1
|
Herrera-Luis E, Martin-Almeida M, Pino-Yanes M. Asthma-Genomic Advances Toward Risk Prediction. Clin Chest Med 2024; 45:599-610. [PMID: 39069324 PMCID: PMC11284279 DOI: 10.1016/j.ccm.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Asthma is a common complex airway disease whose prediction of disease risk and most severe outcomes is crucial in clinical practice for adequate clinical management. This review discusses the latest findings in asthma genomics and current obstacles faced in moving forward to translational medicine. While genome-wide association studies have provided valuable insights into the genetic basis of asthma, there are challenges that must be addressed to improve disease prediction, such as the need for diverse representation, the functional characterization of genetic variants identified, variant selection for genetic testing, and refining prediction models using polygenic risk scores.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205, USA.
| | - Mario Martin-Almeida
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez, s/n. Facultad de Ciencias, San Cristóbal de La Laguna, S/C de Tenerife La Laguna 38200, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid 28029, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna 38200, Tenerife, Spain
| |
Collapse
|
2
|
Herrera-Luis E, Rosa-Baez C, Huntsman S, Eng C, Beckman KB, LeNoir MA, Rodriguez-Santana JR, Villar J, Laprise C, Borrell LN, Ziv E, Burchard EG, Pino-Yanes M. Novel insights into the whole-blood DNA methylome of asthma in ethnically diverse children and youth. Eur Respir J 2023; 62:2300714. [PMID: 37802634 PMCID: PMC10841414 DOI: 10.1183/13993003.00714-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 08/20/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND The epigenetic mechanisms of asthma remain largely understudied in African Americans and Hispanics/Latinos, two populations disproportionately affected by asthma. We aimed to identify markers, regions and processes with differential patterns of DNA methylation (DNAm) in whole blood by asthma status in ethnically diverse children and youth, and to assess their functional consequences. METHODS DNAm levels were profiled with the Infinium MethylationEPIC or HumanMethylation450 BeadChip arrays among 1226 African Americans or Hispanics/Latinos and assessed for differential methylation per asthma status at the CpG and region (differentially methylated region (DMR)) level. Novel associations were validated in blood and/or nasal epithelium from ethnically diverse children and youth. The functional and biological implications of the markers identified were investigated by combining epigenomics with transcriptomics from study participants. RESULTS 128 CpGs and 196 DMRs were differentially methylated after multiple testing corrections, including 92.3% and 92.8% novel associations, respectively. 41 CpGs were replicated in other Hispanics/Latinos, prioritising cg17647904 (NCOR2) and cg16412914 (AXIN1) as asthma DNAm markers. Significant DNAm markers were enriched in previous associations for asthma, fractional exhaled nitric oxide, bacterial infections, immune regulation or eosinophilia. Functional annotation highlighted epigenetically regulated gene networks involved in corticosteroid response, host defence and immune regulation. Several implicated genes are targets for approved or experimental drugs, including TNNC1 and NDUFA12. Many differentially methylated loci previously associated with asthma were validated in our study. CONCLUSIONS We report novel whole-blood DNAm markers for asthma underlying key processes of the disease pathophysiology and confirm the transferability of previous asthma DNAm associations to ethnically diverse populations.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Carlos Rosa-Baez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Scott Huntsman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - Michael A LeNoir
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Bay Area Pediatrics, Oakland, CA, USA
| | - Jose R Rodriguez-Santana
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- Centro de Neumología Pediátrica, San Juan, Puerto Rico
| | - Jesús Villar
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Li Ka Shing Knowledge Institute at St Michael's Hospital, Toronto, ON, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Division of General Internal Medicine, Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna (ULL), La Laguna, Spain
- These authors contributed equally as senior authors
| |
Collapse
|
3
|
Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, Korta-Murua J, Valverde-Molina J, Sanchez-Solis M. Severe Asthma and Biological Therapies: Now and the Future. J Clin Med 2023; 12:5846. [PMID: 37762787 PMCID: PMC10532431 DOI: 10.3390/jcm12185846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recognition of phenotypic variability in pediatric asthma allows for a more personalized therapeutic approach. Knowledge of the underlying pathophysiological and molecular mechanisms (endotypes) of corresponding biomarkers and new treatments enables this strategy to progress. Biologic therapies for children with severe asthma are becoming more relevant in this sense. The T2 phenotype is the most prevalent in childhood and adolescence, and non-T2 phenotypes are usually rare. This document aims to review the mechanism of action, efficacy, and potential predictive and monitoring biomarkers of biological drugs, focusing on the pediatric population. The drugs currently available are omalizumab, mepolizumab, benralizumab, dupilumab, and 1ezepelumab, with some differences in administrative approval prescription criteria between the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Previously, we described the characteristics of severe asthma in children and its diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Olaia Sardon-Prado
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 20014 Leioa, Spain
| | - Carolina Diaz-Garcia
