1
|
Huang ZQ, Liu J, Sun LY, Ong HH, Ye J, Xu Y, Wang DY. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy 2024; 79:1146-1165. [PMID: 38372149 DOI: 10.1111/all.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Tight junction (TJ) proteins establish a physical barrier between epithelial cells, playing a crucial role in maintaining tissue homeostasis by safeguarding host tissues against pathogens, allergens, antigens, irritants, etc. Recently, an increasing number of studies have demonstrated that abnormal expression of TJs plays an essential role in the development and progression of inflammatory airway diseases, including chronic obstructive pulmonary disease, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS) with or without nasal polyps. Among them, CRS with nasal polyps is a prevalent chronic inflammatory disease that affects the nasal cavity and paranasal sinuses, leading to a poor prognosis and significantly impacting patients' quality of life. Its pathogenesis primarily involves dysfunction of the nasal epithelial barrier, impaired mucociliary clearance, disordered immune response, and excessive tissue remodeling. Numerous studies have elucidated the pivotal role of TJs in both the pathogenesis and response to traditional therapies in CRS. We therefore to review and discuss potential factors contributing to impair and repair of TJs in the nasal epithelium based on their structure, function, and formation process.
Collapse
Affiliation(s)
- Zhi-Qun Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Li-Ying Sun
- First School of Clinical Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Ye
- Department of Otolaryngology-Head and Neck Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
2
|
Retuerto-Guerrero M, López-Medrano R, de Freitas-González E, Rivero-Lezcano OM. Nontuberculous Mycobacteria, Mucociliary Clearance, and Bronchiectasis. Microorganisms 2024; 12:665. [PMID: 38674609 PMCID: PMC11052484 DOI: 10.3390/microorganisms12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental and ubiquitous, but only a few species are associated with disease, often presented as nodular/bronchiectatic or cavitary pulmonary forms. Bronchiectasis, airways dilatations characterized by chronic productive cough, is the main presentation of NTM pulmonary disease. The current Cole's vicious circle model for bronchiectasis proposes that it progresses from a damaging insult, such as pneumonia, that affects the respiratory epithelium and compromises mucociliary clearance mechanisms, allowing microorganisms to colonize the airways. An important bronchiectasis risk factor is primary ciliary dyskinesia, but other ciliopathies, such as those associated with connective tissue diseases, also seem to facilitate bronchiectasis, as may occur in Lady Windermere syndrome, caused by M. avium infection. Inhaled NTM may become part of the lung microbiome. If the dose is too large, they may grow excessively as a biofilm and lead to disease. The incidence of NTM pulmonary disease has increased in the last two decades, which may have influenced the parallel increase in bronchiectasis incidence. We propose that ciliary dyskinesia is the main promoter of bronchiectasis, and that the bacteria most frequently involved are NTM. Restoration of ciliary function and impairment of mycobacterial biofilm formation may provide effective therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Miriam Retuerto-Guerrero
- Servicio de Reumatología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Ramiro López-Medrano
- Servicio de Microbiología Clínica, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Elizabeth de Freitas-González
- Servicio de Neumología, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain;
| | - Octavio Miguel Rivero-Lezcano
- Unidad de Investigación, Complejo Asistencial Universitario de León, Gerencia Regional de Salud de Castilla y León (SACYL), Altos de Nava, s/n, 24071 León, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain
| |
Collapse
|
3
|
Chen R, Hui KPY, Liang Y, Ng KC, Nicholls JM, Ip MSM, Peiris M, Chan MCW, Mak JCW. SARS-CoV-2 infection aggravates cigarette smoke-exposed cell damage in primary human airway epithelia. Virol J 2023; 20:65. [PMID: 37041586 PMCID: PMC10089376 DOI: 10.1186/s12985-023-02008-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/08/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic with over 627 million cases and over 6.5 million deaths. It was reported that smoking-related chronic obstructive pulmonary disease (COPD) might be a crucial risk for COVID-19 patients to develop severe condition. As cigarette smoke (CS) is the major risk factor for COPD, we hypothesize that barrier dysfunction and an altered cytokine response in CS-exposed airway epithelial cells may