1
|
D’Elia JA, Weinrauch LA. Role of Divalent Cations in Infections in Host-Pathogen Interaction. Int J Mol Sci 2024; 25:9775. [PMID: 39337264 PMCID: PMC11432163 DOI: 10.3390/ijms25189775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
With increasing numbers of patients worldwide diagnosed with diabetes mellitus, renal disease, and iatrogenic immune deficiencies, an increased understanding of the role of electrolyte interactions in mitigating pathogen virulence is necessary. The levels of divalent cations affect host susceptibility and pathogen survival in persons with relative immune insufficiency. For instance, when host cellular levels of calcium are high compared to magnesium, this relationship contributes to insulin resistance and triples the risk of clinical tuberculosis. The movement of divalent cations within intracellular spaces contributes to the host defense, causing apoptosis or autophagy of the pathogen. The control of divalent cation flow is dependent in part upon the mammalian natural resistance-associated macrophage protein (NRAMP) in the host. Survival of pathogens such as M tuberculosis within the bronchoalveolar macrophage is also dependent upon NRAMP. Pathogens evolve mutations to control the movement of calcium through external and internal channels. The host NRAMP as a metal transporter competes for divalent cations with the pathogen NRAMP in M tuberculosis (whether in latent, dormant, or active phase). This review paper summarizes mechanisms of pathogen offense and patient defense using inflow and efflux through divalent cation channels under the influence of parathyroid hormone vitamin D and calcitonin.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Verzelloni P, Urbano T, Wise LA, Vinceti M, Filippini T. Cadmium exposure and cardiovascular disease risk: A systematic review and dose-response meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123462. [PMID: 38295933 DOI: 10.1016/j.envpol.2024.123462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/30/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Exposure to toxic metals is a global public health threat. Among other adverse effects, exposure to the heavy metal cadmium has been associated with greater risk of cardiovascular disease (CVD). Nonetheless, the shape of the association between cadmium exposure and CVD risk is not clear. This systematic review summarizes data on the association between cadmium exposure and risk of CVD using a dose-response approach. We carried out a literature search in PubMed, Web of Science, and Embase from inception to December 30, 2023. Inclusion criteria were: studies on adult populations, assessment of cadmium exposure, risk of overall CVD and main CVD subgroups as endpoints, and observational study design (cohort, cross-sectional, or case-control). We retrieved 26 eligible studies published during 2005-2023, measuring cadmium exposure mainly in urine and whole blood. In a dose-response meta-analysis using the one-stage method within a random-effects model, we observed a positive association between cadmium exposure and risk of overall CVD. When using whole blood cadmium as a biomarker, the association with overall CVD risk was linear, yielding a risk ratio (RR) of 2.58 (95 % confidence interval-CI 1.78-3.74) at 1 μg/L. When using urinary cadmium as a biomarker, the association was linear until 0.5 μg/g creatinine (RR = 2.79, 95 % CI 1.26-6.16), after which risk plateaued. We found similar patterns of association of cadmium exposure with overall CVD mortality and risks of heart failure, coronary heart disease, and overall stroke, whereas for ischemic stroke there was a positive association with mortality only. Overall, our results suggest that cadmium exposure, whether measured in urine or whole blood, is associated with increased CVD risk, further highlighting the importance of reducing environmental pollution from this heavy metal.
Collapse
Affiliation(s)
- Pietro Verzelloni
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Teresa Urbano
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Lieberman‐Cribbin W, Li Z, Lewin M, Ruiz P, Jarrett JM, Cole SA, Kupsco A, O'Leary M, Pichler G, Shimbo D, Devereux RB, Umans JG, Navas‐Acien A, Nigra AE. The Contribution of Declines in Blood Lead Levels to Reductions in Blood Pressure Levels: Longitudinal Evidence in the Strong Heart Family Study. J Am Heart Assoc 2024; 13:e031256. [PMID: 38205795 PMCID: PMC10926826 DOI: 10.1161/jaha.123.031256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/21/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Chronic lead exposure is associated with both subclinical and clinical cardiovascular disease. We evaluated whether declines in blood lead were associated with changes in systolic and diastolic blood pressure in adult American Indian participants from the SHFS (Strong Heart Family Study). METHODS AND RESULTS Lead in whole blood was measured in 285 SHFS participants in 1997 to 1999 and 2006 to 2009. Blood pressure and measures of cardiac geometry and function were obtained in 2001 to 2003 and 2006 to 2009. We used generalized estimating equations to evaluate the association of declines in blood lead with changes in blood pressure; cardiac function and geometry measures were considered secondary. Mean blood lead was 2.04 μg/dL at baseline. After ≈10 years, mean decline in blood lead was 0.67 μg/dL. In fully adjusted models, the mean difference in systolic blood pressure comparing the highest to lowest tertile of decline (>0.91 versus <0.27 μg/dL) in blood lead was -7.08 mm Hg (95% CI, -13.16 to -1.00). A significant nonlinear association between declines in blood lead and declines in systolic blood pressure was detected, with significant linear associations where blood lead decline was 0.1 μg/dL or higher. Declines in blood lead were nonsignificantly associated with declines in diastolic blood pressure and significantly associated with declines in interventricular septum thickness. CONCLUSIONS Declines in blood lead levels in American Indian adults, even when small (0.1-1.0 μg/dL), were associated with reductions in systolic blood pressure. These findings suggest the need to further study the cardiovascular impacts of reducing lead exposures and the importance of lead exposure prevention.