- Paediatric Pulmonology and Allergy Unit, Santa Lucia General University Hospital, 30202 Cartagena, Spain;
| | - Paula Corcuera-Elosegui
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Javier Korta-Murua
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Jose Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
| | - Manuel Sanchez-Solis
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
- Department of Pediatrics, University of Murcia, 20120 Murcia, Spain
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, 20120 Murcia, Spain
| |
Collapse
|
4
|
Herrera-Luis E, Mak ACY, Perez-Garcia J, Martin-Gonzalez E, Eng C, Beckman KB, Huntsman S, Hu D, González-Pérez R, Hernández-Pérez JM, Mederos-Luis E, Sio YY, Poza-Guedes P, Sardón O, Corcuera P, Sánchez-Machín I, Korta-Murua J, Martínez-Rivera C, Mullol J, Muñoz X, Valero A, Sastre J, Garcia-Aymerich J, Llop S, Torrent M, Casas M, Rodríguez-Santana JR, Villar J, del Pozo V, Lorenzo-Diaz F, Williams LK, Melén E, Chew FT, Borrell LN, Burchard EG, Pino-Yanes M. Admixture mapping of severe asthma exacerbations in Hispanic/Latino children and youth. Thorax 2023; 78:233-241. [PMID: 36180068 PMCID: PMC9957797 DOI: 10.1136/thorax-2022-218755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND In the USA, genetically admixed populations have the highest asthma prevalence and severe asthma exacerbations rates. This could be explained not only by environmental factors but also by genetic variants that exert ethnic-specific effects. However, no admixture mapping has been performed for severe asthma exacerbations. OBJECTIVE We sought to identify genetic variants associated with severe asthma exacerbations in Hispanic/Latino subgroups by means of admixture mapping analyses and fine mapping, and to assess their transferability to other populations and potential functional roles. METHODS We performed an admixture mapping in 1124 Puerto Rican and 625 Mexican American children with asthma. Fine-mapping of the significant peaks was performed via allelic testing of common and rare variants. We performed replication across Hispanic/Latino subgroups, and the transferability to non-Hispanic/Latino populations was assessed in 1001 African Americans, 1250 Singaporeans and 941 Europeans with asthma. The effects of the variants on gene expression and DNA methylation from whole blood were also evaluated in participants with asthma and in silico with data obtained through public databases. RESULTS Genomewide significant associations of Indigenous American ancestry with severe asthma exacerbations were found at 5q32 in Mexican Americans as well as at 13q13-q13.2 and 3p13 in Puerto Ricans. The single nucleotide polymorphism (SNP) rs1144986 (C5orf46) showed consistent effects for severe asthma exacerbations across Hispanic/Latino subgroups, but it was not validated in non-Hispanics/Latinos. This SNP was associated with DPYSL3 DNA methylation and SCGB3A2 gene expression levels. CONCLUSIONS Admixture mapping study of asthma exacerbations revealed a novel locus that exhibited Hispanic/Latino-specific effects and regulated DPYSL3 and SCGB3A2.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Angel C. Y. Mak
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | | | - Scott Huntsman
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Donglei Hu
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain,Asthma Unit, Hospital Universitario de Canarias, La Laguna,
Tenerife, Spain
| | - José M. Hernández-Pérez
- Pulmonary Medicine, Hospital Universitario de N.S de
Candelaria, Santa Cruz de Tenerife, Spain,Pulmonary Medicine, Hospital General de La Palma, La Palma,
Santa Cruz de Tenerife, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain
| | - Yang Yie Sio
- Department of Biological Sciences, National University of
Singapore, Singapore
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain,Asthma Unit, Hospital Universitario de Canarias, La Laguna,
Tenerife, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain,Department of Pediatrics, University of the Basque
Country (UPV/EHU), San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain,Department of Pediatrics, University of the Basque
Country (UPV/EHU), San Sebastián, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Servicio de Neumología, Hospital Universitario
Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona,
Spain
| | - Joaquim Mullol
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Rhinology Unit & Smell Clinic, ENT Department;
Clinical & Experimental Respiratory Immunoallergy (IDIBAPS), Universitat de
Barcelona, Barcelona, Spain
| | - Xavier Muñoz
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Servicio de Neumología, Hospital Vall
d’Hebron, Barcelona, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Allergy Unit & Severe Asthma Unit, Pneumonology and
Allergy Department, Hospital Clínic; IDIBAPS; Universitat de
Barcelona.Barcelona, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Allergy Department, Hospital Universitario
Fundación Jiménez Díaz, Madrid, Spain
| | - Judith Garcia-Aymerich
- Spanish Consortium for Research on Epidemiology and
Public Health (CIBERESP), Madrid, Spain,ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and
Public Health (CIBERESP), Madrid, Spain,Epidemiology and Environmental Health Joint Research
Unit, FISABIO–Universitat Jaume I–Universitat de València,
Valencia, Spain
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Multidisciplinary Organ Dysfunction Evaluation Research
Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran
Canaria, Spain
| | - Victoria del Pozo
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Immunology Department, Instituto de Investigación
Sanitaria Hospital Universitario Fundación Jiménez Díaz,
Madrid, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain,Instituto Universitario de Enfermedades Tropicales y
Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La
Laguna, Tenerife, Spain
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research,
Department of Internal Medicine, Henry Ford Health System, Detroit, MI, U.S.A
| | - Erik Melén
