1
|
He M, Yin S, Huang X, Li Y, Li B, Gong T, Liu Q. Insights into the regulatory role of bacterial sncRNA and its extracellular delivery via OMVs. Appl Microbiol Biotechnol 2024; 108:29. [PMID: 38159117 DOI: 10.1007/s00253-023-12855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.
Collapse
Affiliation(s)
- Mengdan He
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Shuanshuan Yin
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Xinlei Huang
- Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yi Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, Jiangxi Provincial Center for Advanced Diagnostic Technology and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Lovett J, McColl RS, Durcan P, Vechetti I, Myburgh KH. Analysis of plasma-derived small extracellular vesicle characteristics and microRNA cargo following exercise-induced skeletal muscle damage in men. Physiol Rep 2024; 12:e70056. [PMID: 39304515 PMCID: PMC11415274 DOI: 10.14814/phy2.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Extracellular vesicle (EV) cargo is known to change in response to stimuli such as muscle damage. This study aimed to assess particle size, concentration and microRNA (miR) content within small EV-enriched separations prepared from human blood taken before and after unaccustomed eccentric-biased exercise-induced muscle damage. Nine male volunteers underwent plyometric jumping and downhill running, with blood samples taken at baseline, 2, and 24 h post-exercise. EVs were separated using size exclusion chromatography (SEC) and their characteristics evaluated by nanoparticle tracking. No changes in EV size or concentration were seen following the muscle-damaging exercise. Small RNA sequencing identified 240 miRs to be consistently present within the EVs. RT-qPCR analysis was performed: specifically, for known muscle-enriched/important miRs, including miR-1, -206, -133a, -133b, -31, -208b, -451a, -486 and - 499 and the immune-important miR-21, -146a and - 155. Notably, none of the immune-important miRs within the EVs tested changed in response to the muscle damage. Of the muscle-associated miRs tested, only the levels of miR-31-5p were seen to change with decreased levels at 24 h compared to baseline and 2 h, indicating involvement in the damage response. These findings shed light on the dynamic role of EV miRs in response to exercise-induced muscle damage.
Collapse
Affiliation(s)
- Jason Lovett
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Rhys S. McColl
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Peter Durcan
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Ivan Vechetti
- Department of Nutrition and Health SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Kathryn H. Myburgh
- Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
3
|
Zhang Y, Luo S, Gao Y, Tong W, Sun S. High-Density Lipoprotein Subfractions Remodeling: A Critical Process for the Treatment of Atherosclerotic Cardiovascular Diseases. Angiology 2024; 75:441-453. [PMID: 36788038 DOI: 10.1177/00033197231157473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Numerous studies have shown that a low level of high-density lipoprotein cholesterol (HDL-C) is an independent biomarker of cardiovascular disease. High-density lipoprotein (HDL) is considered to be a protective factor for atherosclerosis (AS). Therefore, raising HDL-C has been widely recognized as a promising strategy to treat atherosclerotic cardiovascular diseases (ASCVD). However, several studies have found that increasing HDL-C levels does not necessarily reduce the risk of ASCVD. HDL particles are highly heterogeneous in structure, composition, and biological function. Moreover, HDL particles from atherosclerotic patients exhibit impaired anti-atherogenic functions and these dysfunctional HDL particles might even promote ASCVD. This makes it uncertain that HDL-raising therapy will prevent and treat ASCVD. It is necessary to comprehensively analyze the structure and function of HDL subfractions. We review current advances related to HDL subfractions remodeling and highlight how current lipid-modifying drugs such as niacin, statins, fibrates, and cholesteryl ester transfer protein inhibitors regulate cholesterol concentration of HDL and specific HDL subfractions.
Collapse
Affiliation(s)
- Yaling Zhang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiyu Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Gao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, China
| | - Shaowei Sun
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Wu Q, Sheng Q, Michell D, Ramirez-Solano M, Posey O, Phothisane A, Shaik S, Vickers KC, Ormseth MJ. Anti-Inflammatory Effect of High-Density Lipoprotein Blunted by Delivery of Altered MicroRNA Cargo in Patients With Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:684-695. [PMID: 38111131 PMCID: PMC11045320 DOI: 10.1002/art.42782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE High-density lipoprotein (HDL) has well-characterized anti-atherogenic cholesterol efflux and antioxidant functions. Another function of HDL uncharacterized in rheumatoid arthritis (RA) is its ability to transport microRNAs (miRNAs) between cells and thus alter cellular function. The study's purpose was to determine if HDL-miRNA cargo is altered and affects inflammation in RA. METHODS HDL-microRNAs were characterized in 30 RA and 30 control participants by next generation sequencing and quantitative polymerase chain reaction. The most abundant differentially expressed miRNA was evaluated further. The function of miR-1246 was assessed by miRNA mimics, antagomiRs, small interfering RNA knockdown, and luciferase assays. Monocyte-derived macrophages were treated with miR-1246-loaded HDL and unmodified HDL from RA and control participants to measure delivery of miR-1246 and its effect on interleukin-6 (IL-6). RESULTS The most abundant miRNA on HDL was miR-1246; it was significantly enriched two-fold on HDL from RA versus control participants. HDL-mediated miR-1246 delivery to macrophages significantly increased IL6 expression 43-fold. miR-1246 delivery significantly decreased DUSP3 1.5-fold and DUSP3 small interfering RNA knockdown increased macrophage IL6 expression. Luciferase assay indicated DUSP3 is a direct target of miR-1246. Unmodified HDL from RA delivered 1.6-fold more miR-1246 versus control participant HDL. Unmodified HDL from both RA and control participants attenuated activated macrophage IL6 expression, but this effect was significantly blunted in RA so that IL6 expression was 3.4-fold higher after RA versus control HDL treatment. CONCLUSION HDL-miR-1246 was increased in RA versus control participants and delivery of miR-1246 to macrophages increased IL-6 expression by targeting DUSP3. The altered HDL-miRNA cargo in RA blunted HDL's anti-inflammatory effect.