Collapse
Affiliation(s)
- Wil Lieberman‐Cribbin
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNYUSA
| | - Zheng Li
- Office of Capacity Development and Applied Prevention Science, Agency for Toxic Substances and Disease RegistryAtlantaGAUSA
| | - Michael Lewin
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease RegistryAtlantaGAUSA
| | - Patricia Ruiz
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease RegistryAtlantaGAUSA
| | - Jeffery M. Jarrett
- Division for Laboratory SciencesCenters for Disease Control and PreventionAtlantaGAUSA
| | - Shelley A. Cole
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTXUSA
| | - Allison Kupsco
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNYUSA
| | - Marcia O'Leary
- Missouri Breaks Research Industries Research, Inc.Eagle ButteSDUSA
| | - Gernot Pichler
- Department of CardiologyKarl Landsteiner Institute for Cardiovascular and Critical Care Research, Clinic FloridsdorfViennaAustria
| | - Daichi Shimbo
- Division of CardiologyColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Jason G. Umans
- MedStar Health Research InstituteHyattsvilleMDUSA
- Georgetown‐Howard Universities Center for Clinical and Translational ScienceWashingtonDCUSA
| | - Ana Navas‐Acien
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNYUSA
| | - Anne E. Nigra
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNYUSA
| |
Collapse
|
4
|
Ravalli F, Vela Parada X, Ujueta F, Pinotti R, Anstrom KJ, Lamas GA, Navas‐Acien A. Chelation Therapy in Patients With Cardiovascular Disease: A Systematic Review. J Am Heart Assoc 2022; 11:e024648. [PMID: 35229619 PMCID: PMC9075296 DOI: 10.1161/jaha.121.024648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 02/05/2023]
Abstract
Background EDTA is an intravenous chelating agent with high affinity to divalent cations (lead, cadmium, and calcium) that may be beneficial in the treatment of cardiovascular disease (CVD). Although a large randomized clinical trial showed benefit, smaller studies were inconsistent. We conducted a systematic review of published studies to examine the effect of repeated EDTA on clinical outcomes in adults with CVD. Methods and Results We searched 3 databases (MEDLINE, Embase, and Cochrane) from database inception to October 2021 to identify all studies involving EDTA treatment in patients with CVD. Predetermined outcomes included mortality, disease severity, plasma biomarkers of disease chronicity, and quality of life. Twenty-four studies (4 randomized clinical trials, 15 prospective before/after studies, and 5 retrospective case series) assessed the use of repeated EDTA chelation treatment in patients with preexistent CVD. Of these, 17 studies (1 randomized clinical trial) found improvement in their respective outcomes following EDTA treatment. The largest improvements were observed in studies with high prevalence of participants with diabetes and/or severe occlusive arterial disease. A meta-analysis conducted with 4 studies reporting ankle-brachial index indicated an improvement of 0.08 (95% CI, 0.06-0.09) from baseline. Conclusions Overall, 17 studies suggested improved outcomes, 5 reported no statistically significant effect of treatment, and 2 reported no qualitative benefit. Repeated EDTA for CVD treatment may provide more benefit to patients with diabetes and severe peripheral arterial disease. Differences across infusion regimens, including dosage, solution components, and number of infusions, limit comparisons across studies. Additional research is necessary to confirm these findings and to evaluate the potential mediating role of metals. Registration URL: https://www.crd.york.ac.uk/; Unique identifier: CRD42020166505.