- Department of Clinical Sciences and Education,
Södersjukhuset, Karolinska Institutet, Stockholm, Sweden,Sachs’ Children’s Hospital, South General
Hospital, Stockholm, Sweden
| | - Fook Tim Chew
- Department of Biological Sciences, National University of
Singapore, Singapore
| | - Luisa N. Borrell
- Department of Epidemiology & Biostatistics, Graduate
School of Public Health & Health Policy, City University of New York, New York,
NY, U.S.A
| | - Esteban G. Burchard
- UMN Genomics Center, Minneapolis, Minnesota, U.S.A.,Department of Bioengineering and Therapeutic Sciences,
University of California San Francisco, San Francisco, California, U.S.A
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain .,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain
| |
Collapse
|
5
|
Herrera‐Luis E, Ortega VE, Ampleford EJ, Sio YY, Granell R, de Roos E, Terzikhan N, Vergara E, Hernandez‐Pacheco N, Perez‐Garcia J, Martin‐Gonzalez E, Lorenzo‐Diaz F, Hashimoto S, Brinkman P, Jorgensen AL, Yan Q, Forno E, Vijverberg SJ, Lethem R, Espuela‐Ortiz A, Gorenjak M, Eng C, González‐Pérez R, Hernández‐Pérez JM, Poza‐Guedes P, Sardón O, Corcuera P, Hawkins G, Marsico A, Bahmer T, Rabe KF, Hansen G, Kopp MV, Rios R, Cruz M, González‐Barcala F, Olaguibel JM, Plaza V, Quirce S, Canino G, Cloutier M, del Pozo V, Rodriguez‐Santana JR, Korta‐Murua J, Villar J, Potočnik U, Figueiredo C, Kabesch M, Mukhopadhyay S, Pirmohamed M, Hawcutt D, Melén E, Palmer CN, Turner S, Maitland‐van der Zee AH, von Mutius E, Celedón JC, Brusselle G, Chew FT, Bleecker E, Meyers D, Burchard EG, Pino‐Yanes M. Multi-ancestry genome-wide association study of asthma exacerbations. Pediatr Allergy Immunol 2022; 33:e13802. [PMID: 35754128 PMCID: PMC9671132 DOI: 10.1111/pai.13802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10-5 and replication: ORC allele = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.
Collapse
Affiliation(s)
- Esther Herrera‐Luis
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Victor E. Ortega
- Division of Respiratory MedicineDepartment of Internal MedicineMayo ClinicScottsdaleArizonaUSA
| | - Elizabeth J. Ampleford
- Department of Internal MedicineCenter for Precision MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Yang Yie Sio
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Raquel Granell
- MRC Integrative Epidemiology Unit (IEU)Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Emmely de Roos
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Natalie Terzikhan
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Ernesto Elorduy Vergara
- Institute of Computation BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Natalia Hernandez‐Pacheco
- Department of Clinical Sciences and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Javier Perez‐Garcia
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Elena Martin‐Gonzalez
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Fabian Lorenzo‐Diaz
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC)Universidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Simone Hashimoto
- Department of Respiratory MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Paul Brinkman
- Department of Respiratory MedicineAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Andrea L. Jorgensen
- Department of Health Data ScienceInstitute of Population HealthUniversity of LiverpoolLiverpoolUK
| | - Qi Yan
- Department of Obstetrics and GynecologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Erick Forno
- Division of Pediatric Pulmonary MedicineUPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Susanne J. Vijverberg
- Department of Respiratory MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical PharmacologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatric Respiratory Medicine and AllergyEmma's Children HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ryan Lethem
- MRC Integrative Epidemiology Unit (IEU)Population Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Antonio Espuela‐Ortiz
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| | - Mario Gorenjak
- Center for Human Molecular Genetics and PharmacogenomicsFaculty of MedicineUniversity of MariborMariborSlovenia
| | - Celeste Eng
- Department of MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Ruperto González‐Pérez
- Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
| | - José M. Hernández‐Pérez
- Pulmonary MedicineHospital Universitario de N.S de CandelariaSanta Cruz de TenerifeSpain
- Pulmonary MedicineHospital General de La PalmaLa Palma, Santa Cruz de TenerifeSpain
| | - Paloma Poza‐Guedes
- Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
| | - Olaia Sardón
- Division of Pediatric Respiratory MedicineHospital Universitario DonostiaSan SebastiánSpain
- Department of PediatricsUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
| | - Paula Corcuera
- Division of Pediatric Respiratory MedicineHospital Universitario DonostiaSan SebastiánSpain
| | - Greg A. Hawkins
- Department of BiochemistryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Annalisa Marsico
- Computational Health CenterHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
| | - Thomas Bahmer
- LungenClinic Grosshansdorf, PneumologyGrosshansdorfGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)GrosshansdorfGermany
| | - Klaus F. Rabe
- LungenClinic Grosshansdorf, PneumologyGrosshansdorfGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)GrosshansdorfGermany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
| | - Matthias Volkmar Kopp
- Division of Pediatric Pneumology & AllergologyUniversity Medical Center Schleswig‐HolsteinLübeckGermany
- Airway Research Center North (ARCN)Members of the Germany Center for Lung Research (DZL)LübeckGermany
- Department of Paediatric Respiratory MedicineInselspitalUniversity Children's Hospital of BernUniversity of BernBernSwitzerland
| | - Raimon Rios
- Programa de Pós Graduação em Imunologia (PPGIm)Instituto de Ciências da SaúdeUniversidade Federal da Bahia (UFBA)SalvadorBrazil
| | - Maria Jesus Cruz