Collapse
Affiliation(s)
- Qiong Wu
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Olivia Posey
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Michelle J Ormseth
- Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN USA
| |
Collapse
|
5
|
Chapman MJ, Orsoni A, Mellett NA, Nguyen A, Robillard P, Shaw JE, Giral P, Thérond P, Swertfeger D, Davidson WS, Meikle PJ. Pitavastatin treatment remodels the HDL subclass lipidome and proteome in hypertriglyceridemia. J Lipid Res 2024; 65:100494. [PMID: 38160756 PMCID: PMC10850136 DOI: 10.1016/j.jlr.2023.100494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
HDL particles vary in lipidome and proteome, which dictate their individual physicochemical properties, metabolism, and biological activities. HDL dysmetabolism in nondiabetic hypertriglyceridemia (HTG) involves subnormal HDL-cholesterol and apoAI levels. Metabolic anomalies may impact the qualitative features of both the HDL lipidome and proteome. Whether particle content of bioactive lipids and proteins may differentiate HDL subclasses (HDL2b, 2a, 3a, 3b, and 3c) in HTG is unknown. Moreover, little is known of the effect of statin treatment on the proteolipidome of hypertriglyceridemic HDL and its subclasses. Nondiabetic, obese, HTG males (n = 12) received pitavastatin calcium (4 mg/day) for 180 days in a single-phase, unblinded study. ApoB-containing lipoproteins were normalized poststatin. Individual proteolipidomes of density-defined HDL subclasses were characterized prestatin and poststatin. At baseline, dense HDL3c was distinguished by marked protein diversity and peak abundance of surface lysophospholipids, amphipathic diacylglycerol and dihydroceramide, and core cholesteryl ester and triacylglycerol, (normalized to mol phosphatidylcholine), whereas light HDL2b showed peak abundance of free cholesterol, sphingomyelin, glycosphingolipids (monohexosylceramide, dihexosylceramide, trihexosylceramide, and anionic GM3), thereby arguing for differential lipid transport and metabolism between subclasses. Poststatin, bioactive lysophospholipid (lysophosphatidylcholine, lysoalkylphosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylinositol) cargo was preferentially depleted in HDL3c. By contrast, baseline lipidomic profiles of ceramide, dihydroceramide and related glycosphingolipids, and GM3/phosphatidylcholine were maintained across particle subclasses. All subclasses were depleted in triacylglycerol and diacylglycerol/phosphatidylcholine. The abundance of apolipoproteins CI, CII, CIV, and M diminished in the HDL proteome. Statin treatment principally impacts metabolic remodeling of the abnormal lipidome of HDL particle subclasses in nondiabetic HTG, with lesser effects on the proteome.
Collapse
Affiliation(s)
- M John Chapman
- Cardiovascular Disease Prevention Unit, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France.
| | - Alexina Orsoni
- Service de Biochimie, AP-HP, Paris-Saclay University, Bicetre University Hospital, and EA 7357, Paris-Saclay University, Orsay, France
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Paul Robillard
- Cardiovascular Disease Prevention Unit, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France
| | - Jonathan E Shaw
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Philippe Giral
- INSERM UMR1166 and Cardiovascular Prevention Units, ICAN-Institute of CardioMetabolism and Nutrition, AP-HP, Pitie-Salpetriere University Hospital, Paris, France
| | - Patrice Thérond
- Service de Biochimie, AP-HP, Paris-Saclay University, Bicetre University Hospital, and EA 7357, Paris-Saclay University, Orsay, France
| | - Debi Swertfeger
- Department of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
6
|
Chowdhury S, Sais D, Donnelly S, Tran N. The knowns and unknowns of helminth-host miRNA cross-kingdom communication. Trends Parasitol 2024; 40:176-191. [PMID: 38151361 DOI: 10.1016/j.pt.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that oversee gene modulation. They are integral to cellular functions and can migrate between species, leading to cross-kingdom gene suppression. Recent breakthroughs in helminth genome studies have sparked curiosity about helminth RNA regulators and their ability to regulate genes across species. Growing data indicate that helminth miRNAs have a significant impact on the host's immune system. Specific miRNAs from helminth parasites can merge with the host's miRNA system, implying that parasites could exploit their host's regulatory machinery and function. This review highlights the role of cross-kingdom helminth-derived miRNAs in the interplay between host and parasite, exploring potential routes for their uptake, processing, and consequences in host interaction.
Collapse
Affiliation(s)
- Sumaiya Chowdhury
- The School of Life Sciences, University of Technology, Sydney, Australia; School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- The School of Life Sciences, University of Technology, Sydney, Australia.