Collapse
Affiliation(s)
- Filippo Ravalli
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY
| | | | - Francisco Ujueta
- Department of Medicine at Mount Sinai Medical CenterMiami BeachFL
| | - Rachel Pinotti
- Levy LibraryIcahn School of Medicine at Mount SinaiNew YorkNY
| | | | - Gervasio A. Lamas
- Department of Medicine at Mount Sinai Medical CenterMiami BeachFL
- Columbia University Division of Cardiology at Mount Sinai Medical CenterMiami BeachFL
| | - Ana Navas‐Acien
- Department of Environmental Health SciencesColumbia University Mailman School of Public HealthNew YorkNY
| |
Collapse
|
5
|
Studzińska-Sroka E, Galanty A, Gościniak A, Wieczorek M, Kłaput M, Dudek-Makuch M, Cielecka-Piontek J. Herbal Infusions as a Valuable Functional Food. Nutrients 2021; 13:nu13114051. [PMID: 34836310 PMCID: PMC8622958 DOI: 10.3390/nu13114051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/11/2023] Open
Abstract
Herbal infusions are an underestimated and easy to intake a source of biologically active natural compounds (polyphenols), which, in the dissolved form, are more easily absorbed. Therefore, this study aimed to assess the potential of herbal infusions as a functional food to reduce postprandial hyperglycemia (inhibition of α-amylase and α-glucosidase) and to reduce the effects of increased blood glucose level (antioxidant effect-DPPH, CUPRAC, and Fe2+ chelating assays, as well as anti-inflammatory activity-inhibition of collagenase). We showed that polyphenols are present in the examined aqueous herbal infusions (including chlorogenic and gallic acids). Subsequently, our research has shown that herbal infusions containing cinnamon bark, mulberry leaves, and blackberry fruits most strongly inhibit glucose release from complex carbohydrates, and that all herbal infusions can, to different degrees, reduce the effects of elevated blood sugar. In conclusion, infusions prepared from herbal blends could be recommended to prevent type II diabetes.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland; (A.G.); (M.W.); (M.D.-M.); (J.C.-P.)
- Correspondence:
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Anna Gościniak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland; (A.G.); (M.W.); (M.D.-M.); (J.C.-P.)
| | - Mateusz Wieczorek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland; (A.G.); (M.W.); (M.D.-M.); (J.C.-P.)
| | - Magdalena Kłaput
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Str., 60-572 Poznań, Poland;
| | - Marlena Dudek-Makuch
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland; (A.G.); (M.W.); (M.D.-M.); (J.C.-P.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznań, Poland; (A.G.); (M.W.); (M.D.-M.); (J.C.-P.)
| |
Collapse
|
6
|
Heavy Metal Toxicity in Chronic Renal Failure and Cardiovascular Disease: Possible Role for Chelation Therapy. Cardiol Rev 2021; 28:312-318. [PMID: 32040019 DOI: 10.1097/crd.0000000000000304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Exposure to heavy metals is common. This exposure is related to environmental contamination of air, water and soil, occupational exposure, accumulation in food, tobacco, and other factors. Cadmium and lead are notable for their widespread contamination, long-lasting effects in the body, and renal as well as cardiovascular toxicity. Acute toxicity due to high-level exposure, as well as chronic low-level exposure are now well-established pathogenic entities. Both chronic renal failure and ischemic heart disease patients have been treated separately in recent studies with ethylenediaminetetraacetic acid (EDTA) chelation therapy. In patients with chronic kidney disease (serum creatinine: 1.5-4.0 mg/dL) and increased body lead burden, weekly low-dose chelation with calcium EDTA slowed the rate of decline in renal function in patients with diabetes and in non-diabetic patients. In patients with a history of myocardial infarction, the Trial to Assess Chelation Therapy study showed that EDTA chelation decreased the likelihood of cardiovascular events, particularly in patients with diabetes. However, heavy metal levels were not measured in this study. It is clear that more research is needed in this area. There is also a need to more frequently consider and test for the possibility of cadmium and lead toxicity in patients with increased risk, such as those with hypertension, diabetes mellitus, and chronic renal disease.
Collapse
|
7
|
Gao Y, Yang SC, Zhu MH, Zhu XD, Luan X, Liu XL, Lai X, Yuan Y, Lu Q, Sun P, Lovell JF, Chen HZ, Fang C. Metal Phenolic Network-Integrated Multistage Nanosystem for Enhanced Drug Delivery to Solid Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100789. [PMID: 34142432 DOI: 10.1002/smll.202100789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Metal-phenolic networks (MPNs) are an emerging class of supramolecular surface modifiers with potential use in various fields including drug delivery. Here, the development of a unique MPN-integrated core-satellite nanosystem (CS-NS) is reported. The "core" component of CS-NS comprises a liposome loaded with EDTA (a metal ion chelator) in the aqueous core and DiR (a near-infrared photothermal transducer) in the bilayer. The "satellite" component comprises mesoporous silica nanoparticles (MSNs) encapsulating doxorubicin and is coated with a Cu2+ -tannic acid MPN. Liposomes and MSNs self-assemble into the CS-NS through adhesion mediated by the MPN. When irradiated with an 808 nm laser, CS-NS liberated the entrapped EDTA, leading to Cu2+ chelation and subsequent disassembly of the core-satellite nanostructure. Photo-conversion from the large assembly to the small constituent particles proceeded within 5 min. Light-triggered CS-NS disassembly enhanced the carrier and cargo penetration and accumulation in tumor spheroids in vitro and in orthotopic murine mammary tumors in vivo. CS-NS is long circulating in the blood and conferred improved survival outcomes to tumor-bearing mice treated with light, compared to controls. These results demonstrate an MPN-integrated multistage nanosystem for improved solid tumor treatment.
