1
|
Liang H, Ren Y, Huang Y, Xie X, Zhang M. Treatment of diabetic retinopathy with herbs for tonifying kidney and activating blood circulation: A review of pharmacological studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118078. [PMID: 38513781 DOI: 10.1016/j.jep.2024.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.
Collapse
Affiliation(s)
- Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Fadraersada J, Alva-Gallegos R, Skořepa P, Musil F, Javorská L, Matoušová K, Krčmová LK, Paclíková M, Carazo A, Blaha V, Mladěnka P. Head-to-head ex vivo comparison of clinically used direct anticoagulant drugs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4461-4470. [PMID: 38112731 DOI: 10.1007/s00210-023-02891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
An imbalance in coagulation is associated with cardiovascular events. For prevention and treatment, anticoagulants, currently mainly xabans and gatrans, are used. The purpose of the present study was to provide a head-to-head comparison since there are no studies directly evaluating these novel anticoagulants. An additional aim was to find whether selected anthropological and biochemical factors can affect their anticoagulant properties as they are used in fixed doses. In this cross-sectional study, blood from 50 generally healthy donors was collected, and coagulation responses to dabigatran, argatroban, rivaroxaban, and apixaban, at a concentration of 1 μM, were analyzed. Heparin was used as a positive control. Prothrombin time (PT) expressed as international normalized ratio (INR) and activated partial thromboplastin time (aPTT) were measured and compared. Rivaroxaban was the most active according to PT/INR while argatroban according to aPTT. The ex vivo anticoagulant effect measured by INR correlated inversely with body mass index (BMI) in all four anticoagulants tested. Shortening of aPTT was associated with higher cholesterol and triglyceride levels. No sex-related differences were observed in response to the anticoagulant treatments. As this was an ex vivo study and pharmacokinetic factors were not included, the influence of BMI is of high therapeutic importance.
Collapse
Affiliation(s)
- Jaka Fadraersada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Raúl Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Pavel Skořepa
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
- Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - František Musil
- Department of Occupational Medicine, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Markéta Paclíková
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Blaha
- 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Mitroi RM, Padureanu V, Mitrea A, Protasiewicz Timofticiuc DC, Rosu MM, Clenciu D, Enescu A, Padureanu R, Tenea Cojan TS, Vladu IM. Prothrombotic status in COVID‑19 with diabetes mellitus (Review). Biomed Rep 2023; 19:65. [PMID: 37649534 PMCID: PMC10463232 DOI: 10.3892/br.2023.1647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused an important social and health impact worldwide and the coronavirus disease-19 (COVID-19) has elicited devastating economy problems. The pathogenesis of SARS-CoV-2 infection is a complex mechanism and is considered to be the result of a challenging interaction, in which host and virus immune responses are the key elements. In this process, several inflammatory pathways are involved, and their initiation can have multiple consequences with a considerable impact on evolution, such as hyperinflammation and cytokine storm, thereby promoting activation of the coagulation system and fibrinolytic activity suppression. It is commonly recognized that COVID-19 severity involves multiple factors, including diabetes which increases the risk of developing different complications. This could be as a result of the low-grade inflammation as well as the innate and adaptive immune response dysfunction that is observed in patients with diabetes mellitus. In patients with diabetes, multiple metabolic disturbances which have a major impact in disturbing the balance between coagulation and fibrinolysis were discovered, thus the risk for thrombotic events is increased. Diabetes has been recognized as an important severity prognosis factor in COVID-19 cases and considering there is a significant association between diabetes and prothrombotic status, it could be responsible for the increased risk of thrombotic events with a worse prognosis.
Collapse
Affiliation(s)
- Roxana Madalina Mitroi
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Vlad Padureanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Clinical Municipal Hospital ‘Philanthropy’ of Craiova, 200143 Craiova, Romania
| | | | - Maria Magdalena Rosu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Clinical Municipal Hospital ‘Philanthropy’ of Craiova, 200143 Craiova, Romania
| | - Aurelia Enescu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Rodica Padureanu
- Department of Pneumology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Tiberiu Stefanita Tenea Cojan
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
4
|
Alnima T, Meijer RI, Spronk HMH, Warlé M, Cate HT. Diabetes- versus smoking-related thrombo-inflammation in peripheral artery disease. Cardiovasc Diabetol 2023; 22:257. [PMID: 37735399 PMCID: PMC10514957 DOI: 10.1186/s12933-023-01990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Peripheral artery disease (PAD) is a major health problem with increased cardiovascular mortality, morbidity and disabling critical limb threatening ischemia (CLTI) and amputation. Diabetes mellitus (DM) and cigarette smoke are the main risk factors for the development of PAD. Although diabetes related PAD shows an accelerated course with worse outcome regarding complications, mortality and amputations compared with non-diabetic patients, current medical treatment does not make this distinction and includes standard antiplatelet and lipid lowering drugs for all patients with PAD. In this review we discuss the pathophysiologic mechanisms of PAD, with focus on differences in thrombo-inflammatory processes between diabetes-related and smoking-related PAD, and hypothesize on possible mechanisms for the progressive course of PAD in DM. Furthermore, we comment on current medical treatment and speculate on alternative medical drug options for patients with PAD and DM.
