1
|
Kanschik D, Haschemi J, Heidari H, Klein K, Afzal S, Maier O, Piayda K, Binneboesssel S, Oezaslan G, Bruno RR, Antoch G, Lichtenberg A, Fleissner F, Scherner M, Kelm M, Zeus T, Jung C. Feasibility, Accuracy, and Reproducibility of Aortic Valve Sizing for Transcatheter Aortic Valve Implantation Using Virtual Reality. J Am Heart Assoc 2024; 13:e034086. [PMID: 39041603 DOI: 10.1161/jaha.123.034086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/18/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Detailed visualization and precise measurements of aortic valve dimensions are critical for the success of transcatheter aortic valve implantation and for the prevention of complications. Currently, multislice computed tomography is the gold standard for assessment of the aortic annulus and surrounding structures to determine the prosthesis size. New technologies such as virtual reality (VR) not only enable 3-dimensional (3D) visualization with the potential to improve understanding of anatomy and pathology but also allow measurements in 3D. This study aims to investigate the feasibility, accuracy, and reproducibility of VR for the visualization of the aortic valve, the surrounding structures, and its role in preprocedural sizing for transcatheter aortic valve implantation. METHODS AND RESULTS Based on the preprocedural multislice computed tomography data, 3mensio measurements and 3D visualizations and measurements using VR software were performed retrospectively on 60 consecutive patients who underwent transcatheter aortic valve implantation at our heart center. There were no significant differences but strong correlations between the VR measurements compared with those performed with the 3mensio software. Furthermore, excellent or good intra- and interobserver reliability could be demonstrated for all values. In a structured questionnaire, users reported that VR simplified anatomical understanding, improved 3D comprehension of adjacent structures, and was associated with very good self-perceived depth perception. CONCLUSIONS The use of VR for preprocedural transcatheter aortic valve implantation sizing is feasible and has precise and reproducible measurements. In addition, 3D visualization improves anatomical understanding and orientation. To evaluate the potential benefits of 3D visualization for planning further cardiovascular interventions, research in this field is needed.
Collapse
Affiliation(s)
- Dominika Kanschik
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Jafer Haschemi
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Houtan Heidari
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Kathrin Klein
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Shazia Afzal
- Heartcenter Trier Krankenhaus der Barmherzigen Brueder Trier Germany
| | - Oliver Maier
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Kerstin Piayda
- Department of Cardiology and Angiology University Hospital Giessen und Marburg Giessen Germany
| | - Stephan Binneboesssel
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Goeksen Oezaslan
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Raphael R Bruno
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
- Cardiovascular Research Institute Duesseldorf (CARID), Medical Faculty Heinrich-Heine University Duesseldorf Germany
| | - Felix Fleissner
- Department of Cardiac Surgery, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Maximillian Scherner
- Department of Cardiac Surgery, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
- Cardiovascular Research Institute Duesseldorf (CARID), Medical Faculty Heinrich-Heine University Duesseldorf Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
| | - Christian Jung
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty University Hospital and Heinrich-Heine University Duesseldorf Germany
- Cardiovascular Research Institute Duesseldorf (CARID), Medical Faculty Heinrich-Heine University Duesseldorf Germany
| |
Collapse
|
2
|
Mao Y, Liu Y, Ma Y, Zhai M, Li L, Jin P, Yang J. Feasibility of 3-dimensional printed models in simulated training and teaching of transcatheter aortic valve replacement. Open Med (Wars) 2024; 19:20240909. [PMID: 38463517 PMCID: PMC10921447 DOI: 10.1515/med-2024-0909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/24/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
In the study of TAVR, 3-dimensional (3D) printed aortic root models and pulsatile simulators were used for simulation training and teaching before procedures. The study was carried out in the following three parts: (1) experts were selected and equally divided into the 3D-printed simulation group and the non-3D-printed simulation group to conduct four times of TAVR, respectively; (2) another 10 experts and 10 young proceduralists were selected to accomplish three times of TAVR simulations; (3) overall, all the doctors were organized to complete a specific questionnaire, to evaluate the training and teaching effect of 3D printed simulations. For the 3D-printed simulation group, six proceduralists had a less crossing-valve time (8.3 ± 2.1 min vs 11.8 ± 2.7 min, P < 0.001) and total operation time (102.7 ± 15.3 min vs 137.7 ± 15.4 min, P < 0.001). In addition, the results showed that the median crossing-valve time and the total time required were significantly reduced in both the expert group and the young proceduralist group (all P<0.001). The results of the questionnaire showed that 3D-printed simulation training could enhance the understanding of anatomical structure and improve technical skills. Overall, cardiovascular 3D printing may play an important role in assisting TAVR, which can shorten the operation time and reduce potential complications.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lanlan Li