Collapse
Affiliation(s)
- Yuhao Gao
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xin-Di Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xue-Liang Liu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Yihang Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200025, China
| |
Collapse
|
8
|
Ujueta F, Navas-Acien A, Mann KK, Prashad R, Lamas GA. Low-Level Metal Contamination and Chelation in Cardiovascular Disease-A Ripe Area for Toxicology Research. Toxicol Sci 2021; 181:135-147. [PMID: 33662137 DOI: 10.1093/toxsci/kfab026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide. In spite of cardiovascular prevention, there is residual risk not explicable by traditional risk factors. Metal contamination even at levels previously considered safe in humans may be a potential risk factor for atherosclerosis. This review examines evidence that 2 metals, lead, and cadmium, demonstrate sufficient toxicological and epidemiologic evidence to attribute causality for atherosclerotic disease. Basic science suggests that both metals have profound adverse effects on the human cardiovascular system, resulting in endothelial dysfunction, an increase in inflammatory markers, and reactive oxygen species, all of which are proatherosclerotic. Epidemiological studies have shown both metals to have an association with cardiovascular disease, such as peripheral arterial disease, ischemic heart disease, and cardiovascular mortality. This review also examines edetate disodium-based chelation as a possible pharmacotherapy to reduce metal burden in patients with a history of cardiovascular disease and thus potentially reduce cardiovascular events.
Collapse
Affiliation(s)
- Francisco Ujueta
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Rakesh Prashad
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, Florida
| | - Gervasio A Lamas
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, Florida.,Columbia University Division of Cardiology, Mount Sinai Medical Center,Miami Beach, Florida
| |
Collapse
|
9
|
Is EDTA Irrigation Effective in Reducing Bacterial Infection in a Rat Model of Contaminated Intra-articular Knee Implants? Clin Orthop Relat Res 2020; 478:1111-1121. [PMID: 32012144 PMCID: PMC7170675 DOI: 10.1097/corr.0000000000001119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND To mitigate the possibility of infection after arthroplasty, intraoperative irrigation is essential to remove contaminating bacteria. Previous studies have demonstrated that irrigation with an EDTA solution before wound closure is superior to irrigation with normal saline in removing contaminating bacteria in a rat model of open fractures. However, the effectiveness of an EDTA solution in a model with a contaminated intra-articular implant remains unclear. QUESTIONS/PURPOSES (1) Does irrigation with an EDTA solution decrease the proportion of culture-positive joints compared with normal saline, benzalkonium chloride, and povidone iodine? (2) Is an EDTA solution toxic to cells resident in joints including chondrocytes, osteoblasts, and synovial fibroblasts? (3) Does irrigation with an EDTA solution have adverse effects including arthrofibrosis and hypocalcemia? METHODS We first established a model of contaminated intra-articular implants. Female Sprague-Dawley rats (n = 30 for each treatment group) underwent knee arthrotomy and implantation of a femoral intramedullary wire with 1 mm of intra-articular communication. To simulate bacterial contamination, the inserted wire was inoculated with either Staphylococcus aureus or Escherichia coli. After 1 hour, the wound and implant were irrigated with normal saline, benzalkonium chloride, povidone iodine, or an EDTA solution (1 mM). The animals were euthanized 1 week later, and the distal femur, knee capsule, and implanted wire were harvested for bacterial culture using standard techniques. In this study, we used a well-established animal model of an intra-articular implant and inoculated the implant to simulate the clinical setting of intraoperative contamination. The proportion of culture-positive joints in normal saline, benzalkonium chloride, povidone-iodine, and EDTA groups were compared. The viable cell numbers (chondrocytes, osteoblasts, and synovial fibroblasts) were counted and compared after treatment with either solution. Measurement of blood calcium level and histological examination of the joint were performed to rule out hypocalcemia and arthrofibrosis after EDTA irrigation. RESULTS With S. aureus inoculation, EDTA irrigation resulted in fewer culture-positive joints than normal saline (37% [11 of 30] versus 70% [21 of 30]; p = 0.019), benzalkonium chloride (83% [25 of 30]; p < 0.001), and povidone iodine (83% [25 of 30]; p < 0.001) irrigation. Likewise, infection rates for implant inoculation with E. coli were also lower in the EDTA irrigation group (13% [four of 30]) than in the normal saline (60% [18 of 30]; p < 0.001), benzalkonium chloride (77% [23 of 30]; p < 0.001), and povidone iodine (80% [24 of 30]; p < 0.001) groups. Between normal saline control and EDTA, there were no differences in cell viability in chondrocytes (normal saline: 98% ± 18%; EDTA: 105% ± 18%; p = 0.127), osteoblasts (normal saline: 102 ± 19%, EDTA: 103 ± 14%; p = 0.835), and synovial fibroblasts (normal saline: 101% ± 21%, EDTA: 110% ± 13%; p = 0.073). EDTA irrigation did not result in hypocalcemia (before irrigation: 2.21 ± 0.32 mmol/L, after irrigation: 2.23 ± 0.34 mmol/L; p = 0.822); and we observed no arthrofibrosis in 30 histologic samples. CONCLUSIONS In a rat model of a bacteria-contaminated intra-articular implants, intraoperative irrigation with 1 mmol/L of an EDTA solution was superior to normal saline, 0.03% benzalkonium chloride, and 0.3% povidone iodine in preventing surgical-site infection and caused no adverse effects including death of resident cells, arthrofibrosis, and hypocalcemia. Future studies should seek to replicate our findings in other animal models, perhaps such as dog and goat. CLINICAL RELEVANCE If other animal models substantiate the efficacy and safety of the EDTA solution, clinical trials would be warranted to determine whether the use of an EDTA irrigation solution might reduce the risk of periprosthetic joint infections in patients compared with traditional irrigation solutions.