contribute to increased SARS-CoV-2-induced immune response that may result in increased susceptibility to severe disease. The aim of this study was to evaluate the role of CS on SARS-CoV-2-induced immune and inflammatory responses, and epithelial barrier integrity leading to airway epithelial damage. METHODS Primary human airway epithelial cells were differentiated under air-liquid interface culture. Cells were then exposed to cigarette smoke medium (CSM) before infection with SARS-CoV-2 isolated from a local patient. The infection susceptibility, morphology, and the expression of genes related to host immune response, airway inflammation and damages were evaluated. RESULTS Cells pre-treated with CSM significantly caused higher replication of SARS-CoV-2 and more severe SARS-CoV-2-induced cellular morphological alteration. CSM exposure caused significant upregulation of long form angiotensin converting enzyme (ACE)2, a functional receptor for SARS-CoV-2 viral entry, transmembrane serine protease (TMPRSS)2 and TMPRSS4, which cleave the spike protein of SARS-CoV-2 to allow viral entry, leading to an aggravated immune response via inhibition of type I interferon pathway. In addition, CSM worsened SARS-CoV-2-induced airway epithelial cell damage, resulting in severe motile ciliary disorder, junctional disruption and mucus hypersecretion. CONCLUSION Smoking led to dysregulation of host immune response and cell damage as seen in SARS-CoV-2-infected primary human airway epithelia. These findings may contribute to increased disease susceptibility with severe condition and provide a better understanding of the pathogenesis of SARS-CoV-2 infection in smokers.
Collapse
Affiliation(s)
- Rui Chen
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Kenrie Pui-Yan Hui
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yingmin Liang
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka-Chun Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John Malcolm Nicholls
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mary Sau-Man Ip
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael Chi-Wai Chan
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Judith Choi-Wo Mak
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Fu L, Liu Z, Liu Y. Fibrinogen-like protein 2 in inflammatory diseases: A future therapeutic target. Int Immunopharmacol 2023; 116:109799. [PMID: 36764282 DOI: 10.1016/j.intimp.2023.109799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen family, exists as a membrane-bound protein with immune-associated coagulation activity and a soluble form possessing immunosuppressive functions. The immunomodulatory role of FGL2 is evident in fibrin deposition-associated inflammatory diseases and cancer, suggesting that FGL2 expression could be exploited as a disease biomarker and a therapeutic target. Recently, in vitro studies and knockout and transgenic animal FGL2 models have been used by us and others to reveal the involvement of FGL2 in the pathogenesis of various inflammatory diseases. This review summarizes our current knowledge of the immunomodulatory role of FGL2 in inflammatory diseases and examines the role of FGL2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Li Fu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China.
| | - Yang Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center for Nasal Inflammatory Diseases, Wuhan, China.
| |
Collapse
|
5
|
Fang C, Zhong Y, Chen T, Li D, Li C, Qi X, Zhu J, Wang R, Zhu J, Wang S, Ruan Y, Zhou M. Impairment mechanism of nasal mucosa after radiotherapy for nasopharyngeal carcinoma. Front Oncol 2022; 12:1010131. [PMID: 36591522 PMCID: PMC9797686 DOI: 10.3389/fonc.2022.1010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The nasal mucosa, which performs the crucial functions of filtering, humidifying and temperature regulation, is one of the most vulnerable areas of nasopharyngeal carcinoma (NPC) patients after radiotherapy (RT). Following RT, NPC patients experience a series of pathological changes in the nasal mucosa, ultimately leading to physiological dysfunction of the nasal epithelium. This article systematically reviews the clinical and pathological manifestations of RT-related nasal damage in NPC patients and summarizes the potential mechanism of damage to the human nasal epithelium by RT. Finally, we outline the current mechanistic models of nasal epithelial alterations after RT in NPC patients and provide additional information to extend the in-depth study on the impairment mechanisms of the nasal mucosa resulting from RT. We also describe the relationship between structural and functional alterations in the nasal mucosa after RT to help mitigate and treat this damage and provide insights informing future clinical and fundamental investigations.