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Servicio de NeumologíaHospital Vall d’HebronBarcelonaSpain
| | | | - José María Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Servicio de AlergologíaComplejo Hospitalario de NavarraPamplonaNavarraSpain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Departamento de Medicina RespiratoriaHospital de la Santa Creu i Sant PauInstituto de Investigación Biomédica Sant Pau (IIB Sant Pau)BarcelonaSpain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Department of AllergyLa Paz University HospitalIdiPAZMadridSpain
| | - Glorisa Canino
- Behavioral Sciences Research InstituteUniversity of Puerto RicoSan JuanPuerto Rico
| | - Michelle Cloutier
- Department of PediatricsUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Victoria del Pozo
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Immunology DepartmentInstituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez DíazMadridSpain
| | | | - Javier Korta‐Murua
- Department of PediatricsUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Multidisciplinary Organ Dysfunction Evaluation Research NetworkResearch UnitHospital Universitario Dr. NegrínLas Palmas de Gran CanariaSpain
| | - Uroš Potočnik
- Laboratory for Biochemistry, Molecular Biology and GenomicsFaculty for Chemistry and Chemical EngineeringUniversity of MariborMariborSlovenia
| | - Camila Figueiredo
- Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil
| | - Michael Kabesch
- Department of Paediatric Pneumology and AllergyUniversity Children's Hospital Regensburg (KUNO)RegensburgGermany
| | - Somnath Mukhopadhyay
- Academic Department of PaediatricsBrighton and Sussex Medical School, Royal Alexandra Children's HospitalBrightonUK
- Population Pharmacogenetics GroupBiomedical Research InstituteNinewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | - Munir Pirmohamed
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Daniel B. Hawcutt
- Department of Women's and Children's HealthUniversity of LiverpoolLiverpoolUK
- Alder Hey Children's HospitalLiverpoolUK
- NIHR Alder Hey Clinical Research FacilityAlder Hey Children's HospitalLiverpoolUK
| | - Erik Melén
- Department of Clinical Sciences and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs’ Children’s HospitalSouth General HospitalStockholmSweden
| | - Colin N. Palmer
- Population Pharmacogenetics GroupBiomedical Research InstituteNinewells Hospital and Medical SchoolUniversity of DundeeDundeeUK
| | | | - Anke H. Maitland‐van der Zee
- Department of Respiratory MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical PharmacologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatric Respiratory Medicine and AllergyEmma's Children HospitalAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Erika von Mutius
- Institute for Asthma and Allergy PreventionHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMunichGermany
- Dr von Hauner Children's HospitalLudwig‐Maximilians‐UniversitätMunichGermany
- Comprehensive Pneumology Center Munich (CPC‐M)Member of the German Center for Lung ResearchMunichGermany
| | - Juan C. Celedón
- Division of Pediatric Pulmonary MedicineUPMC Children's Hospital of PittsburghUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Guy Brusselle
- Department of EpidemiologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Respiratory MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Fook Tim Chew
- Department of Biological SciencesNational University of SingaporeSingapore CitySingapore
| | - Eugene Bleecker
- Division of Genetics, Genomics, and Precision MedicineDepartment of Internal MedicineUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Deborah Meyers
- Division of Genetics, Genomics, and Precision MedicineDepartment of Internal MedicineUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Esteban G. Burchard
- Severe Asthma Unit, Allergy DepartmentHospital Universitario de CanariasSanta Cruz de TenerifeTenerifeSpain
- Department of Bioengineering and Therapeutic SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Maria Pino‐Yanes
- Genomics and Health GroupDepartment of Biochemistry, Microbiology, Cell Biology and GeneticsUniversidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
- Instituto de Tecnologías Biomédicas (ITB)Universidad de La Laguna (ULL)San Cristóbal de La Laguna, TenerifeSpain
| |
Collapse
|
6
|
Suarez-Pajes E, Díaz-García C, Rodríguez-Pérez H, Lorenzo-Salazar JM, Marcelino-Rodríguez I, Corrales A, Zheng X, Callero A, Perez-Rodriguez E, Garcia-Robaina JC, González-Montelongo R, Flores C, Guillen-Guio B. Targeted analysis of genomic regions enriched in African ancestry reveals novel classical HLA alleles associated with asthma in Southwestern Europeans. Sci Rep 2021; 11:23686. [PMID: 34880287 PMCID: PMC8654850 DOI: 10.1038/s41598-021-02893-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Despite asthma has a considerable genetic component, an important proportion of genetic risks remain unknown, especially for non-European populations. Canary Islanders have the largest African genetic ancestry observed among Southwestern Europeans and the highest asthma prevalence in Spain. Here we examined broad chromosomal regions previously associated with an excess of African genetic ancestry in Canary Islanders, with the aim of identifying novel risk variants associated with asthma susceptibility. In a two-stage cases-control study, we revealed a variant within HLA-DQB1 significantly associated with asthma risk (rs1049213, meta-analysis p = 1.30 × 10–7, OR [95% CI] = 1.74 [1.41–2.13]) previously associated with asthma and broad allergic phenotype. Subsequent fine-mapping analyses of classical HLA alleles revealed a novel allele significantly associated with asthma protection (HLA-DQA1*01:02, meta-analysis p = 3.98 × 10–4, OR [95% CI] = 0.64 [0.50–0.82]) that had been linked to infectious and autoimmune diseases, and peanut allergy. HLA haplotype analyses revealed a novel haplotype DQA1*01:02-DQB1*06:04 conferring asthma protection (meta-analysis p = 4.71 × 10–4, OR [95% CI] = 0.47 [0.29– 0.73]).