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
7
|
Roy Chowdhury M, Massé E. New Perspectives on Crosstalks Between Bacterial Regulatory RNAs from Outer Membrane Vesicles and Eukaryotic Cells. Methods Mol Biol 2024; 2741:183-194. [PMID: 38217654 DOI: 10.1007/978-1-0716-3565-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Regulatory small RNAs (sRNAs) help the bacteria to survive harsh environmental conditions by posttranscriptional regulation of genes involved in various biological pathways including stress responses, homeostasis, and virulence. These sRNAs can be found carried by different membrane-bound vesicles like extracellular vesicles (EVs), membrane vesicles (MVs), or outer membrane vesicles (OMVs). OMVs provide myriad functions in bacterial cells including carrying a cargo of proteins, lipids, and nucleic acids including sRNAs. A few interesting studies have shown that these sRNAs can be transported to the host cell by membrane vesicles and can regulate the host immune system. Although there is evidence that sRNAs can be exported to host cells and sometimes can even cross the blood-brain barrier, the exact mechanism is still unknown. In this review, we investigated the new techniques implemented in various studies, to elucidate the crosstalks between bacterial cells and human immune systems by membrane vesicles carrying bacterial regulatory sRNAs.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
8
|
Schoch L, Alcover S, Padró T, Ben-Aicha S, Mendieta G, Badimon L, Vilahur G. Update of HDL in atherosclerotic cardiovascular disease. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2023; 35:297-314. [PMID: 37940388 DOI: 10.1016/j.arteri.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Epidemiologic evidence supported an inverse association between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major cardiovascular risk factor and postulating diverse HDL vascular- and cardioprotective functions beyond their ability to drive reverse cholesterol transport. However, the failure of several clinical trials aimed at increasing HDL-C in patients with overt cardiovascular disease brought into question whether increasing the cholesterol cargo of HDL was an effective strategy to enhance their protective properties. In parallel, substantial evidence supports that HDLs are complex and heterogeneous particles whose composition is essential for maintaining their protective functions, subsequently strengthening the "HDL quality over quantity" hypothesis. The following state-of-the-art review covers the latest understanding as per the roles of HDL in ASCVD, delves into recent advances in understanding the complexity of HDL particle composition, including proteins, lipids and other HDL-transported components and discusses on the clinical outcomes after the administration of HDL-C raising drugs with particular attention to CETP (cholesteryl ester transfer protein) inhibitors.
Collapse
Affiliation(s)
- Leonie Schoch
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; Faculty of Medicine, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Sebastián Alcover
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain
| | | | - Guiomar Mendieta
- Cardiology Unit, Cardiovascular Clinical Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; Cardiovascular Research Chair, UAB, 08025 Barcelona, Spain; CiberCV, Institute of Health Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program, Institut de Recerca, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain; CiberCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Hong BV, Agus JK, Tang X, Zheng JJ, Romo EZ, Lei S, Zivkovic AM. Precision Nutrition and Cardiovascular Disease Risk Reduction: the Promise of High-Density Lipoproteins. Curr Atheroscler Rep 2023; 25:663-677. [PMID: 37702886 PMCID: PMC10564829 DOI: 10.1007/s11883-023-01148-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
PURPOSE OF REVIEW Emerging evidence supports the promise of precision nutritional approaches for cardiovascular disease (CVD) prevention. Here, we discuss current findings from precision nutrition trials and studies reporting substantial inter-individual variability in responses to diets and dietary components relevant to CVD outcomes. We highlight examples where early precision nutrition research already points to actionable intervention targets tailored to an individual's biology and lifestyle. Finally, we make the case for high-density lipoproteins (HDL) as a compelling next generation target for precision nutrition aimed at CVD prevention. HDL possesses complex structural features including diverse protein components, lipids, size distribution, extensive glycosylation, and interacts with the gut microbiome, all of which influence HDL's anti-inflammatory, antioxidant, and cholesterol efflux properties. Elucidating the nuances of HDL structure and function at an individual level may unlock personalized dietary and lifestyle strategies to optimize HDL-mediated atheroprotection and reduce CVD risk. RECENT FINDINGS Recent human studies have demonstrated that HDL particles are key players in the reduction of CVD risk. Our review highlights the role of HDL and the importance of personalized therapeutic approaches to improve their potential for reducing CVD risk. Factors such as diet, genetics, glycosylation, and gut microbiome interactions can modulate HDL structure and function at the individual level. We emphasize that fractionating HDL into size-based subclasses and measuring particle concentration are necessary to understand HDL biology and for developing the next generation of diagnostics and biomarkers. These discoveries underscore the need to move beyond a one-size-fits-all approach to HDL management. Precision nutrition strategies that account for personalized metabolic, genetic, and lifestyle data hold promise for optimizing HDL therapies and function to mitigate CVD risk more potently. While human studies show HDL play a key role in reducing CVD risk, recent findings indicate that factors such as diet, genetics, glycosylation, and gut microbes modulate HDL function at the individual level, underscoring the need for precision nutrition strategies that account for personalized variability to optimize HDL's potential for mitigating CVD risk.
