1
|
Fatima M, Ahmad A, Butt I, Arshad S, Kiani B. Geospatial modelling of ambient air pollutants and chronic obstructive pulmonary diseases at regional scale in Pakistan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:929. [PMID: 39271595 DOI: 10.1007/s10661-024-13105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Pakistan is among the South Asian countries mostly vulnerable to the negative health impacts of air pollution. In this context, the study aimed to analyze the spatiotemporal patterns of chronic obstructive pulmonary disease (COPD) incidence and its relationship with air pollutants including aerosol absorbing index (AAI), carbon monoxide, sulfur dioxide (SO2), and nitrogen dioxide. Spatial scan statistics were employed to identify temporal, spatial, and spatiotemporal clusters of COPD. Generalized linear regression (GLR) and random forest (RF) models were utilized to evaluate the linear and non-linear relationships between COPD and air pollutants for the years 2019 and 2020. The findings revealed three spatial clusters of COPD in the eastern and central regions, with a high-risk spatiotemporal cluster in the east. The GLR identified a weak linear relationship between the COPD and air pollutants with R2 = 0.1 and weak autocorrelation with Moran's index = -0.09. The spatial outcome of RF model provided more accurate COPD predictions with improved R2 of 0.8 and 0.9 in the respective years and a very low Moran's I = -0.02 showing a random residual distribution. The RF findings also suggested AAI and SO2 to be the most contributing predictors for the year 2019 and 2020. Hence, the strong association of COPD clusters with some air pollutants highlight the urgency of comprehensive measures to combat air pollution in the region to avoid future health risks.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Geography, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan.
| | - Adeel Ahmad
- Taylor Geospatial Institute, St. Louis, 63103, USA
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, 63130, USA
- Institute of Geography, University of Punjab Lahore, Lahore, 54590, Pakistan
| | - Ibtisam Butt
- Institute of Geography, University of Punjab Lahore, Lahore, 54590, Pakistan
| | - Sana Arshad
- Department of Geography, The Islamia University of Bahawalpur, Punjab, 63100, Pakistan
| | - Behzad Kiani
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Ould Boudia A, Asheesh M, Adusei-Mensah F, Bounab Y. Comparative Assessment of the Impact of COVID-19 Lockdown on Air Quality: A Multinational Study of SARS-CoV-2 Hotspots. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1171. [PMID: 39338054 PMCID: PMC11430896 DOI: 10.3390/ijerph21091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024]
Abstract
In response to the global COVID-19 pandemic, nations implemented lockdown measures to contain the virus. This study assessed air pollution levels during and after lockdowns, focusing on the following heavily affected locations: Oulu and Helsinki in Finland, Paris in France, Madrid in Spain, Milan in Italy, and Wuhan in China. Air Quality Index (AQI) data from these locations over two years were analyzed to understand the effects of lockdowns. The study compared COVID-19 lockdowns in these six cities with SARS-CoV-2 measurements using statistical methods. Variations in outdoor pollutants were evaluated through tests, revealing significant differences. Parametric analyses and regression were employed to study the impacts of lockdown measures on pollution and their relationships. The study comprehensively analyzed the effects of COVID-19 lockdowns on air quality, identifying differences, quantifying changes, and exploring patterns in each city. Pollutant correlations varied among cities during the lockdowns. Regression analysis highlighted the impact of independent variables on pollutants. Decreases in NO2 were observed in Helsinki, Madrid, Oulu, Paris, and Milan, reflecting reduced traffic and industrial activities. Reductions in PM2.5 and PM10 were noted in these cities and in Wuhan, except for O3 levels, which increased. The reduction in human activities improved air quality, particularly for NO2 and PM10. Regional variations underscore the need for tailored interventions. The study observed a substantial decrease in both PM2.5 and NO2 levels during the COVID-19 lockdowns, indicating a direct correlation between reduced human activities, such as transportation and industrial operations, and improved air quality. This underscores the potential impact of environmental measures and suggests the need for sustainable practices to mitigate urban pollution.