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Claudio Díaz-García
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Xiuwen Zheng
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ariel Callero
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Eva Perez-Rodriguez
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jose C Garcia-Robaina
- Allergy Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
| | | | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain. .,Genomics Division, Instituto Tecnológico Y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain. .,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain. .,Department of Health Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
7
|
Hernandez-Pacheco N, Gorenjak M, Li J, Repnik K, Vijverberg SJ, Berce V, Jorgensen A, Karimi L, Schieck M, Samedy-Bates LA, Tavendale R, Villar J, Mukhopadhyay S, Pirmohamed M, Verhamme KMC, Kabesch M, Hawcutt DB, Turner S, Palmer CN, Tantisira KG, Burchard EG, Maitland-van der Zee AH, Flores C, Potočnik U, Pino-Yanes M. Identification of ROBO2 as a Potential Locus Associated with Inhaled Corticosteroid Response in Childhood Asthma. J Pers Med 2021; 11:jpm11080733. [PMID: 34442380 PMCID: PMC8399629 DOI: 10.3390/jpm11080733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled corticosteroids (ICS) are the most common asthma controller medication. An important contribution of genetic factors in ICS response has been evidenced. Here, we aimed to identify novel genetic markers involved in ICS response in asthma. A genome-wide association study (GWAS) of the change in lung function after 6 weeks of ICS treatment was performed in 166 asthma patients from the SLOVENIA study. Patients with an improvement in lung function ≥8% were considered as ICS responders. Suggestively associated variants (p-value ≤ 5 × 10−6) were evaluated in an independent study (n = 175). Validation of the association with asthma exacerbations despite ICS use was attempted in European (n = 2681) and admixed (n = 1347) populations. Variants previously associated with ICS response were also assessed for replication. As a result, the SNP rs1166980 from the ROBO2 gene was suggestively associated with the change in lung function (OR for G allele: 7.01, 95% CI: 3.29–14.93, p = 4.61 × 10−7), although this was not validated in CAMP. ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in Europeans (minimum p-value = 1.44 × 10−5), but not in admixed individuals. The association of PDE10A-T with ICS response described by a previous study was validated. This study suggests that ROBO2 could be a potential novel locus for ICS response in Europeans.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
| | - Jiang Li
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
| | - Katja Repnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Department of Pediatrics, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Andrea Jorgensen
- Department of Biostatistics, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| | - Leila Karimi
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Lesly-Anne Samedy-Bates
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Roger Tavendale
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Calle Barranco de la Ballena s/n, 35019 Las Palmas de Gran Canaria, Spain
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada
| | - Somnath Mukhopadhyay
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
- Academic Department of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children’s Hospital, 94 N-S Rd, Falmer, Brighton BN2 5BE, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 200 London Rd, Liverpool L3 9TA, UK;
| | - Katia M. C. Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
| | - Daniel B. Hawcutt
- Department of Women’s and Children’s Health, University of Liverpool, Liverpool L69 3BX, UK;
- Alder Hey Children’s Hospital, E Prescot Rd, Liverpool L14 5AB, UK
| | - Steve Turner
- Child Health, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK;
| | - Colin N. Palmer
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Kelan G. Tantisira
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Polígono Industrial de Granadilla, 38600 Granadilla, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
8
|
Tang W, Xun P, Chen C, Lu L, Sood A, Shikany JM, Kahe K. Association between toenail zinc concentrations and incidence of asthma among American young adults: The CARDIA study. J Trace Elem Med Biol 2021; 64:126683. [PMID: 33249373 PMCID: PMC7856182 DOI: 10.1016/j.jtemb.2020.126683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND As an essential micronutrient, zinc plays an important role in modulating the immune system. However, data on the association between zinc concentrations and asthma incidence are sparse, especially in adults. METHODS We prospectively followed up 3682 individuals aged 20-32 years without history of asthma or current asthma at baseline from 1987-1988 to 2015-2016. Zinc concentrations were measured in toenail clippings collected at Exam Year 2 using inductively-coupled-plasma mass spectroscopy. Asthma was diagnosed by a physician and/or reported medication use for asthma control with verification. Cox regression was used to model the association between toenail zinc concentrations and asthma incidence. RESULTS Over an average of 22.5 years of follow-up, 508 incident cases of asthma were identified. After adjustment for potential confounders, no statistically significant association was found between zinc concentration and asthma incidence (HR = 0.81; 95% CI: 0.62, 1.07; Plinear trend = 0.26). The observed association was not materially modified by sex, body mass index, smoking or atopic status. When stratifying data by race, a significant inverse linear association was found among African Americans (per 1 standard deviation increment in toenail zinc concentrations: HR = 0.86; 95% CI: 0.75, 0.99; Plinear trend = 0.03), but not in Caucasians (HR = 1.07; 95% CI: 0.91, 1.25; Plinear trend = 0.42), though the test for interaction was not statistically significant (Pinteraction = 0.099). CONCLUSIONS Findings from this prospective cohort study do not support a significant longitudinal association between toenail zinc concentrations and incidence of asthma among American young adults. Future studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Wenjing Tang
- Department of Clinical Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Cheng Chen