Collapse
Affiliation(s)
- Brian V Hong
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Eduardo Z Romo
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Susan Lei
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Graham A. Modulation of the Cellular microRNA Landscape: Contribution to the Protective Effects of High-Density Lipoproteins (HDL). BIOLOGY 2023; 12:1232. [PMID: 37759631 PMCID: PMC10526091 DOI: 10.3390/biology12091232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
High-density lipoproteins (HDL) play an established role in protecting against cellular dysfunction in a variety of different disease contexts; however, harnessing this therapeutic potential has proved challenging due to the heterogeneous and relative instability of this lipoprotein and its variable cargo molecules. The purpose of this study is to examine the contribution of microRNA (miRNA; miR) sequences, either delivered directly or modulated endogenously, to these protective functions. This narrative review introduces the complex cargo carried by HDL, the protective functions associated with this lipoprotein, and the factors governing biogenesis, export and the uptake of microRNA. The possible mechanisms by which HDL can modulate the cellular miRNA landscape are considered, and the impact of key sequences modified by HDL is explored in diseases such as inflammation and immunity, wound healing, angiogenesis, dyslipidaemia, atherosclerosis and coronary heart disease, potentially offering new routes for therapeutic intervention.
Collapse
Affiliation(s)
- Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| |
Collapse
|
11
|
van Zonneveld AJ, Zhao Q, Rotmans JI, Bijkerk R. Circulating non-coding RNAs in chronic kidney disease and its complications. Nat Rev Nephrol 2023; 19:573-586. [PMID: 37286733 DOI: 10.1038/s41581-023-00725-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023]
Abstract
Post-transcriptional regulation by non-coding RNAs (ncRNAs) can modulate the expression of genes involved in kidney physiology and disease. A large variety of ncRNA species exist, including microRNAs, long non-coding RNAs, piwi-interacting RNAs, small nucleolar RNAs, circular RNAs and yRNAs. Despite early assumptions that some of these species may exist as by-products of cell or tissue injury, a growing body of literature suggests that these ncRNAs are functional and participate in a variety of processes. Although they function intracellularly, ncRNAs are also present in the circulation, where they are carried by extracellular vesicles, ribonucleoprotein complexes or lipoprotein complexes such as HDL. These systemic, circulating ncRNAs are derived from specific cell types and can be directly transferred to a variety of cells, including endothelial cells of the vasculature and virtually any cell type in the kidney, thereby affecting the function of the host cell and/or its response to injury. Moreover, chronic kidney disease itself, as well as injury states associated with transplantation and allograft dysfunction, is associated with a shift in the distribution of circulating ncRNAs. These findings may provide opportunities for the identification of biomarkers with which to monitor disease progression and/or the development of therapeutic interventions.
Collapse
Affiliation(s)
- Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Qiao Zhao
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands.
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
12
|
Kumar S, Maniya N, Wang C, Senapati S, Chang HC. Quantifying PON1 on HDL with nanoparticle-gated electrokinetic membrane sensor for accurate cardiovascular risk assessment. Nat Commun 2023; 14:557. [PMID: 36732521 PMCID: PMC9895453 DOI: 10.1038/s41467-023-36258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular disease-related deaths (one-third of global deaths) can be reduced with a simple screening test for better biomarkers than the current lipid and lipoprotein profiles. We propose using a highly atheroprotective subset of HDL with colocalized PON1 (PON1-HDL) for superior cardiovascular risk assessment. However, direct quantification of HDL proteomic subclasses are complicated by the peroxides/antioxidants associated with HDL interfering with redox reactions in enzymatic calorimetric and electrochemical immunoassays. Hence, we developed an enzyme-free Nanoparticle-Gated Electrokinetic Membrane Sensor (NGEMS) platform for quantification of PON1-HDL in plasma within 60 min, with a sub-picomolar limit of detection, 3-4 log dynamic range and without needing sample pretreatment or individual-sample calibration. Using NGEMS, we report our study on human plasma PON1-HDL as a cardiovascular risk marker with AUC~0.99 significantly outperforming others (AUC~0.6-0.8), including cholesterol/triglycerides tests. Validation for a larger cohort can establish PON1-HDL as a biomarker that can potentially reshape cardiovascular landscape.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Indiana, USA
| | - Nalin Maniya
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Indiana, USA
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Indiana, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Indiana, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Indiana, USA.
| |
Collapse
|
13
|
Karvinen S, Korhonen T, Sievänen T, Karppinen JE, Juppi H, Jakoaho V, Kujala UM, Laukkanen JA, Lehti M, Laakkonen EK. Extracellular vesicles and high-density lipoproteins: Exercise and oestrogen-responsive small RNA carriers. J Extracell Vesicles 2023; 12:e12308. [PMID: 36739598 PMCID: PMC9899444 DOI: 10.1002/jev2.12308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/22/2022] [Accepted: 01/22/2023] [Indexed: 02/06/2023] Open
Abstract
Decreased systemic oestrogen levels (i.e., menopause) affect metabolic health. However, the detailed mechanisms underlying this process remain unclear. Both oestrogens and exercise have been shown to improve metabolic health, which may be partly mediated by circulating microRNA (c-miR) signalling. In recent years, extracellular vesicles (EV) have increased interest in the field of tissue crosstalk. However, in many studies on EV-carried miRs, the co-isolation of high-density lipoprotein (HDL) particles with EVs has not been considered, potentially affecting the results. Here, we demonstrate that EV and HDL particles have distinct small RNA (sRNA) content, including both host and nonhost sRNAs. Exercise caused an acute increase in relative miR abundancy in EVs, whereas in HDL particles, it caused an increase in transfer RNA-derived sRNA. Furthermore, we demonstrate that oestrogen-based hormonal therapy (HT) allows the acute exercise-induced miR-response to occur in both EV and HDL particles in postmenopausal women, while the response was absent in nonusers.