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
3
|
Zhang X, Yi K, Xu JG, Wang WX, Liu CF, He XL, Wang FN, Zhou GL, You T. Application of three-dimensional printing in cardiovascular diseases: a bibliometric analysis. Int J Surg 2024; 110:1068-1078. [PMID: 37924501 PMCID: PMC10871659 DOI: 10.1097/js9.0000000000000868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
AIM This paper aimed to explore the application of three-dimensional (3D) printing in cardiovascular diseases, to reach an insight in this field and prospect the future trend. METHODS The articles were selected from the Web of Science Core Collection database. Excel 2019, VOSviewer 1.6.16, and CiteSpace 6.1.R6 were used to analyze the information. RESULTS A total of 467 papers of 3D printing in cardiovascular diseases were identified, and the first included literature appeared in 2000. A total of 692 institutions from 52 countries participated in the relevant research, while the United States of America contributed to 160 articles and were in a leading position. The most productive institution was Curtin University , and Zhonghua Sun who has posted the most articles ( n =8) was also from there. The Frontiers in Cardiovascular Medicine published most papers ( n =25). The Journal of Thoracic and Cardiovascular Surgery coveted the most citations ( n =520). Related topics of frontiers will still focus on congenital heart disease, valvular heart disease, and left atrial appendage closure. CONCLUSIONS The authors summarized the publication information of the application of 3D printing in cardiovascular diseases related literature from 2000 to 2023, including country and institution of origin, authors, and publication journal. This study can reflect the current hotspots and novel directions for the application of 3D printing in cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Zhang
- The First School of Clinical Medicine of Gansu University of Chinese Medicine
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease
| | - Kang Yi
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease
- Department of Cardiovascular Surgery, Gansu Provincial Hospital
| | - Jian-Guo Xu
- Evidence-Based Medicine Center, School of BasicMedical Sciences, Lanzhou University
| | - Wen-Xin Wang
- The First School of Clinical Medicine of Gansu University of Chinese Medicine
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease
| | - Cheng-Fei Liu
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease
- The First Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China
| | - Xiao-Long He
- The First School of Clinical Medicine of Gansu University of Chinese Medicine
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease
| | - Fan-Ning Wang
- The First School of Clinical Medicine of Gansu University of Chinese Medicine
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease
| | - Guo-Lei Zhou
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease
- Department of Cardiovascular Surgery, Gansu Provincial Hospital
| | - Tao You
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease
- Department of Cardiovascular Surgery, Gansu Provincial Hospital
| |
Collapse
|
4
|
Yang T, Zhu G, Cai L, Yeo JH, Mao Y, Yang J. A benchmark study of convolutional neural networks in fully automatic segmentation of aortic root. Front Bioeng Biotechnol 2023; 11:1171868. [PMID: 37397959 PMCID: PMC10311214 DOI: 10.3389/fbioe.2023.1171868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Recent clinical studies have suggested that introducing 3D patient-specific aortic root models into the pre-operative assessment procedure of transcatheter aortic valve replacement (TAVR) would reduce the incident rate of peri-operative complications. Tradition manual segmentation is labor-intensive and low-efficient, which cannot meet the clinical demands of processing large data volumes. Recent developments in machine learning provided a viable way for accurate and efficient medical image segmentation for 3D patient-specific models automatically. This study quantitively evaluated the auto segmentation quality and efficiency of the four popular segmentation-dedicated three-dimensional (3D) convolutional neural network (CNN) architectures, including 3D UNet, VNet, 3D Res-UNet and SegResNet. All the CNNs were implemented in PyTorch platform, and low-dose CTA image sets of 98 anonymized patients were retrospectively selected from the database for training and testing of the CNNs. The results showed that despite all four 3D CNNs having similar recall, Dice similarity coefficient (DSC), and Jaccard index on the segmentation of the aortic root, the Hausdorff distance (HD) of the segmentation results from 3D Res-UNet is 8.56 ± 2.28, which is only 9.8% higher than that of VNet, but 25.5% and 86.4% lower than that of 3D UNet and SegResNet, respectively. In addition, 3D Res-UNet and VNet also performed better in the 3D deviation location of interest analysis focusing on the aortic valve and the bottom of the aortic root. Although 3D Res-UNet and VNet are evenly matched in the aspect of classical segmentation quality evaluation metrics and 3D deviation location of interest analysis, 3D Res-UNet is the most efficient CNN architecture with an average segmentation time of 0.10 ± 0.04 s, which is 91.2%, 95.3% and 64.3% faster than 3D UNet, VNet and SegResNet, respectively. The results from this study suggested that 3D Res-UNet is a suitable candidate for accurate and fast automatic aortic root segmentation for pre-operative assessment of TAVR.