Collapse
|
10
|
Deng Z, Liu F, Li C. Therapeutic effect of ethylenediaminetetraacetic acid irrigation solution against wound infection with drug-resistant bacteria in a rat model: an animal study. Bone Joint Res 2019; 8:189-198. [PMID: 31214331 PMCID: PMC6548975 DOI: 10.1302/2046-3758.85.bjr-2018-0280.r3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objectives Irrigation is the cornerstone of treating skeletal infection by eliminating pathogens in wounds. A previous study shows that irrigation with normal saline (0.9%) and ethylenediaminetetraacetic acid (EDTA) could improve the removal of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) compared with normal saline (NS) alone. However, it is still unclear whether EDTA solution is effective against infection with drug-resistant bacteria. Methods We established three wound infection models (skin defect, bone-exposed, implant-exposed) by inoculating the wounds with a variety of representative drug-resistant bacteria including methicillin-resistant S. aureus (MRSA), extended spectrum beta-lactamase-producing E. coli (ESBL-EC), multidrug-resistant Pseudomonas aeruginosa (MRPA), vancomycin-resistant Enterococcus (VRE), multidrug-resistant Acinetobacter baumannii (MRAB), multidrug-resistant Enterobacter (MRE), and multidrug-resistant Proteus mirabilis (MRPM). Irrigation and debridement were repeated until the wound culture became negative. The operating times required to eliminate pathogens in wounds were compared through survival analysis. Results Compared with other groups (NS, castile soap, benzalkonium chloride, and bacitracin), the EDTA group required fewer debridement and irrigation operations to achieve pathogen eradication in all three models of wound infection. Conclusion Irrigation with EDTA solution was more effective than the other irrigation fluids used in the treatment of wound infections caused by drug-resistant pathogens. Cite this article: Z. Deng, F. Liu, C. Li. Therapeutic effect of ethylenediaminetetraacetic acid irrigation solution against wound infection with drug-resistant bacteria in a rat model: an animal study. Bone Joint Res 2019;8:189–198. DOI: 10.1302/2046-3758.85.BJR-2018-0280.R3.
Collapse
Affiliation(s)
- Z Deng
- Department of Orthopaedics, Beijing Changping Hospital, Beijing, China
| | - F Liu
- Department of Nursing, Weihai Municipal Hospital, Weihai, China
| | - C Li
- Department of Orthopaedics, Beijing Changping Hospital, Beijing, China
| |
Collapse
|
11
|
Jansová H, Šimůnek T. Cardioprotective Potential of Iron Chelators and Prochelators. Curr Med Chem 2019; 26:288-301. [DOI: 10.2174/0929867324666170920155439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/07/2017] [Accepted: 09/12/2017] [Indexed: 02/08/2023]
Abstract
Heart is a particularly sensitive organ to iron overload and cardiomyopathy due to the excessive cardiac iron deposition causes most deaths in disorders such as beta-thalassemia major. Free or loosely bound iron ions readily cycle between ferrous and ferric states and catalyze Haber-Weiss reaction that yields highly reactive and toxic hydroxyl radicals. Treatment with iron chelators (desferrioxamine, deferiprone, and deferasirox) substantially improved cardiovascular morbidity and mortality in iron overloaded patients. Furthermore, iron chelators have been studied in various cardiovascular disorders with known or presumed oxidative stress roles (e.g., ischemia/reperfusion injury) also in patients with normal body iron contents. The pharmacodynamic and pharmacokinetic properties of these chelators are critical for effective therapy. For example, the widely clinically used but hydrophilic chelator desferrioxamine suffers from poor plasma membrane permeability, which means that high and clinically unachievable concentrations/doses must be employed to obtain cardioprotection. Therefore, small-molecular and lipophilic chelators with oral availability are more suitable for this purpose, particularly in states without systemic iron overload. Apart from agents that are already used in clinical practice, aroylhydrazone iron chelators, namely salicylaldehyde isonicotinoyl hydrazone (SIH), have provided promising results. However, the use of classical iron-chelating agents is associated with a risk of toxicity due to indiscriminate iron depletion. Recent studies have therefore focused on "masked" prochelators that have little or no affinity for iron until site-specific activation by reactive oxygen species.