Collapse
Affiliation(s)
- Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tia‐Marje Korhonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Tero Sievänen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari E. Karppinen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Hanna‐Kaarina Juppi
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Veera Jakoaho
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Urho M. Kujala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Jari A. Laukkanen
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland,Institute of Clinical MedicineUniversity of Eastern FinlandKuopioFinland
| | - Maarit Lehti
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Eija K. Laakkonen
- Gerontology Research Center and Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
14
|
Castleberry M, Raby CA, Ifrim A, Shibata Y, Matsushita S, Ugawa S, Miura Y, Hori A, Miida T, Linton MF, Michell DL, Tsujita M, Vickers KC. High-density lipoproteins mediate small RNA intercellular communication between dendritic cells and macrophages. J Lipid Res 2023; 64:100328. [PMID: 36626966 PMCID: PMC9929858 DOI: 10.1016/j.jlr.2023.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/25/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
HDL are dynamic transporters of diverse molecular cargo and play critical roles in lipid metabolism and inflammation. We have previously reported that HDL transport both host and nonhost small RNAs (sRNA) based on quantitative PCR and sRNA sequencing approaches; however, these methods require RNA isolation steps which have potential biases and may not isolate certain forms of RNA molecules from samples. HDL have also been reported to accept functional sRNAs from donor macrophages and deliver them to recipient endothelial cells; however, using PCR to trace HDL-sRNA intercellular communication has major limitations. The present study aims to overcome these technical barriers and further understand the pathways involved in HDL-mediated bidirectional flux of sRNAs between immune cells. To overcome these technical limitations, SYTO RNASelect, a lipid-penetrating RNA dye, was used to quantify a) overall HDL-sRNA content, b) bidirectional flux of sRNAs between HDL and immune cells, c) HDL-mediated intercellular communication between immune cells, and d) HDL-mediated RNA export changes in disease. Live cell imaging and loss-of-function assays indicate that the endo-lysosomal system plays a critical role in macrophage storage and export of HDL-sRNAs. These results identify HDL as a substantive mediator of intercellular communication between immune cells and demonstrate the importance of endocytosis for recipient cells of HDL-sRNAs. Utilizing a lipid-penetrating RNA-specific fluorescence dye, we were able to both quantify the absolute concentration of sRNAs transported by HDL and characterize HDL-mediated intercellular RNA transport between immune cells.
Collapse
Affiliation(s)
- Mark Castleberry
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Chase A. Raby
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anca Ifrim
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasuhiro Shibata
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Sachi Matsushita
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yutaka Miura
- Department of Nutrition, Shigakkan University, Obu, Aichi, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - MacRae F. Linton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Danielle L. Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maki Tsujita
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA,For correspondence: Kasey C. Vickers; Mark Castleberry
| |
Collapse
|
15
|
von Eckardstein A, Nordestgaard BG, Remaley AT, Catapano AL. High-density lipoprotein revisited: biological functions and clinical relevance. Eur Heart J 2022; 44:1394-1407. [PMID: 36337032 PMCID: PMC10119031 DOI: 10.1093/eurheartj/ehac605] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Previous interest in high-density lipoproteins (HDLs) focused on their possible protective role in atherosclerotic cardiovascular disease (ASCVD). Evidence from genetic studies and randomized trials, however, questioned that the inverse association of HDL-cholesterol (HDL-C) is causal. This review aims to provide an update on the role of HDL in health and disease, also beyond ASCVD. Through evolution from invertebrates, HDLs are the principal lipoproteins, while apolipoprotein B-containing lipoproteins first developed in vertebrates. HDLs transport cholesterol and other lipids between different cells like a reusable ferry, but serve many other functions including communication with cells and the inactivation of biohazards like bacterial lipopolysaccharides. These functions are exerted by entire HDL particles or distinct proteins or lipids carried by HDL rather than by its cholesterol cargo measured as HDL-C. Neither does HDL-C measurement reflect the efficiency of reverse cholesterol transport. Recent studies indicate that functional measures of HDL, notably cholesterol efflux capacity, numbers of HDL particles, or distinct HDL proteins are better predictors of ASCVD events than HDL-C. Low HDL-C levels are related observationally, but also genetically, to increased risks of infectious diseases, death during sepsis, diabetes mellitus, and chronic kidney disease. Additional, but only observational, data indicate associations of low HDL-C with various autoimmune diseases, and cancers, as well as all-cause mortality. Conversely, extremely high HDL-C levels are associated with an increased risk of age-related macular degeneration (also genetically), infectious disease, and all-cause mortality. HDL encompasses dynamic multimolecular and multifunctional lipoproteins that likely emerged during evolution to serve several physiological roles and prevent or heal pathologies beyond ASCVD. For any clinical exploitation of HDL, the indirect marker HDL-C must be replaced by direct biomarkers reflecting the causal role of HDL in the respective disease.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich , Zurich , Switzerland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital , Herlev , Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital , Herlev , Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, MD , USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan , Milan , Italy