Collapse
Affiliation(s)
- Caishan Fang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhong
- Department of Radiotherapy, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tengyu Chen
- Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Dan Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunqiao Li
- Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangjun Qi
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junxia Zhu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruizhi Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinxiang Zhu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shunlan Wang
- Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ruan
- Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Min Zhou, ; Yan Ruan,
| | - Min Zhou
- Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Min Zhou, ; Yan Ruan,
| |
Collapse
|
6
|
Zhang RL, Pan CX, Tang CL, Cen LJ, Zhang XX, Huang Y, Lin ZH, Li HM, Zhang XF, Wang L, Guan WJ, Wang DY. Motile Ciliary Disorders of the Nasal Epithelium in Adults With Bronchiectasis. Chest 2022; 163:1038-1050. [PMID: 36435264 DOI: 10.1016/j.chest.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Motile ciliary disorder (MCD) has been implicated in chronic inflammatory airway diseases such as asthma and COPD. RESEARCH QUESTION What are the characteristics of MCD of the nasal epithelium and its association with disease severity and inflammatory endotypes in adults with bronchiectasis? STUDY DESIGNS AND METHODS In this observational study, we recruited 167 patients with bronchiectasis and 39 healthy control participants who underwent brushing of the nasal epithelium. A subgroup of patients underwent bronchoscopy for bronchial epithelium sampling (n = 13), elective surgery for bronchial epithelium biopsy (n = 18), and blood sampling for next-generation sequencing (n = 37). We characterized systemic and airway inflammatory endotypes in bronchiectasis. We conducted immunofluorescence assays to profile ultrastructural (dynein axonemal heavy chain 5 [DNAH5], dynein intermediate chain 1 [DNAI1], radial spoke head protein 9 [RSPH9]) and ciliogenesis marker expression (ezrin). RESULTS MCD was present in 89.8% of patients with bronchiectasis, 67.6% showed secondary MCD, and 16.2% showed primary plus secondary MCD. Compared with healthy control participants, patients with bronchiectasis yielded abnormal staining patterns of DNAH5, DNAI1, and RSPH9 (but not ezrin) that were more prominent in moderate to severe bronchiectasis. MCD pattern scores largely were consistent between upper and lower airways and between large-to-medium and small airways in bronchiectasis. Coexisting nasal diseases and asthma did not confound nasal ciliary ultrastructural marker expression significantly. The propensity of MCD was unaffected by the airway or systemic inflammatory endotypes. MCD, particularly an ultrastructural abnormality, was notable in patients with mild bronchiectasis who showed blood or sputum eosinophilia. INTERPRETATION Nasal ciliary markers profiling provides complimentary information to clinical endotyping of bronchiectasis.
Collapse
Affiliation(s)
- Ri-Lan Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Cui-Xia Pan
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Chun-Li Tang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Lai-Jian Cen
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Xiao-Xian Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Yan Huang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China; Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, the Department of Geriatrics, Guangzhou, Guangdong, China
| | - Zhen-Hong Lin
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Hui-Min Li
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Xiao-Fen Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Lei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China; National Key Clinical Specialty, Guangzhou First People's Hospital, South China University of Technology, the Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China; National Clinical Research Center for Respiratory Disease, the Department of Thoracic Surgery, Guangzhou, Guangdong, China.
| | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
7
|
Xia Y, Cao H, Zheng J, Chen L. Claudin-1 Mediated Tight Junction Dysfunction as a Contributor to Atopic March. Front Immunol 2022; 13:927465. [PMID: 35844593 PMCID: PMC9277052 DOI: 10.3389/fimmu.2022.927465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic march refers to the phenomenon wherein the occurrence of asthma and food allergy tends to increase after atopic dermatitis. The mechanism underlying the progression of allergic inflammation from the skin to gastrointestinal (GI) tract and airways has still remained elusive. Impaired skin barrier was proposed as a risk factor for allergic sensitization. Claudin-1 protein forms tight junctions and is highly expressed in the epithelium of the skin, airways, and GI tract, thus, the downregulation of claudin-1 expression level caused by CLDN-1 gene polymorphism can mediate common dysregulation of epithelial barrier function in these organs, potentially leading to allergic sensitization at various sites. Importantly, in patients with atopic dermatitis, asthma, and food allergy, claudin-1 expression level was significantly downregulated in the skin, bronchial and intestinal epithelium, respectively. Knockdown of claudin-1 expression level in mouse models of atopic dermatitis and allergic asthma exacerbated allergic inflammation, proving that downregulation of claudin-1 expression level contributes to the pathogenesis of allergic diseases. Therefore, we hypothesized that the tight junction dysfunction mediated by downregulation of claudin-1 expression level contributes to atopic march. Further validation with clinical data from patients with atopic march or mouse models of atopic march is needed. If this hypothesis can be fully confirmed, impaired claudin-1 expression level may be a risk factor and likely a diagnostic marker for atopic march. Claudin-1 may serve as a valuable target to slowdown or block the progression of atopic march.
Collapse
|
8
|
Velasco E, Delicado‐Miralles M, Hellings PW, Gallar J, Van Gerven L, Talavera K. Epithelial and sensory mechanisms of nasal hyperreactivity. Allergy 2022; 77:1450-1463. [PMID: 35174893 DOI: 10.1111/all.15259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/28/2022]
Abstract
"Nasal hyperreactivity" is a key feature in various phenotypes of upper airway diseases, whereby reactions of the nasal epithelium to diverse chemical and physical stimuli are exacerbated. In this review, we illustrate how nasal hyperreactivity can result from at least three types of mechanisms: (1) impaired barrier function, (2) hypersensitivity to external and endogenous stimuli, and (3) potentiation of efferent systems. We describe the known molecular basis of hyperreactivity related to the functional impairment of epithelial cells and somatosensory innervation, and indicate that the thermal, chemical, and mechanical sensors determining hyperreactivity in humans remain to be identified. We delineate research directions that may provide new insights into nasal hyperreactivity associated with rhinitis/rhinosinusitis pathophysiology and therapeutics. The elucidation of the molecular mechanisms underlying nasal hyperreactivity is essential for the treatment of rhinitis according to the precepts of precision medicine.
Collapse
Affiliation(s)
- Enrique Velasco
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC San Juan de Alicante Spain
- The European University of Brain and Technology‐Neurotech EU San Juan de Alicante Spain
| | | | - Peter W. Hellings
- Department of Otorhinolaryngology University Hospitals Leuven Leuven Belgium
| | - Juana Gallar
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC San Juan de Alicante Spain
- The European University of Brain and Technology‐Neurotech EU San Juan de Alicante Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante San Juan de Alicante Spain
| | - Laura Van Gerven
- Department of Otorhinolaryngology University Hospitals Leuven Leuven Belgium
- Department of Microbiology, Immunology and transplantation, Allergy and Clinical Immunology Research Unit KU Leuven Leuven Belgium
- Department of Neurosciences, Experimental Otorhinolaryngology, Rhinology Research KU Leuven Leuven Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research Department of Cellular and Molecular Medicine KU Leuven, VIB‐KU Leuven Center for Brain & Disease Research Leuven Belgium