Collapse
Affiliation(s)
- Hana Jansová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Prague, Czech Republic
| | - Tomáś Šimůnek
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Kotuniak R, Fra̧czyk T, Skrobecki P, Płonka D, Bal W. Gly-His-Thr-Asp-Amide, an Insulin-Activating Peptide from the Human Pancreas Is a Strong Cu(II) but a Weak Zn(II) Chelator. Inorg Chem 2018; 57:15507-15516. [DOI: 10.1021/acs.inorgchem.8b02841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Radosław Kotuniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tomasz Fra̧czyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Piotr Skrobecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Dawid Płonka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Abstract
BACKGROUND Irrigation is one of the key procedures in open fracture management to eliminate pathogens and prevent infection. Metal ion deprivation could inhibit bacterial adhesins and weaken adhesion to the host tissue. EDTA in solution can competitively bind to a metal ion and thus might be able to inhibit bacterial adhesins. QUESTIONS/PURPOSES (1) Is normal saline-EDTA toxic to fibroblasts and endothelial cells? (2) In a contaminated wound rat model, does irrigation with normal saline-EDTA solution decrease the risk of positive bacterial cultures and infection when compared with normal saline and soap solutions? (3) In an infected wound rat model, are fewer surgical débridements and irrigations with normal saline-EDTA solution required to obtain culture-free wounds when compared with normal saline and soap controls? METHODS Normal saline-EDTA solution refers to 1 mmol/L EDTA dissolved in normal saline (pH adjusted to 7.4). Normal saline and soap solutions acted as controls. The toxicity of these solutions to fibroblasts and endothelial cells was assessed in vitro by Annexin V/propidium iodide staining and flow cytometer counting (a well-established method to quantitatively measure the number of dead cells). We established contaminated and infected wound models (bone-exposed or not) with either Staphylococcus aureus or Escherichia coli in rats to investigate the efficacy of normal saline-EDTA solution (n = 30 for the contaminated model and n = 50 for the infected model). For contaminated wounds, the proportion of positive bacterial cultures and infections was compared after irrigation and débridement among the three groups. For infected wounds, we performed irrigation and débridement every 48 hours until the cultures were negative and compared the number of débridements required to achieve a negative culture with survival analysis. RESULTS Normal saline-EDTA showed no additional toxicity to fibroblasts and endothelial cells when compared with normal saline (normal saline [97%] versus EDTA [98%] on fibroblasts, p = 0.654; normal saline [97%] versus EDTA [98%] on endothelial cells, p = 0.711). When bone was exposed in the contaminated models, EDTA irrigation resulted in fewer positive bacterial cultures with S aureus (EDTA: 23%, normal saline: 67%, soap: 40%, p = 0.003) and with E coli (EDTA: 27%, normal saline: 57%, soap: 30%, p = 0.032); however, infection risk was only lower with EDTA irrigation (S aureus with EDTA: 10%, normal saline: 33%, soap: 37%, p = 0.039; E coli with EDTA: 3%, normal saline: 27%, soap: 23%, p = 0.038). In the infected wound model, EDTA irrigation resulted in earlier culture-negative wounds (fewer surgical sessions) compared with normal saline and soap solutions (nonbone-exposed wounds infected by S aureus: p = 0.003, infected by E coli: p = 0.001; bone-exposed wounds infected by S aureus: p = 0.012, infected by E coli: p = 0.022). CONCLUSIONS After in vitro assessment of toxicity and in vivo evaluation of efficacy, we concluded that normal saline-EDTA is superior to normal saline and soap solution in our laboratory models. CLINICAL RELEVANCE The use of normal-saline EDTA as an irrigation solution may reduce the infection rate of wounds. Future studies in large animals and humans might prove our observation in rat models that normal saline-EDTA has an advantage over normal saline as an irrigation solution.