- IRCCS MultiMedica, Sesto S. Giovanni , Milan , Italy
| |
Collapse
|
16
|
Kraus VB, Ma S, Tourani R, Fillenbaum GG, Burchett BM, Parker DC, Kraus WE, Connelly MA, Otvos JD, Cohen HJ, Orenduff MC, Pieper CF, Zhang X, Aliferis CF. Causal analysis identifies small HDL particles and physical activity as key determinants of longevity of older adults. EBioMedicine 2022; 85:104292. [PMID: 36182774 PMCID: PMC9526168 DOI: 10.1016/j.ebiom.2022.104292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The hard endpoint of death is one of the most significant outcomes in both clinical practice and research settings. Our goal was to discover direct causes of longevity from medically accessible data. METHODS Using a framework that combines local causal discovery algorithms with discovery of maximally predictive and compact feature sets (the "Markov boundaries" of the response) and equivalence classes, we examined 186 variables and their relationships with survival over 27 years in 1507 participants, aged ≥71 years, of the longitudinal, community-based D-EPESE study. FINDINGS As few as 8-15 variables predicted longevity at 2-, 5- and 10-years with predictive performance (area under receiver operator characteristic curve) of 0·76 (95% CIs 0·69, 0·83), 0·76 (0·72, 0·81) and 0·66 (0·61, 0·71), respectively. Numbers of small high-density lipoprotein particles, younger age, and fewer pack years of cigarette smoking were the strongest determinants of longevity at 2-, 5- and 10-years, respectively. Physical function was a prominent predictor of longevity at all time horizons. Age and cognitive function contributed to predictions at 5 and 10 years. Age was not among the local 2-year prediction variables (although significant in univariable analysis), thus establishing that age is not a direct cause of 2-year longevity in the context of measured factors in our data that determine longevity. INTERPRETATION The discoveries in this study proceed from causal data science analyses of deep clinical and molecular phenotyping data in a community-based cohort of older adults with known lifespan. FUNDING NIH/NIA R01AG054840, R01AG12765, and P30-AG028716, NIH/NIA Contract N01-AG-12102 and NCRR 1UL1TR002494-01.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States.
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States; University of Minnesota Department of Medicine, Minneapolis, MN, United States
| | - Roshan Tourani
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Gerda G Fillenbaum
- Psychiatry and Behavioral Sciences and Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| | - Bruce M Burchett
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| | - Daniel C Parker
- Division of Geriatrics, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Margery A Connelly
- Laboratory Corporation of America® Holdings (Labcorp), Morrisville, NC, United States
| | - James D Otvos
- Laboratory Corporation of America® Holdings (Labcorp), Morrisville, NC, United States
| | - Harvey Jay Cohen
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States
| | - Melissa C Orenduff
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Carl F Pieper
- Center for the Study of Aging and Human Development, Duke University, Durham, NC, United States; Biostatistics and Bioinformatics, Duke University, Durham, NC, United States
| | - Xin Zhang
- Duke Molecular Physiology Institute, Duke University, Durham, NC, United States
| | - Constantin F Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States; University of Minnesota Consortium on Aging, Minneapolis, MN, United States; University of Minnesota Clinical and Translational Science Institute, Minneapolis, MN, United States; University of Minnesota Department of Medicine, Minneapolis, MN, United States
| |
Collapse
|
17
|
Aminian-Dehkordi J, Valiei A, Mofrad MRK. Emerging computational paradigms to address the complex role of gut microbial metabolism in cardiovascular diseases. Front Cardiovasc Med 2022; 9:987104. [PMID: 36299869 PMCID: PMC9589059 DOI: 10.3389/fcvm.2022.987104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The human gut microbiota and its associated perturbations are implicated in a variety of cardiovascular diseases (CVDs). There is evidence that the structure and metabolic composition of the gut microbiome and some of its metabolites have mechanistic associations with several CVDs. Nevertheless, there is a need to unravel metabolic behavior and underlying mechanisms of microbiome-host interactions. This need is even more highlighted when considering that microbiome-secreted metabolites contributing to CVDs are the subject of intensive research to develop new prevention and therapeutic techniques. In addition to the application of high-throughput data used in microbiome-related studies, advanced computational tools enable us to integrate omics into different mathematical models, including constraint-based models, dynamic models, agent-based models, and machine learning tools, to build a holistic picture of metabolic pathological mechanisms. In this article, we aim to review and introduce state-of-the-art mathematical models and computational approaches addressing the link between the microbiome and CVDs.