Collapse
Affiliation(s)
- Ahmed Ould Boudia
- Department of Civil Engineering and Energy Technology, Oulu University of Applied Sciences, Yliopistokatu 9, 90570 Oulu, Finland
| | - Mohamed Asheesh
- Department of Civil Engineering and Energy Technology, Oulu University of Applied Sciences, Yliopistokatu 9, 90570 Oulu, Finland
| | - Frank Adusei-Mensah
- Institute of Public Health and Clinical Nutrition, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 8, 70211 Kuopio, Finland
| | - Yazid Bounab
- Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Pentti Kaiteran katu 1, 90014 Oulu, Finland
| |
Collapse
|
3
|
Banerjee B, Kundu S, Kanchan R, Mohanta A. Examining the relationship between atmospheric pollutants and meteorological factors in Asansol city, West Bengal, India, using statistical modelling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33608-z. [PMID: 38761262 DOI: 10.1007/s11356-024-33608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
Meteorological conditions significantly impact ambient air quality in urban environments. This study focuses on Asansol, known as the "Coal City" and the "Industrial Heart of West Bengal," a notable hotspot for air pollution. Despite its significance, limited research has addressed the influence of meteorological factors on key air pollutants in this urban area. From January 2019 to December 2023, this investigation explores the relationships between meteorological parameters (including atmospheric temperature, relative humidity, rainfall, wind speed) and the concentrations of crucial air pollutants (PM2.5, PM10, NO2, SO2). Temporal trends in air pollutant concentrations are also analysed. The Spearman correlation method is used to establish associations between pollutant concentrations and meteorological variables, while multiple linear regression (MLR) models are employed to assess meteorological factors and potential impact on pollutant concentrations. The analysis reveals a decreasing trend in pollutant concentrations in Asansol. Temperature exhibits negative correlations with all pollutants in all seasons except for a positive correlation during the monsoon. Rainfall consistently displays significant negative correlations with pollutants in all seasons. Relative humidity is negatively correlated with pollutants in all seasons, and wind speed, except during the post-monsoon season, shows negative correlations with all pollutants. Linear models excel in predicting particulate matter concentrations but perform poorly in predicting gaseous contaminants. Accounting for seasonal fluctuations and meteorological parameters, this research enhances the accuracy of air pollution forecasting, contributing to a better understanding of air quality dynamics in Asansol and similar urban areas.
Collapse
Affiliation(s)
- Biplab Banerjee
- Department of Geography, Faculty of Science, The MS University Baroda, Vadodara, India, 390002.
| | - Sudipta Kundu
- Department of Geography, Faculty of Science, CSJM University of Kanpur, Kanpur, India
| | - Rolee Kanchan
- Department of Geography, Faculty of Science, The MS University Baroda, Vadodara, India, 390002
| | - Agradeep Mohanta
- Department of Botany, Faculty of Science, The MS University Baroda, Vadodara, 390002, India
| |
Collapse
|
4
|
Navaratnam AMD, Williams H, Sharp SJ, Woodcock J, Khreis H. Systematic review and meta-analysis on the impact of COVID-19 related restrictions on air quality in low- and middle-income countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168110. [PMID: 37884141 DOI: 10.1016/j.scitotenv.2023.168110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Low- and middle-income countries (LMIC) are disproportionately affected by air pollution and its health burden, representing a global inequity. The COVID-19 pandemic provided a unique opportunity to investigate the impact of unprecedented lockdown measures on air pollutant concentrations globally. We aim to quantify air pollutant concentration changes across LMIC settings as a result of COVID-19 restrictions. METHODS Searches for this systematic review and meta-analysis were carried out across five databases on 30th March 2022; MEDLINE, Embase, Web of Science, Scopus and Transport Research Information Documentation. Modelling and observational studies were included, as long as the estimates reflected city or town level data and were taken exclusively in pre-lockdown and lockdown periods. Mean percentage changes per pollutant were calculated and meta-analyses were