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Liping Lu
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Akshay Sood
- Health Sciences Center, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - James M Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ka Kahe
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
9
|
Herrera-Luis E, Lorenzo-Diaz F, Samedy-Bates LA, Eng C, Villar J, Rodriguez-Santana JR, Burchard EG, Pino-Yanes M. A deoxyribonuclease 1-like 3 genetic variant associates with asthma exacerbations. J Allergy Clin Immunol 2021; 147:1095-1097.e10. [PMID: 33035569 PMCID: PMC7940549 DOI: 10.1016/j.jaci.2020.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The analysis of genetic variants from six genes whose expression is predictive of asthma exacerbations revealed a novel association of a regulatory polymorphism from DNASE1L3 in African-Americans and Latinos.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Lesly-Anne Samedy-Bates
- Department of Medicine, University of California San Francisco, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, Calif
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, Calif
| | - Jesús Villar
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr Negrín, Las Palmas de Gran Canaria, Spain; Keenan Research Center for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, Calif
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Precision medicine could help to improve diagnosis and treatment of asthma; however, in the tropics there are special conditions to be considered for applying this strategy. In this review, we analyze recent advances of precision allergology in tropical regions, highlighting its limitations and needs in high-admixed populations living under environments with high exposure to house dust mites and helminth infections. RECENT FINDINGS Advances have been made regarding the genetic characterization of the great diversity of populations living in the tropics. Genes involved in shared biological pathways between immune responses to nematodes and the allergic responses suggested new mechanisms of predisposition. Genome wide association studies of asthma are progressively focusing on some highly replicated genes such as those in chromosome 17q31-13, which have been also replicated in African ancestry populations. Some diagnostic difficulties, because of the endemicity of helminth infections, are now more evident in the context of phenotype definition. SUMMARY The clinical impact of the advances in precision medicine for asthma in the tropics is still limited and mainly related to component resolved diagnosis. More basic and clinical research is needed to identify genetic, epigenetic, or other biologic markers that allow and accurate definition of phenotypes and endotypes of this heterogeneous disease. This will substantially improve the selection of personalized treatments.
Collapse
|
11
|
Precision Medicine in Childhood Asthma: Omic Studies of Treatment Response. Int J Mol Sci 2020; 21:ijms21082908. [PMID: 32326339 PMCID: PMC7215369 DOI: 10.3390/ijms21082908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Asthma is a heterogeneous and multifactorial respiratory disease with an important impact on childhood. Difficult-to-treat asthma is not uncommon among children, and it causes a high burden to the patient, caregivers, and society. This review aims to summarize the recent findings on pediatric asthma treatment response revealed by different omic approaches conducted in 2018–2019. A total of 13 studies were performed during this period to assess the role of genomics, epigenomics, transcriptomics, metabolomics, and the microbiome in the response to short-acting beta agonists, inhaled corticosteroids, and leukotriene receptor antagonists. These studies have identified novel associations of genetic markers, epigenetic modifications, metabolites, bacteria, and molecular mechanisms involved in asthma treatment response. This knowledge will allow us establishing molecular biomarkers that could be integrated with clinical information to improve the management of children with asthma.
Collapse
|
12
|
Guillen-Guio B, Hernández-Beeftink T, Marcelino-Rodríguez I, Rodríguez-Pérez H, Lorenzo-Salazar JM, Espinilla-Peña M, Corrales A, Pino-Yanes M, Callero A, Perez-Rodriguez E, Villar J, González-Montelongo R, Flores C. Admixture mapping of asthma in southwestern Europeans with North African ancestry influences. Am J Physiol Lung Cell Mol Physiol 2020; 318:L965-L975. [PMID: 32186396 DOI: 10.1152/ajplung.00344.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The prevalence of asthma symptoms in Canary Islanders, a southwestern European population from Spain, is almost three times higher than the country average. Because the genetic risks identified so far explain <5% of asthma heritability, here we aimed to discover new asthma loci by completing the first admixture mapping study in Canary Islanders leveraging their distinctive genetic makeup, where significant northwest African influences coexist in the European genetic diversity landscape. A 2-stage study was conducted in 1,491 unrelated individuals self-declaring having a Canary Islands origin for the 4 grandparents. Local ancestry estimates were obtained for the shared positions with reference data from putative ancestral populations from Europe, North Africa, and sub-Saharan Africa. Case-control deviations in local ancestry were tested for each ancestry separately using logistic regressions adjusted for principal components, followed by fine-mapping analyses based on imputed genotypes and analyses of the likely deleterious exonic variants. The admixture mapping analysis of asthma detected that local North African ancestry in a locus spanning 365 kb of chromosome 16q23.3 was associated with asthma risk at study-wide significance [lowest P = 1.12 × 10-4; odds ratio (OR) = 2.05; 95% confidence interval (CI) = 1.41-3.00]. Fine-mapping studies identified a variant associated with asthma, and results were replicated in independent samples (rs3852738, OR = 1.34; 95% CI = 1.13-1.59, P = 7.58 × 10-4). Whole exome sequencing data from a subset of individuals revealed an enrichment of likely deleterious variants among asthma cases in 16q23.3, particularly in the phospholipase Cγ2 (PLCG2) gene (P = 3.67 × 10-4). By completing the first mapping study of asthma in admixed populations from Europe, our results revealed a new plausible asthma locus.