Collapse
Affiliation(s)
| | | | - Mohammad R. K. Mofrad
- Department of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
18
|
MicroRNAs in the cancer cell-to-cell communication: An insight into biological vehicles. Biomed Pharmacother 2022; 153:113449. [PMID: 36076563 DOI: 10.1016/j.biopha.2022.113449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
|
19
|
Iatan I, Choi HY, Genest J. High-Density Lipoprotein and Cardiovascular Disease-Where do We Stand? Endocrinol Metab Clin North Am 2022; 51:557-572. [PMID: 35963628 DOI: 10.1016/j.ecl.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Decades of research have shown that high-density lipoprotein cholesterol (HDL-C) levels in humans are associated with atherosclerotic cardiovascular disease (ASCVD). This association is strong and coherent across populations and remains after the elimination of covariates. Animal studies show that increasing HDL particles prevent atherosclerosis, and basic work on the biology of HDL supports a strong biological plausibility for a therapeutic target. This enthusiasm is dampened by Mendelian randomization data showing that HDL-C may not be causal in ASCVD. Furthermore, drugs that increase HDL-C have largely failed to prevent or treat ASCVD.
Collapse
Affiliation(s)
- Iulia Iatan
- Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Bloc E, EM12212, Montreal, Quebec H4A 3J1, Canada
| | - Hong Y Choi
- Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Bloc E, EM12212, Montreal, Quebec H4A 3J1, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Bloc E, EM12212, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
20
|
Sohail AM, Khawar MB, Afzal A, Hassan A, Shahzaman S, Ali A. Multifaceted roles of extracellular RNAs in different diseases. Mil Med Res 2022; 9:43. [PMID: 35948986 PMCID: PMC9367134 DOI: 10.1186/s40779-022-00405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
Extracellular RNAs (exRNAs) are novel circulating factors that can be used as biomarkers in various diseases. Their unique and diverse kinds, as well as their role as biomarkers, make them significant biomarkers. There has been immense work carried out since the discovery of exRNAs in circulation and other biological fluids to catalog and determine whether exRNAs may be utilized as indicators for health and illness. In this review, we aim to understand the current state of exRNAs in relation to various diseases and their potential as biomarkers. We will also review current issues and challenges faced in using exRNAs, with clinical and lab trials, that can be used as viable markers for different diseases.
Collapse
Affiliation(s)
- Abdullah Muhammad Sohail
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Ali Hassan
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sara Shahzaman
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Ahmed Ali
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
21
|
Kujala UM, Leskinen T, Rottensteiner M, Aaltonen S, Ala-Korpela M, Waller K, Kaprio J. Physical activity and health: Findings from Finnish monozygotic twin pairs discordant for physical activity. Scand J Med Sci Sports 2022; 32:1316-1323. [PMID: 35770444 PMCID: PMC9378553 DOI: 10.1111/sms.14205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Genetic and early environmental differences including early health habits associate with future health. To provide insight on the causal nature of these associations, monozygotic (MZ) twin pairs discordant for health habits provide an interesting natural experiment. Twin pairs discordant for leisure‐time physical activity (LTPA) in early adult life is thus a powerful study design to investigate the associations between long‐term LTPA and indicators of health and wellbeing. We have identified 17 LTPA discordant twin pairs from two Finnish twin cohorts and summarize key findings of these studies in this paper. The carefully characterized rare long‐term LTPA discordant MZ twin pairs have participated in multi‐dimensional clinical examinations. Key findings highlight that compared with less active twins in such MZ twin pairs, the twins with higher long‐term LTPA have higher physical fitness, reduced body fat, reduced visceral fat, reduced liver fat, increased lumen diameters of conduit arteries to the lower limbs, increased bone mineral density in loaded bone areas, and an increased number of large high‐density lipoprotein particles. The findings increase our understanding on the possible site‐specific and system‐level effects of long‐term LTPA.
Collapse
Affiliation(s)
- Urho M Kujala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tuija Leskinen
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Mirva Rottensteiner
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sari Aaltonen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Mika Ala-Korpela
- Systems Epidemiology, Faculty of Medicine, University of Oulu & Biocenter Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Katja Waller
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Keshavarz Alikhani H, Pourhamzeh M, Seydi H, Shokoohian B, Hossein-khannazer N, Jamshidi-adegani F, Al-Hashmi S, Hassan M, Vosough M. Regulatory Non-Coding RNAs in Familial Hypercholesterolemia, Theranostic Applications. Front Cell Dev Biol 2022; 10:894800. [PMID: 35813199 PMCID: PMC9260315 DOI: 10.3389/fcell.2022.894800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jamshidi-adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Massoud Vosough,
| |
Collapse
|
23
|
Zocchi M, Della Porta M, Lombardoni F, Scrimieri R, Zuccotti GV, Maier JA, Cazzola R. A Potential Interplay between HDLs and Adiponectin in Promoting Endothelial Dysfunction in Obesity. Biomedicines 2022; 10:1344. [PMID: 35740366 PMCID: PMC9220412 DOI: 10.3390/biomedicines10061344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Obesity is an epidemic public health problem that has progressively worsened in recent decades and is associated with low-grade chronic inflammation (LGCI) in metabolic tissues and an increased risk of several diseases. In particular, LGCI alters metabolism and increases cardiovascular risk by impairing endothelial function and altering the functions of adiponectin and high-density lipoproteins (HDLs). Adiponectin is an adipokine involved in regulating energy metabolism and body composition. Serum adiponectin levels are reduced in obese individuals and negatively correlate with chronic sub-clinical inflammatory markers. HDLs are a heterogeneous and complex class of lipoproteins that can be dysfunctional in obesity. Adiponectin and HDLs are strictly interdependent, and the maintenance of their interplay is essential for vascular function. Since such a complex network of interactions is still overlooked in clinical settings, this review aims to highlight the mechanisms involved in the impairment of the HDLs/adiponectin axis in obese patients to predict the risk of cardiovascular diseases and activate preventive countermeasures. Here, we provide a narrative review of the role of LGCI in altering HDLs, adiponectin and endothelial functions in obesity to encourage new studies about their synergic effects on cardiovascular health and disease.