Collapse
Affiliation(s)
- Tingting Yang
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Li Cai
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, China
| | - Joon Hock Yeo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yu Mao
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jian Yang
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Prandi FR, Niv Granot Y, Margonato D, Belli M, Illuminato F, Vinayak M, Barillà F, Romeo F, Tang GHL, Sharma S, Kini A, Lerakis S. Coronary Obstruction during Valve-in-Valve Transcatheter Aortic Valve Replacement: Pre-Procedural Risk Evaluation, Intra-Procedural Monitoring, and Follow-Up. J Cardiovasc Dev Dis 2023; 10:jcdd10050187. [PMID: 37233154 DOI: 10.3390/jcdd10050187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Valve-in-valve (ViV) transcatheter aortic valve replacement (TAVR) is emerging as an effective treatment for patients with symptomatically failing bioprosthetic valves and a high prohibitive surgical risk; a longer life expectancy has led to a higher demand for these valve reinterventions due to the increased possibilities of outliving the bioprosthetic valve's durability. Coronary obstruction is the most feared complication of valve-in-valve (ViV) TAVR; it is a rare but life-threatening complication and occurs most frequently at the left coronary artery ostium. Accurate pre-procedural planning, mainly based on cardiac computed tomography, is crucial to determining the feasibility of a ViV TAVR and to assessing the anticipated risk of a coronary obstruction and the eventual need for coronary protection measures. Intraprocedurally, the aortic root and a selective coronary angiography are useful for evaluating the anatomic relationship between the aortic valve and coronary ostia; transesophageal echocardiographic real-time monitoring of the coronary flow with a color Doppler and pulsed-wave Doppler is a valuable tool that allows for a determination of real-time coronary patency and the detection of asymptomatic coronary obstructions. Because of the risk of developing a delayed coronary obstruction, the close postprocedural monitoring of patients at a high risk of developing coronary obstructions is advisable. CT simulations of ViV TAVR, 3D printing models, and fusion imaging represent the future directions that may help provide a personalized lifetime strategy and tailored approach for each patient, potentially minimizing complications and improving outcomes.
Collapse
Affiliation(s)
- Francesca Romana Prandi
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Yoav Niv Granot
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Davide Margonato
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Martina Belli
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Cardiovascular Imaging Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Illuminato
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Manish Vinayak
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Francesco Romeo
- Faculty of Medicine, Unicamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Gilbert H L Tang
- Department of Cardiovascular Surgery, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samin Sharma
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Annapoorna Kini
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stamatios Lerakis
- Division of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Fidvi S, Holder J, Li H, Parnes GJ, Shamir SB, Wake N. Advanced 3D Visualization and 3D Printing in Radiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1406:103-138. [PMID: 37016113 DOI: 10.1007/978-3-031-26462-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Since the discovery of X-rays in 1895, medical imaging systems have played a crucial role in medicine by permitting the visualization of internal structures and understanding the function of organ systems. Traditional imaging modalities including Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound (US) present fixed two-dimensional (2D) images which are difficult to conceptualize complex anatomy. Advanced volumetric medical imaging allows for three-dimensional (3D) image post-processing and image segmentation to be performed, enabling the creation of 3D volume renderings and enhanced visualization of pertinent anatomic structures in 3D. Furthermore, 3D imaging is used to generate 3D printed models and extended reality (augmented reality and virtual reality) models. A 3D image translates medical imaging information into a visual story rendering complex data and abstract ideas into an easily understood and tangible concept. Clinicians use 3D models to comprehend complex anatomical structures and to plan and guide surgical interventions more precisely. This chapter will review the volumetric radiological techniques that are commonly utilized for advanced 3D visualization. It will also provide examples of 3D printing and extended reality technology applications in radiology and describe the positive impact of advanced radiological image visualization on patient care.