Collapse
Affiliation(s)
- Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | |
Collapse
|
14
|
Elsayed R, Abraham P, Awad ME, Kurago Z, Baladhandayutham B, Whitford GM, Pashley DH, McKenna CE, Elsalanty ME. Removal of matrix-bound zoledronate prevents post-extraction osteonecrosis of the jaw by rescuing osteoclast function. Bone 2018; 110:141-149. [PMID: 29408511 PMCID: PMC5878730 DOI: 10.1016/j.bone.2018.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/06/2018] [Accepted: 01/25/2018] [Indexed: 12/25/2022]
Abstract
Unlike other antiresorptive medications, bisphosphonate molecules accumulate in the bone matrix. Previous studies of side-effects of anti-resorptive treatment focused mainly on systemic effects. We hypothesize that matrix-bound bisphosphonate molecules contribute to the pathogenesis of bisphosphonate-related osteonecrosis of the jaw (BRONJ). In this study, we examined the effect of matrix-bound bisphosphonates on osteoclast differentiation in vitro using TRAP staining and resorption assay, with and without pretreatment with EDTA. We also tested the effect of zoledronate chelation on the healing of post-extraction defect in rats. Our results confirmed that bisphosphonates bind to, and can be chelated from, mineralized matrix in vitro in a dose-dependent manner. Matrix-bound bisphosphonates impaired the differentiation of osteoclasts, evidenced by TRAP activity and resorption assay. Zoledronate-treated rats that underwent bilateral dental extraction with unilateral EDTA treatment showed significant improvement in mucosal healing and micro-CT analysis on the chelated sides. The results suggest that matrix-bound bisphosphonates are accessible to osteoclasts and chelating agents and contribute to the pathogenesis of BRONJ. The use of topical chelating agents is a promising strategy for the prevention of BRONJ following dental procedures in bisphosphonate-treated patients.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Pheba Abraham
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohamed E Awad
- Department of Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Zoya Kurago
- Department of Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Gary M Whitford
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Mohammed E Elsalanty
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
15
|
Ruiz-Hernandez A, Navas-Acien A, Pastor-Barriuso R, Crainiceanu CM, Redon J, Guallar E, Tellez-Plaza M. Declining exposures to lead and cadmium contribute to explaining the reduction of cardiovascular mortality in the US population, 1988-2004. Int J Epidemiol 2017; 46:1903-1912. [PMID: 29025072 PMCID: PMC5837785 DOI: 10.1093/ije/dyx176] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
Background Lead and cadmium exposures have markedly declined in the USA following the implementation of large-scale public health policies and could have contributed to the unexplained decline in cardiovascular mortality in US adults. We evaluated the potential contribution of lead and cadmium exposure reductions to explain decreasing cardiovascular mortality trends occurring in the USA from 1988-94 to 1999-2004. Methods Prospective study in 15 421 adults ≥40 years old who had participated in the National Health and Nutrition Examination Survey 1988-94 or 1999-2004. We estimated the amount of change in cardiovascular mortality over time that can be independently attributed to the intermediate pathway of changes in blood lead and urine cadmium concentrations. Results There was a 42.0% decrease in blood lead and a 31.0% decrease in urine cadmium concentrations. The cardiovascular mortality rate ratio [95% confidence intervals (CIs)] associated with a doubling of metal levels was 1.19 (1.07, 1.31) for blood lead and 1.20 (1.09, 1.32) for urine cadmium. The absolute reduction in cardiovascular deaths comparing 1999-2004 to 1988-94 was 230.7 deaths/100 000 person-years, in models adjusted for traditional cardiovascular risk factors. Among these avoided deaths, 52.0 (95% CI 8.4, 96.7) and 19.4 (4.3, 36.4) deaths/100 000 person-years were attributable to changes in lead and cadmium, respectively. Conclusions Environmental declines in lead and cadmium exposures were associated with reductions in cardiovascular mortality in US adults. Given the fact that lead and cadmium remain associated with cardiovascular disease at relatively low levels of exposure, prevention strategies that further minimize exposure to lead and cadmium may be needed.
Collapse
Affiliation(s)
- Adrian Ruiz-Hernandez
- Department of Internal Medicine, Hospital Clinic of Valencia, Valencia, Spain
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia INCLIVA, Valencia, Spain
| | - Ana Navas-Acien
- Welch Center for Prevention, Epidemiology and Clinical Research and Departments of
- Environmental Health Sciences and
- Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Roberto Pastor-Barriuso
- National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | | | - Josep Redon
- Department of Internal Medicine, Hospital Clinic of Valencia, Valencia, Spain
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia INCLIVA, Valencia, Spain
- Consortium for Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Institute of Health, Madrid, Spain and
| | - Eliseo Guallar
- Welch Center for Prevention, Epidemiology and Clinical Research and Departments of
- Epidemiology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Maria Tellez-Plaza
- Area of Cardiometabolic and Renal Risk, Institute for Biomedical Research Hospital Clinic of Valencia INCLIVA, Valencia, Spain
- Environmental Health Sciences and
| |
Collapse
|
16
|
Sankova TP, Orlov IA, Saveliev AN, Kirilenko DA, Babich PS, Brunkov PN, Puchkova LV. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo. Biomolecules 2017; 7:biom7040078. [PMID: 29099786 PMCID: PMC5745460 DOI: 10.3390/biom7040078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 12/26/2022] Open
Abstract
There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.