| |
Collapse
|
9
|
Peng Y, Wang ZN, Xu AR, Fang ZF, Chen SY, Hou XT, Zhou ZQ, Lin HM, Xie JX, Tang XX, Wang DY, Zhong NS. Mucus Hypersecretion and Ciliary Impairment in Conducting Airway Contribute to Alveolar Mucus Plugging in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2022; 9:810842. [PMID: 35174169 PMCID: PMC8842394 DOI: 10.3389/fcell.2021.810842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease attributed to the complex interplay of genetic and environmental risks. The muco-ciliary clearance (MCC) system plays a critical role in maintaining the conduit for air to and from the alveoli, but it remains poorly understood whether the MCC abnormalities in conducting airway are involved in IPF pathogenesis. In this study, we obtained the surgically resected bronchi and peripheral lung tissues from 31 IPF patients and 39 control subjects, and we sought to explore the morphologic characteristics of MCC in conducting airway by using immunostaining and scanning and transmission electron microscopy. In the submucosal regions of the bronchi, we found that the areas of mucus glands (MUC5B+) were significantly larger in IPF patients as compared with control subjects (p < 0.05). In the surface epithelium of three airway regions (bronchi, proximal bronchioles, and distal bronchioles), increased MUC5B and MUC5AC expression of secretory cells, decreased number of ciliated cells, and increased ciliary length were observed in IPF patients than control subjects (all p < 0.05). In addition, the mRNA expression levels of MUC5B were up-regulated in both the bronchi and peripheral lung of IPF patients than those of control subjects (p < 0.05), accompanied with 93.55% IPF subjects who had obvious MUC5B+ mucus plugs in alveolar regions. No MUC5B rs35705950 single-nucleotide polymorphism allele was detected in both IPF patients and control subjects. Our study shows that mucus hypersecretion and ciliary impairment in conducting airway are major causes of mucus plugs in alveolar regions and may be closely related to the alveolar injuries in IPF patients.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhao-Ni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ai-Ru Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhang-Fu Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Tao Hou
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, China
| | - Zi-Qing Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hui-Min Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jia-Xing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Ayoub MMRR, Lethem MI, Lansley AB. The effect of ingredients commonly used in nasal and inhaled solutions on the secretion of mucus in vitro. Int J Pharm 2021; 608:121054. [PMID: 34461170 DOI: 10.1016/j.ijpharm.2021.121054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Hypersecretion of mucus is associated with impaired mucociliary clearance that can influence the retention of active pharmaceutical ingredients in the airway but is also linked with recurrent airway disease. Therefore, the effect on mucin secretion of a range of ingredients used in solutions delivered to the nose and lung was studied. Mucin secretion from explants of ovine epithelium was quantified using an enzyme-linked lectin assay (ELLA) or sandwich ELLA depending on the compatibility of the ingredients with the assay. Benzalkonium chloride (0.015% w/w), Methocel™ E50 premium LV (1.0% w/w), propylene glycol (1.5% w/w), potassium sorbate + propylene glycol (0.3% w/w + 1.5% w/w) and polysorbate 80 (0.025% w/w), used at common working concentrations, all increased the secretion of mucin from the explants (P < 0.05). Ethylenediamine tetraacetic acid-disodium salt (EDTA) (0.015% w/w), Avicel® RC591 (1.5% w/w), fluticasone furoate (0.0004% w/w, concentration in solution) and dimethyl sulfoxide (DMSO) (0.2% w/w) did not affect mucin secretion. Compounds increasing mucin secretion could alter the rate of mucociliary clearance and the mucus could provide a barrier to drug absorption. This could predispose patients to disease and affect the activity of delivered drugs, decreasing or increasing their clinical efficacy.