Collapse
Affiliation(s)
- Shabnam Fidvi
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA.
| | - Justin Holder
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Hong Li
- Department of Radiology, Jacobi Medical Center, Bronx, NY, USA
| | | | | | - Nicole Wake
- GE Healthcare, Aurora, OH, USA
- Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, NY, USA
| |
Collapse
|
7
|
Stana J, Grab M, Kargl R, Tsilimparis N. 3D printing in the planning and teaching of endovascular procedures. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:28-33. [PMID: 36112173 DOI: 10.1007/s00117-022-01047-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The introduction of 3D printing in the medical field led to new possibilities in the planning of complex procedures, as well as new ways of training junior physicians. Especially in the field of vascular interventions, 3D printing has a wide range of applications. METHODOLOGICAL INNOVATIONS 3D-printed models of aortic aneurysms can be used for procedural training of endovascular aortic repair (EVAR), which can help boost the physician's confidence in the procedure, leading to a better outcome for the patient. Furthermore, it allows for a better understanding of complex anatomies and pathologies. In addition to teaching applications, the field of pre-interventional planning benefits greatly from the addition of 3D printing. Especially in the preparation for a complex endovascular aortic repair, prior orientation and test implantation of the stent grafts can further improve outcomes and reduce complications. For both teaching and planning applications, high-quality imaging datasets are required that can be transferred into a digital 3D model and subsequently printed in 3D. Thick slice thickness or suboptimal contrast agent phase can reduce the overall detail of the digital model, possibly concealing crucial anatomical details. CONCLUSION Based on the digital 3D model created for 3D printing, another new visualization technique might see future applications in the field of vascular interventions: virtual reality (VR). It enables the physician to quickly visualize a digital 3D model of the patient's anatomy in order to assess possible complications during endovascular repair. Due to the short transfer time from the radiological dataset into the VR, this technique might see use in emergency situations, where there is no time to wait for a printed model.
Collapse
Affiliation(s)
- J Stana
- Department of Vascular Surgery, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany.
| | - M Grab
- Department of Cardiac Surgery, Ludwig Maximilians University, Munich, Germany
- Chair of Medical Materials and Implants, Technical University Munich, Munich, Germany
| | - R Kargl
- Institute for Chemistry and Technology of Biobased System, (IBioSys), Graz University of Technology, Graz, Switzerland
| | - N Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
8
|
Muller Moran HR, Alakhtar AM, Al-Atassi T, Rubens FD, Arora RC, Lachapelle KJ. Cardiac Surgery Training in the Transcatheter Era. Can J Cardiol 2022; 38:1736-1738. [PMID: 35940455 DOI: 10.1016/j.cjca.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Ali M Alakhtar
- Department of Surgery, McGill University, Montreal, Quebec, Canada; Department of Surgery, Qassim University, Oassim, Saudi Arabia
| | - Talal Al-Atassi
- Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Fraser D Rubens
- Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada
| | - Rakesh C Arora
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
9
|
Ruyra X, Permanyer E, Huguet M, Maldonado G. Use of virtual reality for procedural planning of transcatheter aortic valve replacement. Interact Cardiovasc Thorac Surg 2022; 35:6751790. [PMID: 36205608 PMCID: PMC9639804 DOI: 10.1093/icvts/ivac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
This study sought to evaluate the impact of virtual reality (VR) tools in procedural planning of transcatheter aortic valve replacement. A prospective study involving 11 patients referred for transcatheter aortic valve replacement was conducted. A multidetector computed tomography was used to acquire and segment the anatomy of the access route and landing zone. From the information obtained with the multidetector computed tomography in DICOM format, we built a virtual platform (VisuaMed, Techer Team, Valencia, Spain) that contains all the clinical information of the patients and a virtualized model of their anatomy. Wearing VR devices, the professional was able to 'walk inside' the anatomy in an interactive and immersive way. Decisions after the evaluation of routine clinical images were compared with those after experience with VR models and intraprocedural findings.