Collapse
Affiliation(s)
- T Alnima
- Department of Internal Medicine, Section of Vascular Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Internal Medicine, Section of Diabetology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - R I Meijer
- Department of Internal Medicine, Section of Diabetology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H M H Spronk
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M Warlé
- Department of Vascular Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Ten Cate
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
5
|
Zhou Q, Yang J, Wang W, Shao C, Hua X, Tang YD. The impact of the stress hyperglycemia ratio on mortality and rehospitalization rate in patients with acute decompensated heart failure and diabetes. Cardiovasc Diabetol 2023; 22:189. [PMID: 37495967 PMCID: PMC10373236 DOI: 10.1186/s12933-023-01908-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND The relationship between stress hyperglycemia and long-term prognosis in acute decompensated heart failure (ADHF) patients is unknown. This study investigated the associations of stress hyperglycemia with mortality and rehospitalization rates among ADHF patients with diabetes. METHODS We consecutively enrolled 1904 ADHF patients. Among them, 780 were with diabetes. Stress hyperglycemia was estimated using the stress hyperglycemia ratio (SHR), which was calculated by the following formula: SHR = admission blood glucose/[(28.7 × HbA1c%) - 46.7]. All diabetic ADHF subjects were divided into quintiles according to the SHR. The primary endpoint was all-cause death at the 3-year follow-up. The secondary endpoints were cardiovascular (CV) death and heart failure (HF) rehospitalization at the 3-year follow-up. A Cox proportional hazards model and restricted cubic spline analysis were used to elucidate the relationship between the SHR and the endpoints in diabetic ADHF patients. Further analyses were performed to examine the relationships between SHR and the outcomes in heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). RESULTS A total of 169 all-cause deaths were recorded during a median follow-up of 3.24 years. Restricted cubic spline analysis suggested a U-shaped association between the SHR and the mortality and rehospitalization rates. Kaplan-Meier survival analysis showed the lowest mortality in the 2nd quintile (P = 0.0028). Patients categorized in the highest range (5th quintile) of SHR, compared to those in the 2nd quintile, exhibited the greatest susceptibility to all-cause death (with a hazard ratio [HR] of 2.76 and a 95% confidence interval [CI] of 1.63-4.68), CV death (HR 2.81 [95% CI 1.66-4.75]) and the highest rate of HF rehospitalization (HR 1.54 [95% CI 1.03-2.32]). Similarly, patients in the lowest range (1st quintile) of SHR also exhibited significantly increased risks of all-cause death (HR 2.33, 95% CI 1.35-4.02) and CV death (HR 2.32, 95% CI 1.35-4.00). Further analyses indicated that the U-shape association between the SHR and mortality remained significant in both HFpEF and HFrEF patients. CONCLUSION Both elevated and reduced SHRs indicate an unfavorable long-term prognosis in patients with ADHF and diabetes.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49 Huayuanbei Road, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Jie Yang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49 Huayuanbei Road, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wenyao Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49 Huayuanbei Road, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Chunli Shao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49 Huayuanbei Road, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Xinwei Hua
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49 Huayuanbei Road, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, No. 49 Huayuanbei Road, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
6
|
Liu Y, Deng X, Zhu F, Zhu W, Wang Z. High fibrinogen and mixed proximal and distal thrombosis are associated with the risk of residual venous thrombosis in patients with posttraumatic deep vein thrombosis. Front Cardiovasc Med 2023; 10:1003197. [PMID: 36818330 PMCID: PMC9928750 DOI: 10.3389/fcvm.2023.1003197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Background The risk factors for residual venous thrombosis (RVT) in patients with post-trauma deep vein thrombosis (DVT) are unknown. Methods We evaluated 127 patients with DVT after trauma, all of whom were treated with conventional anticoagulation and assessed for the presence of RVT with venous compression ultrasound (CUS), using an internal diameter of the venous lumen ≥ 4 mm after compression as the criterion. Results RVT was present in 59 (46%) patients, and complete thrombus dissolution was present in 68 (54%) patients. Among them, mixed proximal and distal thrombosis (OR, 4.292; 95% CI, 1.253-14.707), diabetes (OR, 6.345; 95% CI, 1.125-35.786), fibrinogen > 4.145 g/L (OR, 2.858; 95% CI, 1.034-7.897), the time between detection of thrombus and initiation of antithrombotic therapy > 2.5 days (OR, 3.470; 95% CI, 1.085-11.094) was an independent risk factor for RVT in patients with posttraumatic DVT. Conclusion A mixed proximal and distal thrombosis, diabetes mellitus, late initiation of antithrombotic therapy, and high fibrinogen levels increase the risk of RVT in patients with posttraumatic DVT. Therefore, treatment regimens for patients with posttraumatic DVT can be adjusted according to the site of thrombosis, the presence of diabetes mellitus, and the level of fibrinogen, and antithrombotic therapy can be started as early as possible after the detection of thrombosis to prevent the development of RVT and its serious complications.