Collapse
Affiliation(s)
- Marwa M R R Ayoub
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Michael I Lethem
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | - Alison B Lansley
- Biomaterials and Drug Delivery Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
11
|
Timalsina D, Pokhrel KP, Bhusal D. Pharmacologic Activities of Plant-Derived Natural Products on Respiratory Diseases and Inflammations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1636816. [PMID: 34646882 PMCID: PMC8505070 DOI: 10.1155/2021/1636816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Respiratory inflammation is caused by an air-mediated disease induced by polluted air, smoke, bacteria, and viruses. The COVID-19 pandemic is also a kind of respiratory disease, induced by a virus causing a serious effect on the lungs, bronchioles, and pharynges that results in oxygen deficiency. Extensive research has been conducted to find out the potent natural products that help to prevent, treat, and manage respiratory diseases. Traditionally, wider floras were reported to be used, such as Morus alba, Artemisia indica, Azadirachta indica, Calotropis gigantea, but only some of the potent compounds from some of the plants have been scientifically validated. Plant-derived natural products such as colchicine, zingerone, forsythiaside A, mangiferin, glycyrrhizin, curcumin, and many other compounds are found to have a promising effect on treating and managing respiratory inflammation. In this review, current clinically approved drugs along with the efficacy and side effects have been studied. The study also focuses on the traditional uses of medicinal plants on reducing respiratory complications and their bioactive phytoconstituents. The pharmacological evidence of lowering respiratory complications by plant-derived natural products has been critically studied with detailed mechanism and action. However, the scientific validation of such compounds requires clinical study and evidence on animal and human models to replace modern commercial medicine.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | | | - Deepti Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| |
Collapse
|
12
|
Alekseenko S, Karpischenko S, Barashkova S. Comparative Analysis of Mucociliary Clearance and Mucosal Morphology Using High-Speed Videomicroscopy in Children With Acute and Chronic Rhinosinusitis. Am J Rhinol Allergy 2021; 35:656-663. [PMID: 33467866 DOI: 10.1177/1945892420988804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE evaluation of mucociliary clearance and mucosal morphology using high-speed videomicroscopy, and their association with markers of disease severity in children with acute (ARS) and chronic rhinosinusitis (CRS). METHODS A total of 67 children aged from 6 to 17 years including 15 healthy children, 20 pediatric patients with acute rhinosinusitis, and 32 cases with chronic rhinosinusitis were enrolled in the present study. SNOT20, Lund-Kennedy, and Lund-Mackay scores were also evaluated. RESULTS Children with rhinosinusitis were characterized by significantly lower number of cells with motile cilia, ciliary beat frequency, cilia length, and cell viability, as well as ciliary beat asynchrony, epithelia dystrophy and reduced epithelial cell height, being more severe in ARS group. Neutrophil infiltration of sinonasal mucosa was more profound in children with ARS, whereas the number of lymphocytes was significantly reduced. Markers of ciliary function were characterized by a significant correlation with epithelia dystrophia and neutrophil infiltration. Discriminant analysis demonstrated significant group separation based on the parameters of mucociliary clearance and mucosal morphology. In regression models mucociliary function was also associated with SNOT20, Lund-Kennedy, and Lund-Mackay scores. CONCLUSION The results of the present study demonstrate significant alteration of mucociliary clearance and mucosal morphology and its association with sinonasal inflammation and disease severity in patients with rhinosinusitis. Given a tight association between altered mucociliary clearance and severity of the disease, modulation of inflammation and ciliary function both in acute and chronic rhinosinusitis may be considered as the potential tool in therapeutic and surgical management of the disease.