Collapse
Affiliation(s)
- Xavier Ruyra
- Cardiac Surgery Department, Quironsalud Teknon Heart Institute, Barcelona, Spain
| | - Eduard Permanyer
- Corresponding author. Cardiac Surgery Department, Quironsalud Teknon Heart Institute, Carrer Vilana 12, 08022 Barcelona, Spain. Tel: +34-93-2906251; e-mail: (E. Permanyer)
| | - Marina Huguet
- Department of Diagnostic Imaging, Quironsalud Teknon Heart Institute, Barcelona, Spain
| | - Giuliana Maldonado
- Cardiology Department, Quironsalud Teknon Heart Institute, Barcelona, Spain,Cardiology Department, Quironsalud Hospital General de Catalunya, Sant Cugat, Spain
| |
Collapse
|
10
|
Ma Y, Mao Y, Zhu G, Yang J. Application of cardiovascular 3-dimensional printing in Transcatheter aortic valve replacement. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:35. [PMID: 36121512 PMCID: PMC9485371 DOI: 10.1186/s13619-022-00129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Transcatheter aortic valve replacement (TAVR) has been performed for nearly 20 years, with reliable safety and efficacy in moderate- to high-risk patients with aortic stenosis or regurgitation, with the advantage of less trauma and better prognosis than traditional open surgery. However, because surgeons have not been able to obtain a full view of the aortic root, 3-dimensional printing has been used to reconstruct the aortic root so that they could clearly and intuitively understand the specific anatomical structure. In addition, the 3D printed model has been used for the in vitro simulation of the planned procedures to predict the potential complications of TAVR, the goal being to provide guidance to reasonably plan the procedure to achieve the best outcome. Postprocedural 3D printing can be used to understand the depth, shape, and distribution of the stent. Cardiovascular 3D printing has achieved remarkable results in TAVR and has a great potential.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
11
|
Tarabanis C, Klapholz J, Zahid S, Jankelson L. A systematic review of the use of 3D printing in left atrial appendage occlusion procedures. J Cardiovasc Electrophysiol 2022; 33:2367-2374. [PMID: 35989544 DOI: 10.1111/jce.15658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Abstract
The placement of a left atrial appendage occlusion (LAAO) device can be a technically challenging transcatheter-based procedure. Key challenges include accurate pre-procedural device sizing and proper device positioning at the LAA ostium to ensure sufficient device anchoring and avoid peri-device leaks. To address these challenges, 3D printing (3DP) of LAA models has recently emerged in the literature, first being described in 2015. We present a review of the benefits and drawbacks of employing this technology for LAAO procedures. Pre-procedurally the use of 3DP can consistently and accurately determine LAAO device size over standard of care approaches. Intra-procedurally 3DP's impact entailed a statistically significant decrease in the number of devices used per procedure, as well as in the fluoroscopic time and dose. Post-procedurally, there is some evidence that 3DP could reduce the rate of peri-device leaks, with limited data on its effect on complication rates. Based on existing evidence, we recommend the focused application of 3DP to cases of complex LAA anatomy and for the training of proceduralists. Lastly, we address the emergence of next generation LAAO devices and AR/VR systems that could limit even this narrow window of clinical benefit afforded by 3DP. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Constantine Tarabanis
- Leon H. Charney Division of Cardiology, NYU Langone Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Jonah Klapholz
- Leon H. Charney Division of Cardiology, NYU Langone Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Sohail Zahid
- Leon H. Charney Division of Cardiology, NYU Langone Health, New York University Grossman School of Medicine, New York, NY, United States
| | - Lior Jankelson
- Leon H. Charney Division of Cardiology, NYU Langone Health, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Mao Y, Liu Y, Ma Y, Jin P, Li L, Yang J. Mitral Valve-in-Valve Implant of a Balloon-Expandable Valve Guided by 3-Dimensional Printing. Front Cardiovasc Med 2022; 9:894160. [PMID: 35711355 PMCID: PMC9195497 DOI: 10.3389/fcvm.2022.894160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
Background Our goal was to explore the role of 3-dimensional (3D) printing in facilitating the outcome of a mitral valve-in-valve (V-in-V) implant of a balloon-expandable valve. Methods From November 2020 to April 2021, 6 patients with degenerated mitral valves were treated by a transcatheter mitral V-in-V implant of a balloon-expandable valve. 3D printed mitral valve pre- and post-procedure models were prepared to facilitate the process by making individualized plans and evaluating the outcomes. Results Each of the 6 patients was successfully implanted with a balloon-expandable valve. From post-procedural images and the 3D printed models, we could clearly observe the valve at the ideal position, with the proper shape and no regurgitation. 3D printed mitral valve models contributed to precise decisions, the avoidance of complications, and the valuation of outcomes. Conclusions 3D printing plays an important role in guiding the transcatheter mitral V-in-V implant of a balloon-expandable valve. Clinical Trial Registration ClinicalTrials.gov Protocol Registration System (NCT02917980).