Collapse
Affiliation(s)
- Yating Liu
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Central South University, Changsha, Hunan, China
| | - Xiaozhi Deng
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Central South University, Changsha, Hunan, China
| | - Fang Zhu
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenhui Zhu
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Wenhui Zhu,
| | - Zheng Wang
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,Zheng Wang,
| |
Collapse
|
7
|
Zhong M, Tu Y, Peng X, Song Y, Zhou J, Zhang X, Xu Q, Li L. A case of polycystic ovary syndrome with inevitable miscarriage and multi-site venous thrombosis caused by hereditary protein C deficiency. Gynecol Endocrinol 2022; 38:1153-1157. [PMID: 36634704 DOI: 10.1080/09513590.2022.2162034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) affects up to 18% of reproductive-aged women and raises the risk of venous thromboembolic disease (VTE), due to metabolic features and an apparent fibrinolytic state. Recent studies have shown an increased risk of VTE (1.5- to 2-fold) in patients with PCOS as compared to those without PCOS. Mutations in the Protein C (PC) gene (PROC) lead to deficiency or dysfunction of the protein, Protein C deficiency is the main clotting physiological inhibitor of protein C cofactors, and is a risk factor for venous thrombosis, which can cause a variety of events, including miscarriage. This case report proposes a correlation between PCOS, protein C deficiency, venous thrombosis and inevitable miscarriage. CASE PRESENTATION A 33-year-old Chinese woman was diagnosed with Polycystic Ovary Syndrome (PCOS) in 2015. During the course of treatment, she took ethinylestradiol and cyproterone acetate tablets for more than one year. In 2016, she was sent to a hospital for emergency care due to explosive thrombosis (thrombosis in multiple parts of the body and pulmonary thrombosis). In 2020, the patient became pregnant via natural means and came to our hospital for treatment. During the second trimester, she experienced an inevitable miscarriage. High-throughput sequencing (NGS) of peripheral blood lymphocytes revealed that the patient had a protein C deficiency resulting from a heterozygous mutation deletion of 572_574 in exon 7. CONCLUSION PC deficiency in conjunction with PCOS and the concomitant use of oral contraceptive (COC) would increase the risk of VTE, especially in the early stages of COC use.
Collapse
Affiliation(s)
- Minglin Zhong
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Yanping Tu
- Department of Medical Ultrasonics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiuhong Peng
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yue Song
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiahe Zhou
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
- Guangzhou Medical University, Guangzhou, China
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qiuyi Xu
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Li Li
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
8
|
Huang Y, Yue L, Qiu J, Gao M, Liu S, Wang J. Endothelial Dysfunction and Platelet Hyperactivation in Diabetic Complications Induced by Glycemic Variability. Horm Metab Res 2022; 54:419-428. [PMID: 35835141 PMCID: PMC9282943 DOI: 10.1055/a-1880-0978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development and progression of the complications of chronic diabetes mellitus are attributed not only to increased blood glucose levels but also to glycemic variability. Therefore, a deeper understanding of the role of glycemic variability in the development of diabetic complications may provide more insight into targeted clinical treatment strategies in the future. Previously, the mechanisms implicated in glycemic variability-induced diabetic complications have been comprehensively discussed. However, endothelial dysfunction and platelet hyperactivation, which are two newly recognized critical pathogenic factors, have not been fully elucidated yet. In this review, we first evaluate the assessment of glycemic variability and then summarise the roles of endothelial dysfunction and platelet hyperactivation in glycemic variability-induced complications of diabetes, highlighting the molecular mechanisms involved and their interconnections.
Collapse
Affiliation(s)
- Ye Huang
- Emergency Department, China Academy of Chinese Medical Sciences Xiyuan
Hospital, Beijing, China
| | - Long Yue
- Emergency Department, China Academy of Chinese Medical Sciences Xiyuan
Hospital, Beijing, China
| | - Jiahuang Qiu
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Ming Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Sijin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing, China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Capital Medical University
Beijing Obstetrics and Gynecology Hospital, Beijing, China
- Correspondence Prof. Jingshang
Wang Capital Medical University Beijing Obstetrics and
Gynecology HospitalDepartment of Traditional Chinese
MedicineBeijingChina 18811213525
| |
Collapse
|
9
|
Wang H, Cao J, Su JB, Wang XQ, Zhang DM, Wang XH. The relationship between insulin sensitivity and serum antithrombin 3 activity in patients with type 2 diabetes. Endocr Connect 2021; 10:667-675. [PMID: 34077393 PMCID: PMC8240710 DOI: 10.1530/ec-21-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Antithrombin 3 (AT3) is a physiological inhibitor of thrombin, and serum AT3 activity was found to decrease at the status of type 2 diabetes (T2D). T2D was presented with an increased risk of thrombotic complications at the background of impaired insulin sensitivity. The aim of this study was to investigate the relationship between insulin sensitivity indices and serum AT3 activity in patients with T2D. METHODS We conducted a cross-sectional study in patients with T2D who consented to participate in the study at the Endocrinology Department of Affiliated 2 Hospital of Nantong University from January 2015 to June 2018. All patients received serum AT3 activity test and 75 g oral glucose tolerance test (OGTT). Basal and systemic insulin sensitivity were assessed by homeostasis model assessment of insulin resistance (HOMA-IR) and Matsuda index (ISIMatsuda), respectively, from the OGTT. And other relevant clinical data were also collected. RESULTS Total of 1612 patients with T2D were enrolled in the study, with a mean age of 58.67 ± 13.09 years and a median diabetes duration of 6 years (interquartile range, 1-10 years). Across ascending quartiles of serum AT3 activity, HOMA-IR progressively decreased, while ISIMatsuda progressively increased (all P for trend < 0.001). Moreover, serum AT3 activity was negatively correlated with HOMA-IR (r = -0.189, P < 0.001) and positively correlated with ISIMatsuda (r = 0.221, P < 0.001). After adjusting for other metabolic risk factors, hemostatic parameters and glucose-lowering therapies by multivariate linear regression analysis, HOMA-IR (β = -0.185, t = -5.960, P < 0.001) and ISIMatsuda (β = 0.197, t = 6.632, P < 0.001) remained independently associated with the serum AT3 activity in patients with T2D, respectively. CONCLUSIONS Reduced basal and systemic insulin sensitivity are associated with decreased serum AT3 activity in patients with T2D.