Collapse
Affiliation(s)
- Tatiana P Sankova
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Iurii A Orlov
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Andrey N Saveliev
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
| | - Demid A Kirilenko
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Center of Nanoheterostructures Physics, Ioffe Institute, Politekhnicheskaya str., 26, St.-Petersburg 194021, Russia.
| | - Polina S Babich
- Department of Zoology, Herzen State Pedagogical University of Russia, Kazanskaya str., 6, St.-Petersburg 191186, Russia.
| | - Pavel N Brunkov
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Center of Nanoheterostructures Physics, Ioffe Institute, Politekhnicheskaya str., 26, St.-Petersburg 194021, Russia.
| | - Ludmila V Puchkova
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
- Department of Modern Functional Materials, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| |
Collapse
|
17
|
Lowe J, Taveira-da-Silva R, Hilário-Souza E. Dissecting copper homeostasis in diabetes mellitus. IUBMB Life 2017; 69:255-262. [DOI: 10.1002/iub.1614] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/15/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Jennifer Lowe
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Rosilane Taveira-da-Silva
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - Elaine Hilário-Souza
- Laboratório de Físico-Química Biológica Aída Hassón-Voloch; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
18
|
Lopez-Huertas E, Fonolla J. Hydroxytyrosol supplementation increases vitamin C levels in vivo. A human volunteer trial. Redox Biol 2016; 11:384-389. [PMID: 28063380 PMCID: PMC5219601 DOI: 10.1016/j.redox.2016.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 12/18/2022] Open
Abstract
Hydroxytyrosol (HT) is a main phenolic component of olive oil. In this study, we investigated the safety and effects produced by HT purified (99.5%) from olive mill waste. HT was administered at a daily dosage of 45 mg for 8 weeks to volunteers with mild hyperlipidemia (n=14). We measured markers of cardiovascular disease risk, enzyme markers of several clinical conditions, hematology, antioxidant parameters, vitamins and minerals at baseline (T0), 4 weeks (T4) and 8 weeks (T8). The values obtained at T4 and T8 were compared with baseline. We found that the HT dose administered was safe and mostly did not influence markers of cardiovascular disease, blood lipids, inflammatory markers, liver or kidney functions and the electrolyte balance. Serum iron levels remained constant but a significant (P<0.05) decrease in ferritin at T4 and T8 was found. Serum folate and red blood cell folate levels were also reduced at T4 and T8. Finally, vitamin C increased by two-fold at T4 and T8 compared with levels at baseline. These results indicate a physiologically relevant antioxidant function for HT through increasing endogenous vitamin C levels.
Collapse
Affiliation(s)
- Eduardo Lopez-Huertas
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 1, Profesor Albareda, Granada 18008, Spain.
| | - Juristo Fonolla
- BIOSEARCH LIFE S.A. 66, Camino de Purchil, Granada 18004, Spain
| |
Collapse
|
19
|
Rationale for the Successful Management of EDTA Chelation Therapy in Human Burden by Toxic Metals. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8274504. [PMID: 27896275 PMCID: PMC5118545 DOI: 10.1155/2016/8274504] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
Abstract
Exposure to environmental and occupational toxicants is responsible for adverse effects on human health. Chelation therapy is the only procedure able to remove toxic metals from human organs and tissue, aiming to treat damage related to acute and/or chronic intoxication. The present review focuses on the most recent evidence of the successful use of the chelating agent ethylenediaminetetraacetic acid (EDTA). Assessment of toxic-metal presence in humans, as well as the rationale of EDTA therapy in cardiovascular and neurodegenerative diseases, is reported.
Collapse
|
20
|
Liu X, Yao Z. Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab (Lond) 2016; 13:49. [PMID: 27493677 PMCID: PMC4972972 DOI: 10.1186/s12986-016-0108-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022] Open
Abstract
Loss of cellular response to hormonal regulation in maintaining metabolic homeostasis is common in the process of aging. Chronic over-nutrition may render cells insensitive to such a hormonal regulation owing to overstimulation of certain signaling pathways, thus accelerating aging and causing diseases. The glycogen synthase kinase 3 (GSK3) plays a pivotal role in relaying various extracellular and intracellular regulatory signals critical to cell growth, survival, regeneration, or death. The main signaling pathway regulating GSK3 activity through serine-phosphorylation is the phosphoinositide 3-kinase (PI3K)/phosphoinositide-dependent kinase-1 (PDK1)/Akt relay that catalyzes serine-phosphorylation and thus inactivation of GSK3. In addition, perilipin 2 (PLIN2) has recently been shown to regulate GSK3 activation through direct association with GSK3. This review summarizes current understanding on environmental and nutritional factors contributing to GSK3 regulation (or dysregulation) through the PI3K/PDK1/Akt/GSK3 axis, and highlights the newly discovered role that PLIN2 plays in regulating GSK3 activity and GSK3 downstream pathways.
Collapse
Affiliation(s)
- Xunxian Liu
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5 Canada
| |
Collapse
|