore, current study was proposed to combine wound healing property of BC with antimicrobial activity of montmorillonite (MMT) and modified montmorillonites (Cu-MMT, Na-MMT and Ca-MMT) to design novel artificial substitute for burns. Designed nanocomposites were characterized through Fe-SEM, FTIR and XRD. The antimicrobial activities of composites were tested against Escherichia coli, Salmonella typhimurium, Citrobacter fruendii, Pseudomonas aeruginosa, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Tissue regeneration and wound healing activities of the composites were assessed in burn mice model. Physico-chemical characterization confirmed the loading of MMT onto surface and BC matrix. Modified MMTs-BC nanocomposites showed clear inhibitory zone against the tested pathogens. Animals treated with modified MMTs-BC nanocomposites exhibited enhanced wound healing activity with tissue regeneration, reepithelialization, healthy granulation and vascularization. These findings demonstrated that modified MMTs-BC nanocomposites could be used as a novel artificial skin substitute for burn patients and scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Wasim Sajjad
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Oman
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Zohaib Hussain
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Ayesha Khalid
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Fazli Wahid
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
| |
Collapse
|
45
|
Cazón P, Vázquez M, Velazquez G. Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: Evaluation of water adsorption, mechanical and optical properties. Int J Biol Macromol 2018; 117:235-246. [DOI: 10.1016/j.ijbiomac.2018.05.148] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 11/27/2022]
|
46
|
Du R, Zhao F, Peng Q, Zhou Z, Han Y. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr Polym 2018; 194:200-207. [PMID: 29801830 DOI: 10.1016/j.carbpol.2018.04.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
This study aimed to characterize the structural and physico-mechanical properties of bacterial cellulose (BC) produced by Gluconoacetobacter xylinus TJU-S8 which was isolated from Chinese persimmon vinegar. Thermogravimetric analysis (TGA) showed that BC exhibited a good thermal stability. Solid-state nuclear magnetic resonance (NMR), fourier transform infrared spectroscopy (FT-IR) and x-ray diffraction (XRD) analysis revealed that BC had a typical crystalline form of the cellulose I. The BC membrane had typical characteristics such as nanodimensional network and microfibrils obtained by scanning electron microscopy (SEM). Moreover, the bacterial cellulose chitosan (BC-C) membrane and bacterial cellulose carboxymethyl chitosan (BC-CC) membrane were synthesized which showed significant inhibition against the growth of both Escherichia coli and Staphylococcus aureus. These results indicated superior properties of BC that advocated its effectiveness for various applications.
Collapse
Affiliation(s)
- Renpeng Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Fangkun Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Qian Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
47
|
Żywicka A, Fijałkowski K, Junka AF, Grzesiak J, El Fray M. Modification of Bacterial Cellulose with Quaternary Ammonium Compounds Based on Fatty Acids and Amino Acids and the Effect on Antimicrobial Activity. Biomacromolecules 2018; 19:1528-1538. [PMID: 29579391 DOI: 10.1021/acs.biomac.8b00183] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present work, bacterial cellulose (BC) membranes have been modified with bioactive compounds based on long chain dimer of C18 linoleic acid, referred to as the dilinoleic acid (DLA) and tyrosine (Tyr), a natural amino acid capable of forming noncovalent cation-π interactions with positively charged ethylene diamine (EDA). This new compound, [EDA][DLA-Tyr], has been synthesized by simple coupling reaction, and its chemical structure was characterized by 1H NMR and Fourier transform infrared spectroscopy. The antimicrobial activity of a new compound against S. aureus and S. epidermidis, two cocci associated with skin and wound infections, was assessed. The [EDA][DLA-Tyr] impregnated BC exhibited strong and long-term antimicrobial activity against both staphylococcal species. The results showed a 57-66% and 56-60% reduction in S. aureus and S. epidermidis viability, respectively, depending on [EDA][DLA-Tyr] concentration used. Importantly, [EDA][DLA-Tyr] molecules were released gradually from the BC pellicle, while a reference antibiotic, erythromycine (ER), did not show any antibacterial activity against S. aureus and S. epidermidis after 48 h of soaking in deionized water. Thus, a combination of [EDA][DLA-Tyr] and BC could be a promising new class of wound dressing displaying both biocompatibility and antimicrobial activity.