Collapse
Affiliation(s)
- Hong Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Jie Cao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| | - Jian-bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to J Su or X Wang: or
| | - Xue-qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
- Correspondence should be addressed to J Su or X Wang: or
| | - Dong-mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xiao-hua Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China
| |
Collapse
|
10
|
Li X, Weber NC, Cohn DM, Hollmann MW, DeVries JH, Hermanides J, Preckel B. Effects of Hyperglycemia and Diabetes Mellitus on Coagulation and Hemostasis. J Clin Med 2021; 10:jcm10112419. [PMID: 34072487 PMCID: PMC8199251 DOI: 10.3390/jcm10112419] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
In patients with diabetes, metabolic disorders disturb the physiological balance of coagulation and fibrinolysis, leading to a prothrombotic state characterized by platelet hypersensitivity, coagulation disorders and hypofibrinolysis. Hyperglycemia and insulin resistance cause changes in platelet number and activation, as well as qualitative and/or quantitative modifications of coagulatory and fibrinolytic factors, resulting in the formation of fibrinolysis-resistant clots in patients with diabetes. Other coexisting factors like hypoglycemia, obesity and dyslipidemia also contribute to coagulation disorders in patients with diabetes. Management of the prothrombotic state includes antiplatelet and anticoagulation therapies for diabetes patients with either a history of cardiovascular disease or prone to a higher risk of thrombus generation, but current guidelines lack recommendations on the optimal antithrombotic treatment for these patients. Metabolic optimizations like glucose control, lipid-lowering, and weight loss also improve coagulation disorders of diabetes patients. Intriguing, glucose-lowering drugs, especially cardiovascular beneficial agents, such as glucagon-like peptide-1 receptor agonists and sodium glucose co-transporter inhibitors, have been shown to exert direct anticoagulation effects in patients with diabetes. This review focuses on the most recent progress in the development and management of diabetes related prothrombotic state.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Anesthesiology, Amsterdam UMC Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (N.C.W.); (M.W.H.); (J.H.)
| | - Nina C. Weber
- Department of Anesthesiology, Amsterdam UMC Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (N.C.W.); (M.W.H.); (J.H.)
| | - Danny M. Cohn
- Department of Vascular Medicine, Amsterdam UMC Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam UMC Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (N.C.W.); (M.W.H.); (J.H.)
| | - J. Hans DeVries
- Department of International Medicine, Amsterdam UMC location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Jeroen Hermanides
- Department of Anesthesiology, Amsterdam UMC Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (N.C.W.); (M.W.H.); (J.H.)
| | - Benedikt Preckel
- Department of Anesthesiology, Amsterdam UMC Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (N.C.W.); (M.W.H.); (J.H.)
- Correspondence: ; Tel.: +31-20-5669111
| |
Collapse
|
11
|
Ansari SA, Keshava S, Pendurthi UR, Rao LVM. Oxidative Stress Product, 4-Hydroxy-2-Nonenal, Induces the Release of Tissue Factor-Positive Microvesicles From Perivascular Cells Into Circulation. Arterioscler Thromb Vasc Biol 2021; 41:250-265. [PMID: 33028097 PMCID: PMC7752210 DOI: 10.1161/atvbaha.120.315187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE TF (Tissue factor) plays a key role in hemostasis, but an aberrant expression of TF leads to thrombosis. The objective of the present study is to investigate the effect of 4-hydroxy-2-nonenal (HNE), the most stable and major oxidant produced in various disease conditions, on the release of TF+ microvesicles into the circulation, identify the source of TF+ microvesicles origin, and assess their effect on intravascular coagulation and inflammation. Approach and Results: C57BL/6J mice were administered with HNE intraperitoneally, and the release of TF+ microvesicles into circulation was evaluated using coagulation assays and nanoparticle tracking analysis. Various cell-specific markers were used to identify the cellular source of TF+ microvesicles. Vascular permeability was analyzed by the extravasation of Evans blue dye or fluorescein dextran. HNE administration to mice markedly increased the levels of TF+ microvesicles and thrombin generation in the circulation. HNE administration also increased the number of neutrophils in the lungs and elevated the levels of inflammatory cytokines in plasma. Administration of an anti-TF antibody blocked not only HNE-induced thrombin generation but also HNE-induced inflammation. Confocal microscopy and immunoblotting studies showed that HNE does not induce TF expression either in vascular endothelium or circulating monocytes. Microvesicles harvested from HNE-administered mice stained positively with CD248 and α-smooth muscle actin, the markers that are specific to perivascular cells. HNE was found to destabilize endothelial cell barrier integrity. CONCLUSIONS HNE promotes the release of TF+ microvesicles from perivascular cells into the circulation. HNE-induced increased TF activity contributes to intravascular coagulation and inflammation.