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Meyer-Szary J, Luis MS, Mikulski S, Patel A, Schulz F, Tretiakow D, Fercho J, Jaguszewska K, Frankiewicz M, Pawłowska E, Targoński R, Szarpak Ł, Dądela K, Sabiniewicz R, Kwiatkowska J. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3331. [PMID: 35329016 PMCID: PMC8953417 DOI: 10.3390/ijerph19063331] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 03/05/2022] [Indexed: 12/19/2022]
Abstract
Medicine is a rapidly-evolving discipline, with progress picking up pace with each passing decade. This constant evolution results in the introduction of new tools and methods, which in turn occasionally leads to paradigm shifts across the affected medical fields. The following review attempts to showcase how 3D printing has begun to reshape and improve processes across various medical specialties and where it has the potential to make a significant impact. The current state-of-the-art, as well as real-life clinical applications of 3D printing, are reflected in the perspectives of specialists practicing in the selected disciplines, with a focus on pre-procedural planning, simulation (rehearsal) of non-routine procedures, and on medical education and training. A review of the latest multidisciplinary literature on the subject offers a general summary of the advances enabled by 3D printing. Numerous advantages and applications were found, such as gaining better insight into patient-specific anatomy, better pre-operative planning, mock simulated surgeries, simulation-based training and education, development of surgical guides and other tools, patient-specific implants, bioprinted organs or structures, and counseling of patients. It was evident that pre-procedural planning and rehearsing of unusual or difficult procedures and training of medical professionals in these procedures are extremely useful and transformative.
Collapse
Affiliation(s)
- Jarosław Meyer-Szary
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Marlon Souza Luis
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Szymon Mikulski
- Department of Head and Neck Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Agastya Patel
- First Doctoral School, Medical University of Gdańsk, 80-211 Gdańsk, Poland
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Finn Schulz
- University Clinical Centre in Gdańsk, 80-952 Gdańsk, Poland
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Justyna Fercho
- Neurosurgery Department, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Kinga Jaguszewska
- Department of Gynecology, Obstetrics and Neonatology, Division of Gynecology and Obstetrics, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Mikołaj Frankiewicz
- Department of Urology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Ewa Pawłowska
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Radosław Targoński
- 1st Department of Cardiology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Łukasz Szarpak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Research Unit, Maria Sklodowska-Curie Bialystok Oncology Center, 15-027 Bialystok, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katarzyna Dądela
- Department of Pediatric Cardiology, University Children's Hospital, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Robert Sabiniewicz
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Joanna Kwiatkowska
- Department of Pediatric Cardiology and Congenital Heart Defects, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| |
Collapse
|
14
|
Three-dimensional printing to plan intracardiac operations. JTCVS Tech 2021; 9:101-108. [PMID: 34647075 PMCID: PMC8500990 DOI: 10.1016/j.xjtc.2021.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
|
15
|
Bastawrous S, Wu L, Strzelecki B, Levin DB, Li JS, Coburn J, Ripley B. Establishing Quality and Safety in Hospital-based 3D Printing Programs: Patient-first Approach. Radiographics 2021; 41:1208-1229. [PMID: 34197247 DOI: 10.1148/rg.2021200175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adoption of three-dimensional (3D) printing is rapidly spreading across hospitals, and the complexity of 3D-printed models and devices is growing. While exciting, the rapid growth and increasing complexity also put patients at increased risk for potential errors and decreased quality of the final product. More than ever, a strong quality management system (QMS) must be in place to identify potential errors, mitigate those errors, and continually enhance the quality of the product that is delivered to patients. The continuous repetition of the traditional processes of care, without insight into the positive or negative impact, is ultimately detrimental to the delivery of patient care. Repetitive tasks within a process can be measured, refined, and improved and translate into high levels of quality, and the same is true within the 3D printing process. The authors share their own experiences and growing pains in building a QMS into their 3D printing processes. They highlight errors encountered along the way, how they were addressed, and how they have strived to improve consistency, facilitate communication, and replicate successes. They also describe the vital intersection of health care providers, regulatory groups, and traditional manufacturers, who contribute essential elements to a common goal of providing quality and safety to patients. ©RSNA, 2021.
Collapse
Affiliation(s)
- Sarah Bastawrous
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Lei Wu
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Brian Strzelecki
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Dmitry B Levin
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Jing-Sheng Li
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James Coburn
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Beth Ripley
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| |
Collapse
|
16
|
Revels JW, Wang SS, Gharai LR, Febbo J, Fadl S, Bastawrous S. The role of CT in planning percutaneous structural heart interventions: Where to measure and why. Clin Imaging 2021; 76:247-264. [PMID: 33991744 DOI: 10.1016/j.clinimag.2021.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
As research continues to demonstrate successes in the use of percutaneous trans-vascular techniques in structural heart intervention, both the subspecialty trained and non-subspecialty trained cardiac imager find themselves performing and reporting larger amounts of information regarding cardiovascular findings. It is therefore imperative that the imager gains understanding and appreciation for how these various measurements are obtained, as well as their implication in a patient's care. Cardiac gated computed tomography (CT) has solidified its role and ability at providing high resolution images that can be used to obtain the key measurements used in structural heart intervention planning. This manuscript aims to provide an overview of what measurements are necessary to report when interpreting CT examinations purposed for structural heart intervention. This includes a review on indications and brief discussion on complications related to these procedures.