carried out to calculate mean difference in measured ground-level observed concentrations for each pollutant (PROSPERO CRD42022326924). FINDINGS Of the 2982 manuscripts from initial searches, 256 manuscripts were included providing 3818 percentage changes of all pollutants. No studies included any countries from Sub-Saharan Africa and 34 % and 39.4 % of studies were from China and India, respectively. There was a mean percentage change of -37.4 %, -21.7 %, -54.6 %, -39.1 %, -48.9 %, 16.9 %, -34.9 %, -30.6 % and - 14.7 % for black carbon (BC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), ozone (O3), particulate matter 10 (PM10) and 2.5 (PM2.5) and sulphur dioxide (SO2), respectively. Meta-analysis included 100 manuscripts, providing 908 mean concentration differences, which showed significant reduction in mean concentration in all study settings for BC (-0.46 μg/m3, PI -0.85; -0.08), CO (-0.25 mg/m3, PI -0.44; -0.03), NO2 (-19.41 μg/m3, PI -31.14; -7.68) and NOx (-22.32 μg/m3, PI -40.94; -3.70). INTERPRETATION The findings of this systematic review and meta-analysis quantify and confirm the trends reported across the globe in air pollutant concentration, including increases in O3. Despite the majority of global urban growth occurring in LMIC, there are distinct geographical gaps in air pollution data and, where it is available, differing approaches to analysis and reporting.
Collapse
Affiliation(s)
| | - Harry Williams
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Stephen J Sharp
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - James Woodcock
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Haneen Khreis
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Rahaman MA, Kalam A, Al-Mamun M. Unplanned urbanization and health risks of Dhaka City in Bangladesh: uncovering the associations between urban environment and public health. Front Public Health 2023; 11:1269362. [PMID: 37927876 PMCID: PMC10620720 DOI: 10.3389/fpubh.2023.1269362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Background Dhaka City, the capital of Bangladesh, has experienced rapid and unplanned urbanization over the past few decades. This process has brought significant challenges to public health as the urban environment has become a breeding ground for various health risks. Understanding the associations between unplanned urbanization, the urban environment, and public health in Dhaka City is crucial for developing effective interventions and policies. Objectives This review paper aims to uncover the associations between unplanned urbanization and health risks in Dhaka City, with a specific focus on the urban environment and its impact on public health. The objectives of this study are to examine the health challenges faced by the city's population, explore the specific urban environmental factors contributing to health risks, analyze the socioeconomic determinants of health in unplanned urban areas, evaluate existing policies and governance structures, identify research and data gaps, and provide recommendations for future interventions. Methods A comprehensive literature review was conducted to gather relevant studies, articles, reports, and policy documents related to unplanned urbanization, the urban environment, and public health in Dhaka City. Various databases and online resources were searched, and the selected literature was critically analyzed to extract key findings and insights. Results The findings reveal that unplanned urbanization in Dhaka City has led to a range of public health risks, including air pollution, inadequate water and sanitation, poor waste management, overcrowding, slums, and substandard housing conditions. These environmental factors are strongly associated with respiratory diseases, waterborne illnesses, and other adverse health outcomes. Socioeconomic determinants such as poverty, income inequality, and limited access to healthcare further exacerbate the health risks faced by the urban population. Conclusion Unplanned urbanization in Dhaka City has significant implications for public health. Addressing the associations between unplanned urbanization, the urban environment, and public health requires comprehensive policies and interventions. Improved urban planning, enhanced infrastructure, and better policy governance are essential for mitigating health risks. Furthermore, addressing socioeconomic disparities and ensuring equitable access to healthcare services are crucial components of effective interventions.