Collapse
Affiliation(s)
- Shabbir A. Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
12
|
Jellinger PS, Handelsman Y, Rosenblit PD, Bloomgarden ZT, Fonseca VA, Garber AJ, Grunberger G, Guerin CK, Bell DSH, Mechanick JI, Pessah-Pollack R, Wyne K, Smith D, Brinton EA, Fazio S, Davidson M. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY GUIDELINES FOR MANAGEMENT OF DYSLIPIDEMIA AND PREVENTION OF CARDIOVASCULAR DISEASE. Endocr Pract 2019; 23:1-87. [PMID: 28437620 DOI: 10.4158/ep171764.appgl] [Citation(s) in RCA: 640] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The development of these guidelines is mandated by the American Association of Clinical Endocrinologists (AACE) Board of Directors and American College of Endocrinology (ACE) Board of Trustees and adheres with published AACE protocols for the standardized production of clinical practice guidelines (CPGs). METHODS Recommendations are based on diligent reviews of the clinical evidence with transparent incorporation of subjective factors, according to established AACE/ACE guidelines for guidelines protocols. RESULTS The Executive Summary of this document contains 87 recommendations of which 45 are Grade A (51.7%), 18 are Grade B (20.7%), 15 are Grade C (17.2%), and 9 (10.3%) are Grade D. These detailed, evidence-based recommendations allow for nuance-based clinical decision-making that addresses multiple aspects of real-world medical care. The evidence base presented in the subsequent Appendix provides relevant supporting information for Executive Summary Recommendations. This update contains 695 citations of which 203 (29.2 %) are EL 1 (strong), 137 (19.7%) are EL 2 (intermediate), 119 (17.1%) are EL 3 (weak), and 236 (34.0%) are EL 4 (no clinical evidence). CONCLUSION This CPG is a practical tool that endocrinologists, other health care professionals, health-related organizations, and regulatory bodies can use to reduce the risks and consequences of dyslipidemia. It provides guidance on screening, risk assessment, and treatment recommendations for a range of individuals with various lipid disorders. The recommendations emphasize the importance of treating low-density lipoprotein cholesterol (LDL-C) in some individuals to lower goals than previously endorsed and support the measurement of coronary artery calcium scores and inflammatory markers to help stratify risk. Special consideration is given to individuals with diabetes, familial hypercholesterolemia, women, and youth with dyslipidemia. Both clinical and cost-effectiveness data are provided to support treatment decisions. ABBREVIATIONS 4S = Scandinavian Simvastatin Survival Study A1C = glycated hemoglobin AACE = American Association of Clinical Endocrinologists AAP = American Academy of Pediatrics ACC = American College of Cardiology ACE = American College of Endocrinology ACS = acute coronary syndrome ADMIT = Arterial Disease Multiple Intervention Trial ADVENT = Assessment of Diabetes Control and Evaluation of the Efficacy of Niaspan Trial AFCAPS/TexCAPS = Air Force/Texas Coronary Atherosclerosis Prevention Study AHA = American Heart Association AHRQ = Agency for Healthcare Research and Quality AIM-HIGH = Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides trial ASCVD = atherosclerotic cardiovascular disease ATP = Adult Treatment Panel apo = apolipoprotein BEL = best evidence level BIP = Bezafibrate Infarction Prevention trial BMI = body mass index CABG = coronary artery bypass graft CAC = coronary artery calcification CARDS = Collaborative Atorvastatin Diabetes Study CDP = Coronary Drug Project trial CI = confidence interval CIMT = carotid intimal media thickness CKD = chronic kidney disease CPG(s) = clinical practice guideline(s) CRP = C-reactive protein CTT = Cholesterol Treatment Trialists CV = cerebrovascular CVA = cerebrovascular accident EL = evidence level FH = familial hypercholesterolemia FIELD = Secondary Endpoints from the Fenofibrate Intervention and Event Lowering in Diabetes trial FOURIER = Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects With Elevated Risk trial HATS = HDL-Atherosclerosis Treatment Study HDL-C = high-density lipoprotein cholesterol HeFH = heterozygous familial hypercholesterolemia HHS = Helsinki Heart Study HIV = human immunodeficiency virus HoFH = homozygous familial hypercholesterolemia HPS = Heart Protection Study HPS2-THRIVE = Treatment of HDL to Reduce the Incidence of Vascular Events trial HR = hazard ratio HRT = hormone replacement therapy hsCRP = high-sensitivity CRP IMPROVE-IT = Improved Reduction of Outcomes: Vytorin Efficacy International Trial IRAS = Insulin Resistance Atherosclerosis Study JUPITER = Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin LDL-C = low-density lipoprotein cholesterol Lp-PLA2 = lipoprotein-associated phospholipase A2 MACE = major cardiovascular events MESA = Multi-Ethnic Study of Atherosclerosis MetS = metabolic syndrome MI = myocardial infarction MRFIT = Multiple Risk Factor Intervention Trial NCEP = National Cholesterol Education Program NHLBI = National Heart, Lung, and Blood Institute PCOS = polycystic ovary syndrome PCSK9 = proprotein convertase subtilisin/kexin type 9 Post CABG = Post Coronary Artery Bypass Graft trial PROSPER = Prospective Study of Pravastatin in the Elderly at Risk trial QALY = quality-adjusted life-year ROC = receiver-operator characteristic SOC = standard of care SHARP = Study of Heart and Renal Protection T1DM = type 1 diabetes mellitus T2DM = type 2 diabetes mellitus TG = triglycerides TNT = Treating to New Targets trial VA-HIT = Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial VLDL-C = very low-density lipoprotein cholesterol WHI = Women's Health Initiative.