Collapse
Affiliation(s)
- Svetlana Alekseenko
- Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, St. Petersburg, Russia.,I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia.,K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Sergey Karpischenko
- Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, St. Petersburg, Russia.,K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia.,First Pavlov State Medical University of Saint Petersburg, St. Petersburg, Russia
| | - Svetlana Barashkova
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia.,National Center of morphological diagnostic, St. Petersburg, Russia
| |
Collapse
|
13
|
KARALI E, DEMİRKOL ME, GÜNEŞ A, GÜRLER M. Evaluation of Nasal Mucociliary Activity in Patients with Familial Mediterranean Fever. KONURALP TIP DERGISI 2020. [DOI: 10.18521/ktd.793301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Tan KS, Lim RL, Liu J, Ong HH, Tan VJ, Lim HF, Chung KF, Adcock IM, Chow VT, Wang DY. Respiratory Viral Infections in Exacerbation of Chronic Airway Inflammatory Diseases: Novel Mechanisms and Insights From the Upper Airway Epithelium. Front Cell Dev Biol 2020; 8:99. [PMID: 32161756 PMCID: PMC7052386 DOI: 10.3389/fcell.2020.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
Respiratory virus infection is one of the major sources of exacerbation of chronic airway inflammatory diseases. These exacerbations are associated with high morbidity and even mortality worldwide. The current understanding on viral-induced exacerbations is that viral infection increases airway inflammation which aggravates disease symptoms. Recent advances in in vitro air-liquid interface 3D cultures, organoid cultures and the use of novel human and animal challenge models have evoked new understandings as to the mechanisms of viral exacerbations. In this review, we will focus on recent novel findings that elucidate how respiratory viral infections alter the epithelial barrier in the airways, the upper airway microbial environment, epigenetic modifications including miRNA modulation, and other changes in immune responses throughout the upper and lower airways. First, we reviewed the prevalence of different respiratory viral infections in causing exacerbations in chronic airway inflammatory diseases. Subsequently we also summarized how recent models have expanded our appreciation of the mechanisms of viral-induced exacerbations. Further we highlighted the importance of the virome within the airway microbiome environment and its impact on subsequent bacterial infection. This review consolidates the understanding of viral induced exacerbation in chronic airway inflammatory diseases and indicates pathways that may be targeted for more effective management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rachel Liyu Lim
- Infectious Disease Research and Training Office, National Centre for Infectious Diseases, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vivian Jiayi Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory and Critical Care Medicine, National University Hospital, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kian Fan Chung
- Airway Disease, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Airway Disease, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Vincent T Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Peng Y, Xu AR, Chen SY, Huang Y, Han XR, Guan WJ, Wang DY, Zhong NS. Aberrant Epithelial Cell Proliferation in Peripheral Airways in Bronchiectasis. Front Cell Dev Biol 2020; 8:88. [PMID: 32154248 PMCID: PMC7044270 DOI: 10.3389/fcell.2020.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Dilation of bronchi and bronchioles caused by destruction and excessive epithelial remodeling is a characteristic feature of bronchiectasis. It is not known how epithelial progenitor cells contribute to these pathologic conditions in peripheral airways (bronchioles) in bronchiectasis. We aimed to explore the expression levels of signature airway progenitor cells in the dilated bronchioles in patients with bronchiectasis. We obtained the surgically resected peripheral lung tissues from 43 patients with bronchiectasis and 33 control subjects. Immunostaining was performed to determine the expression patterns of thyroid transcription factor-1 (TTF-1, for labeling progenitor cells in distal airways), P63 (basal cells), club cell 10 kDa protein (CC10, club cells), and surfactant protein C (SPC, alveolar type II epithelial cells) in epithelium or sub-epithelium. Here, we reported significantly lower percentage of TTF-1+ cells and CC10+ cells, and higher percentage of P63+ cells within the epithelium of dilated bronchioles compared with control bronchioles. In airway sub-epithelium of the dilated bronchioles, epithelial hyperplasia with disarrangement of TTF-1+ cells yielded cuboidal (100%) and columnar (93.0%) type among bronchiectasis patients. Most progenitor cell markers co-localized with TTF-1. The median (the 1st, 3rd quartile) percentage of P63+TTF-1+, CC10+TTF-1+, and SPC+TTF-1+ cells was 16.0% (8.9, 24.0%), 14.5% (7.1, 20.8%), and 52% (40.3, 64.4%), respectively. For cuboidal epithelial hyperplasia, 91.0% (86.5, 94.0%) of areas co-stained with SPC and TTF-1. Columnar epithelial hyperplasia was characterized by TTF-1 co-staining with P63+TTF-1+ and CC10+TTF-1+ cells. Taken together, aberrant proliferation of airway progenitor cells in both epithelium and sub-epithelium are implicated in bronchiectasis.