Collapse
Affiliation(s)
- Mohammad Anisur Rahaman
- College of Public Administration, Zhejiang University, Hangzhou, China
- Department of Sociology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Abul Kalam
- Department of Sociology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md. Al-Mamun
- Department of Sociology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| |
Collapse
|
6
|
Bhandari R, Dhital NB, Rijal K. Effect of lockdown and associated mobility changes amid COVID-19 on air quality in the Kathmandu Valley, Nepal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1337. [PMID: 37853205 DOI: 10.1007/s10661-023-11949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023]
Abstract
The COVID-19 pandemic caused a setback for Nepal, leading to nationwide lockdowns. The study analyzed the impact of lockdown on air quality during the first and second waves of the COVID-19 pandemic in the Kathmandu Valley. We analyzed 5 years of ground-based air quality monitoring data (2017-2021) from March to July and April to June for the first and second wave lockdowns, respectively. A significant decrease in PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) concentrations was observed during the lockdowns. The highest rate of decline in PM2.5 levels was observed during May and July compared to the pre-pandemic year. The PM2.5 concentration during the lockdown period remained within the WHO guideline limit and NAAQS for the maximum number of days compared to the lockdown window in the pre-pandemic years (2017-2019). Likewise, lower PM2.5 levels were observed during the second wave lockdown, which was characterized by a targeted lockdown approach (smart lockdown). We found a significant correlation of PM2.5 concentration with community mobility changes (i.e., walking, driving, and using public transport) from the Spearman correlation analysis. Lockdown measures restricted human mobility that led to a lowering of PM2.5 concentrations. Our findings can be helpful in developing urban air quality control measures and management strategies, especially during high pollution episodes.
Collapse
Affiliation(s)
- Rikita Bhandari
- Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal.
| | - Narayan Babu Dhital
- Department of Environmental Science, Patan Multiple Campus, Tribhuvan University, Lalitpur, Nepal
| | - Kedar Rijal
- Central Department of Environmental Science, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
7
|
Investigating the association between air pollutants' concentration and meteorological parameters in a rapidly growing urban center of West Bengal, India: a statistical modeling-based approach. MODELING EARTH SYSTEMS AND ENVIRONMENT 2023; 9:2877-2892. [PMID: 36624780 PMCID: PMC9812750 DOI: 10.1007/s40808-022-01670-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
The ambient air quality in a city is heavily influenced by meteorological conditions. The city of Siliguri, known as the "Gateway of Northeast India", is a major hotspot of air pollution in the Indian state of West Bengal. Yet almost no research has been done on the possible impacts of meteorological factors on criterion air pollutants in this rapidly growing urban area. From March 2018 to September 2022, the present study aimed to determine the correlations between meteorological factors, including daily mean temperature (℃), relative humidity (%), rainfall (mm), wind speed (m/s) with the concentration of criterion air pollutants (PM2.5, PM10, NO2, SO2, CO, O3, and NH3). For this research, the trend of all air pollutants over time was also investigated. The Spearman correlation approach was used to correlate the concentration of air pollutants with the effect of meteorological variables on these pollutants. Comparing the multiple linear regression (MLR) and non-linear regression (MLNR) models permitted to examine the potential influence of meteorological factors on concentrations of air pollutants. According to the trend analysis, the concentration of NH3 in the air of Siliguri is rising, while the concentration of other pollutants is declining. Most pollutants showed a negative correlation with meteorological variables; however, the seasons impacted on how they responded. The comparative regression research results showed that although the linear and non-linear models performed well in predicting particulate matter concentrations, they performed poorly in predicting gaseous contaminants. When considering seasonal fluctuations and meteorological parameters, the results of this research will definitely help to increase the accuracy of air pollution forecasting near future.
Collapse
|
8
|
Sharifi A. An overview and thematic analysis of research on cities and the COVID-19 pandemic: Toward just, resilient, and sustainable urban planning and design. iScience 2022; 25:105297. [PMID: 36246575 PMCID: PMC9540689 DOI: 10.1016/j.isci.2022.105297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/11/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022] Open
Abstract
Since early 2020, researchers have made efforts to study various issues related to cities and the pandemic. Despite the wealth of research on this topic, there are only a few review articles that explore multiple issues related to it. This is partly because of the rapid pace of publications that makes systematic literature review challenging. To address this issue, in the present study, we rely on bibliometric analysis techniques to gain an overview of the knowledge structure and map key themes and trends of research on cities and the pandemic. Results of the analysis of 2,799 articles show that research mainly focuses on six broad themes: air quality, meteorological factors, built environment factors, transportation, socio-economic disparities, and smart cities, with the first three being dominant. Based on the findings, we discuss major lessons that can be learned from the pandemic and highlight key areas that need further research.