Collapse
|
13
|
Deng W, Tang T, Hou Y, Zeng Q, Wang Y, Fan W, Qu S. Extracellular vesicles in atherosclerosis. Clin Chim Acta 2019; 495:109-117. [PMID: 30959044 DOI: 10.1016/j.cca.2019.04.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs), which exist in human blood, are increased in some inflammation-related cardiovascular diseases. EVs are involved in inflammation, immunity, signal transduction, cell survival and apoptosis, angiogenesis, thrombosis, and autophagy, all of which are highly significant for maintaining homeostasis and disease progression. Therefore, EVs are also associated with key steps in atherosclerosis, including cellular lipid metabolism, endothelial dysfunction and vascular wall inflammation, ultimately resulting in vascular remodelling. In this review, we summarize recent studies on EV contents and biological function, focusing on their potential effect in atherosclerosis, including cholesterol metabolism, vascular inflammation, angiogenesis, coagulation and the development of atherosclerotic lesions. EVs may represent potential biomarkers and pharmacological targets for atherosclerotic diseases.
Collapse
Affiliation(s)
- WenYi Deng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - TingTing Tang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - YangFeng Hou
- Clinic Medicine Department, Hengyang Medical School, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qian Zeng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - YuFei Wang
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - WenJing Fan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of south China, Hengyang City, Hunan Province 421001, PR China.
| | - ShunLin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
14
|
Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol 2018; 17:121. [PMID: 30170601 PMCID: PMC6117983 DOI: 10.1186/s12933-018-0763-3] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
The incidence and prevalence of diabetes mellitus is rapidly increasing worldwide at an alarming rate. Type 2 diabetes mellitus (T2DM) is the most prevalent form of diabetes, accounting for approximately 90-95% of the total diabetes cases worldwide. Besides affecting the ability of body to use glucose, it is associated with micro-vascular and macro-vascular complications. Augmented atherosclerosis is documented to be the key factor leading to vascular complications in T2DM patients. The metabolic milieu of T2DM, including insulin resistance, hyperglycemia and release of excess free fatty acids, along with other metabolic abnormalities affects vascular wall by a series of events including endothelial dysfunction, platelet hyperactivity, oxidative stress and low-grade inflammation. Activation of these events further enhances vasoconstriction and promotes thrombus formation, ultimately resulting in the development of atherosclerosis. All these evidences are supported by the clinical trials reporting the importance of endothelial dysfunction and platelet hyperactivity in the pathogenesis of atherosclerotic vascular complications. In this review, an attempt has been made to comprehensively compile updated information available in context of endothelial and platelet dysfunction in T2DM.
Collapse
Affiliation(s)
- Raminderjit Kaur
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
15
|
Badimon L, Suades R, Arderiu G, Peña E, Chiva-Blanch G, Padró T. Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Front Cardiovasc Med 2017; 4:77. [PMID: 29326946 PMCID: PMC5741657 DOI: 10.3389/fcvm.2017.00077] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis (AT) is a progressive chronic disease involving lipid accumulation, fibrosis, and inflammation in medium and large-sized arteries, and it is the main cause of cardiovascular disease (CVD). AT is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Despite lipid-lowering drugs have shown to decrease the risk of cardiovascular events (CVEs), there is a significant burden of AT-related morbidity and mortality. Identification of subjects at increased risk for CVE as well as discovery of novel therapeutic targets for improved treatment strategies are still unmet clinical needs in CVD. Microvesicles (MVs), small extracellular plasma membrane particles shed by activated and apoptotic cells have been widely linked to the development of CVD. MVs from vascular and resident cells by facilitating exchange of biological information between neighboring cells serve as cellular effectors in the bloodstream and play a key role in all stages of disease progression. This article reviews the current knowledge on the role of MVs in AT and CVD. Attention is focused on novel aspects of MV-mediated regulatory mechanisms from endothelial dysfunction, vascular wall inflammation, oxidative stress, and apoptosis to coagulation and thrombosis in the progression and development of atherothrombosis. MV contribution to vascular remodeling is also discussed, with a particular emphasis on the effect of MVs on the crosstalk between endothelial cells and smooth muscle cells, and their role regulating the active process of AT-driven angiogenesis and neovascularization. This review also highlights the latest findings and main challenges on the potential prognostic, diagnostic, and therapeutic value of cell-derived MVs in CVD. In summary, MVs have emerged as new regulators of biological functions in atherothrombosis and might be instrumental in cardiovascular precision medicine; however, significant efforts are still needed to translate into clinics the latest findings on MV regulation and function.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Arderiu
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Gemma Chiva-Blanch
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Research Center (ICCC) and CiberCV, Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain
| |
Collapse
|
16
|
Asleh R, Briasoulis A, Schettle SD, Tchantchaleishvili V, Pereira NL, Edwards BS, Clavell AL, Maltais S, Joyce DL, Joyce LD, Daly RC, Kushwaha SS, Stulak JM. Impact of Diabetes Mellitus on Outcomes in Patients Supported With Left Ventricular Assist Devices. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004213. [DOI: 10.1161/circheartfailure.117.004213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Abstract
Background
Diabetes mellitus (DM) is a risk factor for morbidity and mortality in patients with heart failure. The effect of DM on post–left ventricular assist device (LVAD) implantation outcomes is unclear. This study sought to investigate whether patients with DM had worse outcomes than patients without DM after LVAD implantation and whether LVAD support resulted in a better control of DM.