Collapse
Affiliation(s)
- Beatriz Guillen-Guio
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Tamara Hernández-Beeftink
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain
| | - Itahisa Marcelino-Rodríguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Héctor Rodríguez-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Jose M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Marta Espinilla-Peña
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Almudena Corrales
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Pino-Yanes
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Ariel Callero
- Allergy Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Eva Perez-Rodriguez
- Allergy Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Jesús Villar
- Research Unit, Hospital Universitario de Gran Canaria Doctor Negrín, Las Palmas de Gran Canaria, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Asthma exacerbations have been suggested to result from complex interactions between genetic and nongenetic components. In this review, we provide an overview of the genetic association studies of asthma exacerbations, their main results and limitations, as well as future directions of this field. RECENT FINDINGS Most studies on asthma exacerbations have been performed using a candidate-gene approach. Although few genome-wide association studies of asthma exacerbations have been conducted up to date, they have revealed promising associations but with small effect sizes. Additionally, the analysis of interactions between genetic and environmental factors has contributed to better understand of genotype-specific responses in asthma exacerbations. SUMMARY Genetic association studies have allowed identifying the 17q21 locus and the ADRB2 gene as the loci most consistently associated with asthma exacerbations. Future studies should explore the full spectrum of genetic variation and will require larger sample sizes, a better representation of racial/ethnic diversity and a more precise definition of asthma exacerbations. Additionally, the analysis of important environmental gene-environment analysis and the integration of multiple omics will allow understanding the genetic factors and biological processes underlying the risk for asthma exacerbations.
Collapse
|
14
|
Abuabara K, You Y, Margolis DJ, Hoffmann TJ, Risch N, Jorgenson E. Genetic ancestry does not explain increased atopic dermatitis susceptibility or worse disease control among African American subjects in 2 large US cohorts. J Allergy Clin Immunol 2020; 145:192-198.e11. [PMID: 31369801 PMCID: PMC6949407 DOI: 10.1016/j.jaci.2019.06.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is more common among African American children. Whether there are racial/ethnic difference among adults with AD and the causes for those disparities are unclear. OBJECTIVE We sought to examine the relationship between self-reported race/ethnicity and AD and determine whether African genetic ancestry is predictive of these outcomes among African American subjects. METHODS We analyzed data from 2 independent multiethnic longitudinal studies: 86,893 subjects aged 18 to 100 years from the Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and 5467 subjects aged 2 to 26 years from the national Pediatric Eczema Elective Registry (PEER) cohort. The primary outcomes were physician-diagnosed AD in GERA and repeated measures of self-reported disease control among patients with physician-diagnosed AD at 6-month intervals in PEER. We examined whether self-identified African American race/ethnicity was predictive of these outcomes and then tested whether a continuous measure of African genetic ancestry was associated with outcomes within the African American group. RESULTS AD was more common among self-identified African American subjects than non-Hispanic white subjects in GERA (4.4% vs 2.1%; odds ratio, 2.06; 95% CI, 1.70-2.48) and less well-controlled in PEER subjects (odds of 1-level worse control, 1.91; 95% CI, 1.64-2.22). However, African genetic ancestry was not associated with AD risk or control among self-identified African American subjects in either cohort, nor did an AD polygenic risk score or genetic skin pigment score explain the AD disparities in patients with AD. CONCLUSION Ancestry-related genetic effects do not explain increased AD prevalence or poorer disease control among African American subjects.
Collapse
Affiliation(s)
- Katrina Abuabara
- Program for Clinical Research, Department of Dermatology, University of California, San Francisco, Calif.
| | - Yue You
- Division of Biostatistics and Epidemiology, University of California, Berkeley, Calif
| | - David J Margolis
- Department of Dermatology and Center for Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Thomas J Hoffmann
- Institute for Human Genetics and Department of Epidemiology and Biostatistics, University of California, San Francisco, Calif
| | - Neil Risch
- Institute for Human Genetics and Department of Epidemiology and Biostatistics, University of California, San Francisco, Calif; Division of Research, Kaiser Permanente, Oakland, Calif
| | | |
Collapse
|
15
|
Espuela-Ortiz A, Lorenzo-Diaz F, Baez-Ortega A, Eng C, Hernandez-Pacheco N, Oh SS, Lenoir M, Burchard EG, Flores C, Pino-Yanes M. Bacterial salivary microbiome associates with asthma among african american children and young adults. Pediatr Pulmonol 2019; 54:1948-1956. [PMID: 31496123 PMCID: PMC6851413 DOI: 10.1002/ppul.24504] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/21/2019] [Indexed: 02/01/2023]
Abstract
Several studies have shown that the airways of asthma patients contain higher diversity of bacteria and are enriched in pathogenic species. However, sampling the airways in children is challenging. Here we aimed to identify differences in the salivary bacterial composition between African Americans children with and without asthma. Saliva samples from 57 asthma cases and 57 healthy controls were analyzed by means of 16S ribosomal RNA amplicon profiling. Measurements of bacterial diversity and genus relative abundance were compared between cases and controls using the nonparametric Wilcoxon test and multivariate regression models. A total of five phyla and a mean of 56 genera were identified. Among them, 15 genera had a relative abundance greater than 1%, being Prevotella, Haemophilus, Streptococcus, and Veillonella the most abundant genera. Differences between cases and controls were found in terms of diversity, as well as in relative abundance for Streptococcus genus (13.0% in cases vs 18.3% in controls; P = .003) and Veillonella genus (11.1% in cases vs 8.0% in controls; P = .002). These differences remained significant after correction for multiple comparisons and when potential confounders were taken into account in logistic regression models. In conclusion, we identified changes in the salivary microbiota associated with asthma among African Americans.