Collapse
Affiliation(s)
- Monica Zocchi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Matteo Della Porta
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Federico Lombardoni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
- Department of Pediatrics, Ospedale dei Bambini, 20154 Milan, Italy
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (M.Z.); (M.D.P.); (F.L.); (R.S.); (G.V.Z.); (J.A.M.)
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To critically appraise new insights into HDL structure and function in type 1 diabetes (T1DM) and type 2 diabetes (T2DM). RECENT FINDINGS In young T1DM patients with early renal impairment and a high inflammatory score, both HDL antioxidative activity and endothelial vasodilatory function were impaired, revealing a critical link between HDL dysfunction, subclinical vascular damage, systemic inflammation and end organ damage. HDL may inhibit development of T2DM by attenuating endoplasmic reticulum (ER) stress and apoptotic loss of pancreatic β-cells, an effect due in part to ABC transporter-mediated efflux of specific oxysterols with downstream activation of the hedghehog signalling receptor, Smoothened. The apoM-sphingosine-1-phosphate complex is critical to HDL antidiabetic activity, encompassing protection against insulin resistance, promotion of insulin secretion, enhanced β-cell survival and inhibition of hepatic glucose production. Structure-function studies of HDL in hyperglycemic, dyslipidemic T2DM patients revealed both gain and loss of lipidomic and proteomic components. Such changes attenuated both the optimal protective effects of HDL on mitochondrial function and its capacity to inhibit endothelial cell apoptosis. Distinct structural components associated with individual HDL functions. SUMMARY Extensive evidence indicates that both the proteome and lipidome of HDL are altered in T1DM and T2DM, with impairment of multiple functions.
Collapse
Affiliation(s)
- M. John Chapman
- Faculty of Medicine, Sorbonne University
- Endocrinology and Cardiovascular Disease Prevention, Pitie-Salpetriere University Hospital
- National Institute for Health and Medical Research (INSERM), Paris, France
| |
Collapse
|
25
|
Cui Y, Zhou Y, Gan N, Xiang Q, Xia M, Liao W, Zheng XL, Peng J, Tang Z. The Role of Extracellular Non-coding RNAs in Atherosclerosis. J Cardiovasc Transl Res 2022; 15:477-491. [PMID: 35233720 DOI: 10.1007/s12265-022-10218-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
Atherosclerosis (AS) is a complex chronic inflammatory disease that leads to myocardial infarction, stroke, and disabling peripheral artery disease. Non-coding RNAs (ncRNAs) directly participate in various physiological processes and exhibit a wide range of biological functions. The present review discusses how different ncRNAs participate in the process of AS in various carrier forms. We focused on the role and potential mechanisms of extracellular ncRNAs in AS and examined their potential implications for clinical treatment.
Collapse
Affiliation(s)
- Yuting Cui
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Yating Zhou
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Ni Gan
- Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qiong Xiang
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Mengdie Xia
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Wei Liao
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Juan Peng
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhihan Tang
- Institute of Cardiovascular Disease Key Laboratory for Arteriosclerology of Hunan Province School of Basic Medical Sciences Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
26
|
Homo Sapiens (Hsa)-microRNA (miR)-6727-5p Contributes to the Impact of High-Density Lipoproteins on Fibroblast Wound Healing In Vitro. MEMBRANES 2022; 12:membranes12020154. [PMID: 35207076 PMCID: PMC8876102 DOI: 10.3390/membranes12020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Chronic, non-healing wounds are a significant cause of global morbidity and mortality, and strategies to improve delayed wound closure represent an unmet clinical need. High-density lipoproteins (HDL) can enhance wound healing, but exploitation of this finding is challenging due to the complexity and instability of these heterogeneous lipoproteins. The responsiveness of primary human neonatal keratinocytes, and neonatal and human dermal fibroblasts (HDF) to HDL was confirmed by cholesterol efflux, but promotion of ‘scrape’ wound healing occurred only in primary human neonatal (HDFn) and adult fibroblasts (HDFa). Treatment of human fibroblasts with HDL induced multiple changes in the expression of small non-coding microRNA sequences, determined by microchip array, including hsa-miR-6727-5p. Intriguingly, levels of hsa-miR-6727-5p increased in HDFn, but decreased in HDFa, after exposure to HDL. Delivery of a hsa-miR-6727-5p mimic elicited repression of different target genes in HDFn (ZNF584) and HDFa (EDEM3, KRAS), and promoted wound closure in HDFn. By contrast, a hsa-miR-6727-5p inhibitor promoted wound closure in HDFa. We conclude that HDL treatment exerts distinct effects on the expression of hsa-miR-6727-5p in neonatal and adult fibroblasts, and that this is a sequence which plays differential roles in wound healing in these cell types, but cannot replicate the myriad effects of HDL.
Collapse
|