Methods and Results
We retrospectively reviewed 341 consecutive adults who underwent implantation of LVAD from 2007 to 2016. Patient characteristics and adverse events were studied and compared between patients with and without DM. One hundred thirty-one patients (38%) had DM. Compared with patients without DM, those with DM had higher rates of ischemic cardiomyopathy, LVAD implantation as destination therapy, and increased baseline body mass index. In a proportional hazards (Cox) model with adjustment for relevant covariates and median follow-up of 16.1 months, DM was associated with increased risk of all-cause mortality (hazard ratio, 1.73; 95% confidence interval: 1.18–2.53;
P
=0.005) and increased risk of nonfatal LVAD-related complications, including a composite of stroke, pump thrombosis, and device infection (hazard ratio, 2.1; 95% confidence interval: 1.35–3.18;
P
=0.001). Preoperative hemoglobin A1c was not significantly associated with mortality or adverse events among patients with DM. LVAD implantation resulted in a remarkable decrease in hemoglobin A1c levels (7.4±1.9 pre-LVAD versus 6.0±1.5 and 6.3±1.4 after 3 and 12 months post-LVAD, respectively;
P
<0.0001) and a significant reduction in requirements of DM medications.
Conclusions
DM is associated with increased rates of all-cause mortality and major adverse events despite favorable glycemic control after LVAD implantation.
Collapse
Affiliation(s)
- Rabea Asleh
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | | - Sarah D. Schettle
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | | - Naveen L. Pereira
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Brooks S. Edwards
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Alfredo L. Clavell
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Simon Maltais
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - David L. Joyce
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Lyle D. Joyce
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Richard C. Daly
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Sudhir S. Kushwaha
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - John M. Stulak
- From the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Francois ME, Myette-Cote E, Bammert TD, Durrer C, Neudorf H, DeSouza CA, Little JP. Carbohydrate restriction with postmeal walking effectively mitigates postprandial hyperglycemia and improves endothelial function in type 2 diabetes. Am J Physiol Heart Circ Physiol 2017; 314:H105-H113. [PMID: 29030343 DOI: 10.1152/ajpheart.00524.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Postprandial hyperglycemia has deleterious effects on endothelial function. Restricting carbohydrate intake and postmeal walking have each been shown to reduce postprandial hyperglycemia, but their combination and subsequent effects on endothelial function have not been investigated. Here, we sought to examine the effect of blunting postprandial hyperglycemia by following a low-carbohydrate diet, with or without postmeal walking exercise, on markers of vascular health in type 2 diabetes (T2D). In a randomized crossover design, individuals with T2D ( n = 11) completed three 4-day controlled diet interventions consisting of 1) low-carbohydrate diet alone (LC), 2) low-carbohydrate diet with 15-min postmeal walks (LC + Ex), and 3) low-fat control diet (CON). Fasting blood samples and brachial artery flow-mediated dilation (%FMD) were measured before and after each intervention. Total circulating microparticles (MPs), endothelial MPs, platelet MPs, monocyte-platelet aggregates, and adhesion molecules were assessed as biomarkers of vascular health. There was a significant condition × time interaction for %FMD ( P = 0.01), with post hoc tests revealing improved %FMD after LC + Ex (+0.8 ± 1.0%, P = 0.02), with no change after LC or CON. Endothelial MPs were significantly reduced with the LC diet by ~45% (from 99 ± 60 to 44 ± 31 MPs/μl, P = 0.02), with no change after LC + Ex or CON (interaction: P = 0.04). Total MPs were lower (main effect time: P = 0.02), whereas monocyte-platelet aggregates were higher (main effect time: P < 0.01) after all interventions. Plasma adhesion molecules and C-reactive protein were unaltered. Attenuating postprandial hyperglycemic excursions using a low-carbohydrate diet combined with postmeal walking appears to be an effective strategy to improve endothelial function in individuals with T2D. NEW & NOTEWORTHY Carbohydrate restriction and postmeal walking lower postprandial hyperglycemia in individuals with type 2 diabetes. Here, we show that the combination significantly improved endothelial function and that carbohydrate restriction alone reduced circulating endothelial microparticles in individuals with type 2 diabetes. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/low-carb-diet-and-exercise-improve-endothelial-health/ .