Collapse
Affiliation(s)
- Anna Żywicka
- Department of Immunology, Microbiology and Physiological Chemistry , West Pomeranian University of Technology, Szczecin, Faculty of Biotechnology and Animal Husbandry , Piastów 45 , 71-311 Szczecin , Poland
| | - Karol Fijałkowski
- Department of Immunology, Microbiology and Physiological Chemistry , West Pomeranian University of Technology, Szczecin, Faculty of Biotechnology and Animal Husbandry , Piastów 45 , 71-311 Szczecin , Poland
| | - Adam F Junka
- Department of Pharmaceutical Microbiology and Parasitology , Wrocław Medical University , Borowska 211A , 50-556 Wrocław , Poland
| | | | - Miroslawa El Fray
- Division of Functional Materials and Biomaterials , West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering , Al. Piastów 45 , 71-311 Szczecin , Poland
| |
Collapse
|
48
|
Nano-gold assisted highly conducting and biocompatible bacterial cellulose-PEDOT:PSS films for biology-device interface applications. Int J Biol Macromol 2018; 107:865-873. [DOI: 10.1016/j.ijbiomac.2017.09.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 12/19/2022]
|
49
|
Santos SM, Carbajo JM, Gómez N, Ladero M, Villar JC. Modification of Bacterial Cellulose Biofilms with Xylan Polyelectrolytes. Bioengineering (Basel) 2017; 4:E93. [PMID: 29182575 PMCID: PMC5746760 DOI: 10.3390/bioengineering4040093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022] Open
Abstract
The effect of the addition of two [4-butyltrimethylammonium]-xylan chloride polyelectrolytes (BTMAXs) on bacterial cellulose (BC) was evaluated. The first strategy was to add the polyelectrolytes to the culture medium together with a cell suspension of the bacterium. After one week of cultivation, the films were collected and purified. The second approach consisted of obtaining a purified and homogenized BC, to which the polyelectrolytes were added subsequently. The films were characterized in terms of tear and burst indexes, optical properties, surface free energy, static contact angle, Gurley porosity, SEM, X-ray diffraction and AFM. Although there are small differences in mechanical and optical properties between the nanocomposites and control films, the films obtained by BC synthesis in the presence of BTMAXs were remarkably less opaque, rougher, and had a much lower specular gloss. The surface free energy depends on the BTMAXs addition method. The crystallinity of the composites is lower than that of the control material, with a higher reduction of this parameter in the composites obtained by adding the BTMAXs to the culture medium. In view of these results, it can be concluded that BC-BTMAX composites are a promising new material, for example, for paper restoration.
Collapse
Affiliation(s)
- Sara M Santos
- Laboratory of Cellulose and Paper, INIA, Forest Research Center, Ctra. De la Coruña km 7.5, 28040 Madrid, Spain.
| | - José M Carbajo
- Laboratory of Cellulose and Paper, INIA, Forest Research Center, Ctra. De la Coruña km 7.5, 28040 Madrid, Spain.
| | - Nuria Gómez
- Laboratory of Cellulose and Paper, INIA, Forest Research Center, Ctra. De la Coruña km 7.5, 28040 Madrid, Spain.
| | - Miguel Ladero
- Department of Chemical Engineering and Materials, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Juan C Villar
- Laboratory of Cellulose and Paper, INIA, Forest Research Center, Ctra. De la Coruña km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
50
|
Kiprono SJ, Ullah MW, Yang G. Encapsulation of E. coli in biomimetic and Fe 3O 4-doped hydrogel: structural and viability analyses. Appl Microbiol Biotechnol 2017; 102:933-944. [PMID: 29170808 DOI: 10.1007/s00253-017-8625-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/24/2023]
Abstract
The current study reports the modification of prokaryotic microorganism through a single-layer technique by using different polyanions/cations and doping with magnetic (Fe3O4) nanoparticles. Briefly, individual Escherichia coli cells were encapsulated through deposition of 1% sodium alginate as first layer followed by depositing precipitate layers of calcium chloride, disodium hydrogen phosphate, and Fe3O4 nanoparticles. Surface and cross sectional analysis of modified E. coli cells by field emission scanning electron microscope (FE-SEM) confirmed the synthesis of varying sizes of artificial shells around the microbial cells while the deposition of Fe3O4 nanoparticles was confirmed by transmission electron microscope (TEM). Thermogravimetric analysis (TGA) showed the deposition of 58 wt% of Fe3O4 nanoparticles on E. coli cell surface. Chemical structure analysis by Fourier transform infrared (FTIR) spectroscopy confirmed the presence of characteristic functional groups of deposited reagents in the hydrogel capsule. Zeta potential analysis of hydrogel capsule showed moderate stability with a surface charge of - 21 mV. Growth and viability analysis by Alamar Blue assay indicated marked increase in the reduction of resazurin blue (> 100%) by the modified E. coli indicating their viability. The movement and control of magnetized E. coli cells were manipulated using external permanent magnetic field as observed with optical microscope images. The surface-modified cells can find potential applications in bioremediation, biodegradation, and catalysis and can be used as biosorbents.
Collapse
Affiliation(s)
- Sabella Jelimo Kiprono
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, 190-50100, Kenya
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China. .,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|