Collapse
Affiliation(s)
- Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ai-Ru Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ying Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Rong Han
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Sahin E, Hamamcı M, Kantekin Y. Measurement of mucociliary clearance in the patients with multiple sclerosis. Eur Arch Otorhinolaryngol 2019; 277:469-473. [PMID: 31707467 DOI: 10.1007/s00405-019-05717-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of the present study was to measure nasal mucociliary clearance (NMC) time in the patients with MS and to compare the findings with healthy population. METHODS Totally 97 individuals including 47 patients with relapsing-remitting multiple sclerosis and 50 healthy volunteers were enrolled into the study. Saccharin clearance test was performed on both groups and NMC time was measured. Data analysis was performed by SPSS version 24.0 statistics program (SPSS Inc., Chicago, Illinois, USA). Statistical tests were interpreted at p < 0.05 significance level. RESULTS The NMC time averages in MS patients and healthy control group were 12.43 ± 4.05 min and 8.14 ± 2.87 min, respectively; the difference between the groups was significant (p < 0.001). There was a statistically strong association between NMC time values and Expanded Disability Status Scale (EDSS) values in MS patients (r = 0.817, p < 0.001). CONCLUSION We found nasal mucociliary transport time longer in MS patients than healthy population in the present study. To the best of our knowledge, there is not any study conducted about this topic in the literature. We believe that our findings would shed a light on further studies.
Collapse
Affiliation(s)
- Ender Sahin
- Department of Otolaryngology, Faculty of Medicine, Bozok University, Atatürk Yolu 7. Km, 66100, Yozgat, Turkey.
| | - Mehmet Hamamcı
- Department of Neurology, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Yunus Kantekin
- Department of Otolaryngology, Faculty of Medicine, Bozok University, Atatürk Yolu 7. Km, 66100, Yozgat, Turkey
| |
Collapse
|
17
|
Peng Y, Guan WJ, Zhu ZC, Tan KS, Chen Z, Hong HY, Zi XX, Andiappan AK, Shi L, Yang QT, Wang DY, Qiu QH. Microarray Assay Reveals Ciliary Abnormalities of the Allergic Nasal Mucosa. Am J Rhinol Allergy 2019; 34:50-58. [PMID: 31450948 DOI: 10.1177/1945892419871795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Gene expression patterns (particularly, cilia-associated genes) of nasal mucosa, the first-line defense system, in allergic rhinitis (AR) are not well understood. Objective We sought to screen for AR-associated genes in inferior turbinate (IT) from patients with AR, and to validate the expression of common cilia-related genes and ciliary shedding. Methods Prime View™ Human Gene Expression Array, which consisted of more than 530 000 probes covering more than 36 000 transcripts and variants, was employed to compare individual gene expression of ITs from control subjects (n = 11) and patients with AR (n = 19). Gene ontology (GO) analysis was performed with Cytoscape software. Eight of the common cilia-related genes were validated with quantitative polymerase chain reaction. We applied a semiquantitative scoring system for immunofluorescence assay to demonstrate ciliary shedding in 5 areas per paraffin section, with individual sections being scored between 0 (normal ciliary distribution) and 1 (ciliary shedding). Results Compared with control subjects, 160 (38 upregulated and 122 downregulated) genes were differentially expressed for at least 2 folds (all P < .05) in AR. Seven GO categories were significantly enriched, 4 of which were related to cilium assembly and motility. Quantitative polymerase chain reaction validated the predicted direction of change for common cilia-related gene expression. The ciliary distribution score was significantly higher (more prominent ciliary shedding) in AR than in controls ( P < .05). Conclusion The significant aberrant cilia-related gene expression, revealed by microarray assays, might be the critical driver of AR where ciliary shedding is prominent.
Collapse
Affiliation(s)
- Yang Peng
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Zhen-Chao Zhu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Zhuo Chen
- Department of Otolaryngology Head & Neck Surgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Hai-Yu Hong
- Department of Otolaryngology-Head and Neck Surgery, The 5th Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiao-Xue Zi
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore.,Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Anand Kumar Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Li Shi
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Qin-Tai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - De-Yun Wang
- Department of Otolaryngology, National University of Singapore, National University Health System, Singapore, Singapore
| | - Qian-Hui Qiu
- Department of Otolaryngology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology Head & Neck Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|