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Adrian Baez-Ortega
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Natalia Hernandez-Pacheco
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sam S. Oh
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | | | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
16
|
Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic Predictors of Asthma Phenotypes and Treatment Response. Front Pediatr 2019; 7:6. [PMID: 30805318 PMCID: PMC6370703 DOI: 10.3389/fped.2019.00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Asthma is a complex respiratory disease considered as the most common chronic condition in children. A large genetic contribution to asthma susceptibility is predicted by the clustering of asthma and allergy symptoms among relatives and the large disease heritability estimated from twin studies, ranging from 55 to 90%. Genetic basis of asthma has been extensively investigated in the past 40 years using linkage analysis and candidate-gene association studies. However, the development of dense arrays for polymorphism genotyping has enabled the transition toward genome-wide association studies (GWAS), which have led the discovery of several unanticipated asthma genes in the last 11 years. Despite this, currently known risk variants identified using many thousand samples from distinct ethnicities only explain a small proportion of asthma heritability. This review examines the main findings of the last 2 years in genomic studies of asthma using GWAS and admixture mapping studies, as well as the direction of studies fostering integrative perspectives involving omics data. Additionally, we discuss the need for assessing the whole spectrum of genetic variation in association studies of asthma susceptibility, severity, and treatment response in order to further improve our knowledge of asthma genes and predictive biomarkers. Leveraging the individual's genetic information will allow a better understanding of asthma pathogenesis and will facilitate the transition toward a more precise diagnosis and treatment.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| |
Collapse
|
17
|
Soares-Souza G, Borda V, Kehdy F, Tarazona-Santos E. Admixture, Genetics and Complex Diseases in Latin Americans and US Hispanics. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Wai KC, Hibbs AM, Steurer MA, Black DM, Asselin JM, Eichenwald EC, Ballard PL, Ballard RA, Keller RL. Maternal Black Race and Persistent Wheezing Illness in Former Extremely Low Gestational Age Newborns: Secondary Analysis of a Randomized Trial. J Pediatr 2018; 198:201-208.e3. [PMID: 29627188 PMCID: PMC6019148 DOI: 10.1016/j.jpeds.2018.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/20/2017] [Accepted: 02/13/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To evaluate the relationship between maternal self-reported race/ethnicity and persistent wheezing illness in former high-risk, extremely low gestational age newborns, and to quantify the contribution of socioeconomic, environmental, and biological factors on this relationship. STUDY DESIGN We assessed persistent wheezing illness determined at 18-24 months corrected (for prematurity) age in survivors of a randomized trial. Parents/caregivers were surveyed for wheeze and inhaled asthma medication use quarterly to 12 months, and at 18 and 24 months. We used multivariable analysis to evaluate the relationship of maternal race to persistent wheezing illness, and identified mediators for this relationship via formal mediation analysis. RESULTS Of 420 infants (25.2 ± 1.2 weeks of gestation and 714 ± 166 g at birth, 57% male, 34% maternal black race), 189 (45%) had persistent wheezing illness. After adjustment for gestational age, birth weight, and sex, infants of black mothers had increased odds of persistent wheeze compared with infants of nonblack mothers (OR = 2.9, 95% CI 1.9, 4.5). Only bronchopulmonary dysplasia, breast milk diet, and public insurance status were identified as mediators. In this model, the direct effect of race accounted for 69% of the relationship between maternal race and persistent wheeze, whereas breast milk diet, public insurance status, and bronchopulmonary dysplasia accounted for 8%, 12%, and 10%, respectively. CONCLUSIONS Among former high-risk extremely low gestational age newborns, infants of black mothers have increased odds of developing persistent wheeze. A substantial proportion of this effect is directly accounted for by race, which may reflect unmeasured environmental influences, and acquired and innate biological differences. TRIAL REGISTRATION ClinicalTrials.gov: NCT01022580.
Collapse
Affiliation(s)
- Katherine C. Wai
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco CA
| | - Anna M. Hibbs
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Cleveland OH
| | - Martina A. Steurer
- Department of Pediatrics, UCSF Benioff Children’s Hospital, San Francisco CA,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco CA
| | - Dennis M. Black
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco CA
| | | | - Eric C. Eichenwald
- Department of Pediatrics, The University of Pennsylvania, Philadelphia PA
| | - Philip L. Ballard
- Department of Pediatrics, UCSF Benioff Children’s Hospital, San Francisco CA
| | - Roberta A. Ballard
- Department of Pediatrics, UCSF Benioff Children’s Hospital, San Francisco CA
| | - Roberta L. Keller
- Department of Pediatrics, UCSF Benioff Children’s Hospital, San Francisco CA
| | | |
Collapse
|
19
|
Cazzola M, Calzetta L, Matera MG, Hanania NA, Rogliani P. How does race/ethnicity influence pharmacological response to asthma therapies? Expert Opin Drug Metab Toxicol 2018. [DOI: 10.1080/17425255.2018.1449833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nicola A Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paola Rogliani
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|