Collapse
Affiliation(s)
- Jonathan W Revels
- Department of Radiology, University of New Mexico, MSC 10 5530, 1 University of New Mexico, Albuquerque, NM 87131, USA. https://twitter.com/JRevRad1
| | - Sherry S Wang
- Department of Radiology and Imaging Sciences, University of Utah, 30 North 1900 East #1A71, Salt Lake City, UT 84132, USA. https://twitter.com/drsherrywang
| | - Leila R Gharai
- Department of Radiology, Virginia Commonwealth University, West Hospital, 1200 East Broad Street, North Wing, Room 2-013, Box 980470, Richmond, VA 23298-0470, USA
| | - Jennifer Febbo
- Department of Radiology, University of New Mexico, MSC 10 5530, 1 University of New Mexico, Albuquerque, NM 87131, USA. https://twitter.com/JennFebb
| | - Shaimaa Fadl
- Department of Radiology, Virginia Commonwealth University, West Hospital, 1200 East Broad Street, North Wing, Room 2-013, Box 980470, Richmond, VA 23298-0470, USA
| | - Sarah Bastawrous
- Department of Radiology, University of Washington, Puget Sound Veterans Administration Hospital, 1959 NE Pacific Street, Room BB308, Box 357115, Seattle, WA 98195, USA. https://twitter.com/sbastawrous1
| |
Collapse
|
17
|
Segaran N, Saini G, Mayer JL, Naidu S, Patel I, Alzubaidi S, Oklu R. Application of 3D Printing in Preoperative Planning. J Clin Med 2021; 10:jcm10050917. [PMID: 33652844 PMCID: PMC7956651 DOI: 10.3390/jcm10050917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Preoperative planning is critical for success in the surgical suite. Current techniques for surgical planning are limited; clinicians often rely on prior experience and medical imaging to guide the decision-making process. Furthermore, two-dimensional (2D) presentations of anatomical structures may not accurately portray their three-dimensional (3D) complexity, often leaving physicians ill-equipped for the procedure. Although 3D postprocessed images are an improvement on traditional 2D image sets, they are often inadequate for surgical simulation. Medical 3D printing is a rapidly expanding field and could provide an innovative solution to current constraints of preoperative planning. As 3D printing becomes more prevalent in medical settings, it is important that clinicians develop an understanding of the technologies, as well as its uses. Here, we review the fundamentals of 3D printing and key aspects of its workflow. The many applications of 3D printing for preoperative planning are discussed, along with their challenges.
Collapse
Affiliation(s)
- Nicole Segaran
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (N.S.); (G.S.)
| | - Gia Saini
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (N.S.); (G.S.)
| | - Joseph L. Mayer
- 3D Innovations Laboratory, Mayo Clinic Arizona, 5711 E. Mayo Blvd. Support Services Building, Phoenix, AZ 85054, USA;
| | - Sailen Naidu
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (S.N.); (I.P.); (S.A.)
| | - Indravadan Patel
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (S.N.); (I.P.); (S.A.)
| | - Sadeer Alzubaidi
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (S.N.); (I.P.); (S.A.)
| | - Rahmi Oklu
- Minimally Invasive Therapeutics Laboratory, Department of Vascular and Interventional Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (N.S.); (G.S.)
- 3D Innovations Laboratory, Mayo Clinic Arizona, 5711 E. Mayo Blvd. Support Services Building, Phoenix, AZ 85054, USA;
- Department of Radiology, Mayo Clinic, Phoenix, AZ 85054, USA; (S.N.); (I.P.); (S.A.)