Collapse
Affiliation(s)
- Ayyoob Sharifi
- Hiroshima University, Graduate School of Humanities and Social Science, Higashi-Hiroshima, Hiroshima, Japan
- Network for Education and Research on Peace and Sustainability (NERPS)
- Center for Peaceful and Sustainable Futures (CEPEAS), The IDEC Institute, Hiroshima University
| |
Collapse
|
9
|
Rendana M, Idris WMR, Rahim SA. Changes in air quality during and after large-scale social restriction periods in Jakarta city, Indonesia. ACTA GEOPHYSICA 2022; 70. [PMCID: PMC9314244 DOI: 10.1007/s11600-022-00873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
COVID-19 outbreak has constrained human activities in Jakarta, Indonesia during the large-scale social restriction (LSSR) period. The objective of this study was to evaluate the changes in the spatial variation of air pollutants over Jakarta during and after the LSSR periods. This study used satellite retrievals such as OMI, AIRS, and MERRA-2 satellite data to assess spatial variations of NO2, CO, O3, SO2, and PM2.5 from May to June 2020 (during the LSSR period) and from July to August 2020 (after the LSSR period) over Jakarta. The satellite images were processed using GIS software to increase the clarity of the images. The relationship between air pollutants and meteorological data was analyzed using Pearson correlation. The results showed the levels of NO2, PM2.5, O3, and CO increased by 59.4%, 21.2%, 16.2%, and 1.0%, respectively, while SO2 decreased by 19.1% after the LSSR period. The temperature value was inversely correlated with PM2.5, NO2, and SO2 concentrations. Furthermore, the backward trajectory analysis revealed that air pollutants from outland areas such as the east and southeast carried more particulate matter and gases pollutants, which contributed to the air pollution during and after the LSSR periods. As a whole, the COVID-19 outbreak had bad impacts on human health, but the increase in air pollutants levels after loosening the LSSR policy could also lead to a higher risk of severe respiratory diseases. This study provides new insight into air pollutant distribution during and after LSSR periods and recommends an effective method of mitigating the air pollution issues in Jakarta.
Collapse
Affiliation(s)
- Muhammad Rendana
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya, South Sumatera 30662 Indonesia
| | - Wan Mohd Razi Idris
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Sahibin Abdul Rahim
- Department of Environmental Science, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| |
Collapse
|
10
|
Frumkin H. COVID-19, the Built Environment, and Health. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:75001. [PMID: 34288733 PMCID: PMC8294798 DOI: 10.1289/ehp8888] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Since the dawn of cities, the built environment has both affected infectious disease transmission and evolved in response to infectious diseases. COVID-19 illustrates both dynamics. The pandemic presented an opportunity to implement health promotion and disease prevention strategies in numerous elements of the built environment. OBJECTIVES This commentary aims to identify features of the built environment that affect the risk of COVID-19 as well as to identify elements of the pandemic response with implications for the built environment (and, therefore, for long-term public health). DISCUSSION Built environment risk factors for COVID-19 transmission include crowding, poverty, and racism (as they manifest in housing and neighborhood features), poor indoor air circulation, and ambient air pollution. Potential long-term implications of COVID-19 for the built environment include changes in building design, increased teleworking, reconfigured streets, changing modes of travel, provision of parks and greenspace, and population shifts out of urban centers. Although it is too early to predict with confidence which of these responses may persist, identifying and monitoring them can help health professionals, architects, urban planners, and decision makers, as well as members of the public, optimize healthy built environments during and after recovery from the pandemic. https://doi.org/10.1289/EHP8888.
Collapse
Affiliation(s)
- Howard Frumkin
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
| |
Collapse
|