- Correspondence: ; Tel.: +1-480-342-5664
| |
Collapse
|
18
|
Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of Artificial Intelligence in Medicine: An Overview. Curr Med Sci 2021; 41:1105-1115. [PMID: 34874486 PMCID: PMC8648557 DOI: 10.1007/s11596-021-2474-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is a new technical discipline that uses computer technology to research and develop the theory, method, technique, and application system for the simulation, extension, and expansion of human intelligence. With the assistance of new AI technology, the traditional medical environment has changed a lot. For example, a patient's diagnosis based on radiological, pathological, endoscopic, ultrasonographic, and biochemical examinations has been effectively promoted with a higher accuracy and a lower human workload. The medical treatments during the perioperative period, including the preoperative preparation, surgical period, and postoperative recovery period, have been significantly enhanced with better surgical effects. In addition, AI technology has also played a crucial role in medical drug production, medical management, and medical education, taking them into a new direction. The purpose of this review is to introduce the application of AI in medicine and to provide an outlook of future trends.
Collapse
Affiliation(s)
- Peng-ran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Lin Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jia-yao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Tong-tong Huo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Song-xiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhe-wei Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
19
|
Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, Sarmento B, Cui W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release 2021; 329:237-256. [DOI: 10.1016/j.jconrel.2020.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
|
20
|
Abd Alamir M, Nazir S, Alani A, Golub I, Gilchrist IC, Aslam F, Dhawan P, Changal K, Ostra C, Soni R, Elzanaty A, Budoff M. Multidetector computed tomography in transcatheter aortic valve replacement: an update on technological developments and clinical applications. Expert Rev Cardiovasc Ther 2020; 18:709-722. [PMID: 33063552 DOI: 10.1080/14779072.2020.1837624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Transcatheter aortic valve replacement (TAVR) has revolutionized the treatment of patients with underlying sever aortic valve stenosis across all spectrum of the disease. CT imaging is so crucial to the pre procedural planning, to incorporate the information from the CT imaging in the decision making intraprocedurally and to predict and identity the post procedural complications.Areas covered: In this article, we review available studies on CT role in TAVR procedure and provide update on the technological developments and clinical applications.Expert opinion: CT imaging, with its high resolution, and in particular its utilization in aortic annular measurements, bicuspid aortic valve assessment, hypoattenuated leaflet thickening and valve in valve therapy proved to be the ideal approach to study the mechanisms of aortic stenosis, detection of high-risk anatomy, more accurate risk stratification and thus to allow a personalized catheter based intervention of the affected patients.
Collapse
Affiliation(s)
- Moshrik Abd Alamir
- Department of Cardiology, Stony Brook University Hospital, Health Sciences Tower , Stony Brook, NY, USA
| | - Salik Nazir
- Department of Cardiology, University of Toledo , Toledo, OH, USA
| | - Anas Alani
- Loma Linda University , Loma Linda, CA, USA
| | - Ilana Golub
- Department of Cardiology, Lundquist Institute , Torrance, CA, USA
| | - Ian C Gilchrist
- Department of Cardiology, Stony Brook University Hospital, Health Sciences Tower , Stony Brook, NY, USA
| | - Faisal Aslam
- Department of Cardiology, Stony Brook University Hospital, Health Sciences Tower , Stony Brook, NY, USA
| | - Puneet Dhawan
- David Geffen School of Medicine at UCLA, Department of Surgery, Los Angeles County Harbor-UCLA Medical Center , Torrance, CA, USA
| | - Khalid Changal
- Department of Cardiology, University of Toledo , Toledo, OH, USA
| | - Carson Ostra
- Department of Cardiology, University of Toledo , Toledo, OH, USA
| | - Ronak Soni
- Department of Cardiology, University of Toledo , Toledo, OH, USA
| | - Ahmad Elzanaty
- Department of Cardiology, University of Toledo , Toledo, OH, USA
| | - Matthew Budoff
- Department of Cardiology, Lundquist Institute , Torrance, CA, USA
| |
Collapse
|
21
|
Utility of Three-Dimensional (3D) Modeling for Planning Structural Heart Interventions (with an Emphasis on Valvular Heart Disease). Curr Cardiol Rep 2020; 22:125. [PMID: 32789652 DOI: 10.1007/s11886-020-01354-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Advanced imaging has played a vital role in the contemporary, rapid rise of structural heart interventions. 3D modeling and printing has emerged as one of the most recent imaging tools and the implementation of 3D modeling is expected to increase with further advances in imaging, print hardware, and materials. RECENT FINDINGS 3D modeling can be used to educate patients and clinical teams, provide ex vivo procedural simulation, and improve outcomes. Intra-procedural success rates may be improved, and post-procedural complications can be predicted more robustly with appropriate application of 3D modeling. Recent advances in technology have increased the availability of this tool, such that there can be more ready adoption into a routine clinical workflow. Familiarity with 3D modeling and its current utilization and role in structural interventions will help inform how to approach and adapt this exciting new technology.
Collapse
|