Collapse
Affiliation(s)
- Monique E Francois
- University of British Columbia Okanagan , Kelowna, British Columbia , Canada
| | - Etienne Myette-Cote
- University of British Columbia Okanagan , Kelowna, British Columbia , Canada
| | | | - Cody Durrer
- University of British Columbia Okanagan , Kelowna, British Columbia , Canada
| | - Helena Neudorf
- University of British Columbia Okanagan , Kelowna, British Columbia , Canada
| | | | - Jonathan P Little
- University of British Columbia Okanagan , Kelowna, British Columbia , Canada
| |
Collapse
|
18
|
Zhao Y, Yu Y, Shi M, Yang X, Li X, Jiang F, Chen Y, Tian X. Association study to evaluate TFPI gene in CAD in Han Chinese. BMC Cardiovasc Disord 2017; 17:188. [PMID: 28716011 PMCID: PMC5514508 DOI: 10.1186/s12872-017-0626-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Background Tissue factor pathway inhibitor (TFPI) is the main physiological inhibitor of TF-induced blood coagulation process, and may play essential roles in the pathogenesis of major adverse cardiac events. This study was designed to determine whether the variation of TFPI was related with coronary artery disease (CAD) in the Han Chinese populations. Methods A total of 1271 patients with coronary atherosclerosis and 1287 normal individuals from northern China were enrolled in the present study. Four tagging single-nucleotide polymorphisms (SNPs) (rs7586970, rs6434222, rs10153820 and rs8176528) from TFPI were selected and genotyped by direct sequencing. And the genotypes of the above SNPs were determined in all these participants. Results In the populations from Beijing and Harbin, no significant case-control differences in the frequencies of TFPI polymorphism (rs10153820 and rs8176528) were observed between CAD patients and controls. Meanwhile, two SNPs of TFPI (rs7586970 and rs6434222) were found to be associated with CAD in both groups. In stratified analyses based on gender, smoking, hypertension, diabetes mellitus and hyperlipidemia, we further determined that the investigated genetic variations of the TFPI genes seemed to be related with diabetes mellitus in CAD patients. Conclusions Genetic variations of the TFPI genes seem to be related with CAD, which likely cooperate with metabolic risk factor (diabetes mellitus) and play critical roles in the pathogenesis of coronary artery disease.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Geriatrics, Jinan Military General Hospital, Jinan, 250031, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Maowei Shi
- Department of Geriatrics, Jinan Military General Hospital, Jinan, 250031, China
| | - Xi Yang
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xueqi Li
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Feng Jiang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiaoli Tian
- Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Bratseth V, Byrkjeland R, Njerve IU, Solheim S, Arnesen H, Seljeflot I. Procoagulant activity in patients with combined type 2 diabetes and coronary artery disease: No effects of long-term exercise training. Diab Vasc Dis Res 2017; 14:144-151. [PMID: 28111966 DOI: 10.1177/1479164116679080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated the effects of 12-month exercise training on hypercoagulability in patients with combined type 2 diabetes mellitus and coronary artery disease. Associations with severity of disease were further explored. Patients ( n = 131) were randomized to exercise training or a control group. Blood was collected at inclusion and after 12 months. Tissue factor, free and total tissue factor pathway inhibitor, prothrombin fragment 1 + 2 (F1 + 2) and D-dimer were determined by enzyme-linked immunosorbent assay and ex vivo thrombin generation by the calibrated automated thrombogram assay. Tissue factor and ex vivo thrombin generation increased from baseline to 12 months ( p < 0.01, all), with no significant differences in changes between groups. At baseline, free and total tissue factor pathway inhibitor significantly correlated to fasting glucose ( p < 0.01, both) and HbA1c ( p < 0.05, both). In patients with albuminuria ( n = 34), these correlations were strengthened, and elevated levels of D-dimer, free and total tissue factor pathway inhibitor ( p < 0.01, all) and decreased ex vivo thrombin generation ( p < 0.05, all) were observed. These results show no effects of exercise training on markers of hypercoagulability in our population with combined type 2 diabetes mellitus and coronary artery disease. The association between poor glycaemic control and tissue factor pathway inhibitor might indicate increased endothelial activation. More pronounced hypercoagulability and increased tissue factor pathway inhibitor were demonstrated in patients with albuminuria.
Collapse
Affiliation(s)
- Vibeke Bratseth
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital - Ullevål, Oslo, Norway
- 2 Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Rune Byrkjeland
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital - Ullevål, Oslo, Norway
- 2 Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
- 3 Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida U Njerve
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital - Ullevål, Oslo, Norway
- 2 Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
- 3 Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Solheim
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital - Ullevål, Oslo, Norway
- 2 Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Harald Arnesen
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital - Ullevål, Oslo, Norway
- 2 Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
- 3 Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ingebjørg Seljeflot
- 1 Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital - Ullevål, Oslo, Norway
- 2 Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
- 3 Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Lawson C, Vicencio JM, Yellon DM, Davidson SM. Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol 2016; 228:R57-71. [PMID: 26743452 DOI: 10.1530/joe-15-0201] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed an exponential increase in the number of publications referring to extracellular vesicles (EVs). For many years considered to be extracellular debris, EVs are now seen as novel mediators of endocrine signalling via cell-to-cell communication. With the capability of transferring proteins and nucleic acids from one cell to another, they have become an attractive focus of research for different pathological settings and are now regarded as both mediators and biomarkers of disease including cardio-metabolic disease. They also offer therapeutic potential as signalling agents capable of targeting tissues or cells with specific peptides or miRNAs. In this review, we focus on the role that microvesicles (MVs) and exosomes, the two most studied classes of EV, have in diabetes, cardiovascular disease, endothelial dysfunction, coagulopathies, and polycystic ovary syndrome. We also provide an overview of current developments in MV/exosome isolation techniques from plasma and other fluids, comparing different available commercial and non-commercial methods. We describe different techniques for their optical/biochemical characterization and quantitation. We also review the signalling pathways that exosomes and MVs activate in target cells and provide some insight into their use as biomarkers or potential therapeutic agents. In summary, we give an updated focus on the role that these exciting novel nanoparticles offer for the endocrine community.
Collapse
Affiliation(s)
- Charlotte Lawson
- Department of Comparative Biomedical SciencesRoyal Veterinary College, Royal College Street, London NW1 0TU, UKThe Hatter Cardiovascular InstituteUniversity College London, London WC1E 6HX, UK
| | - Jose M Vicencio
- Department of Comparative Biomedical SciencesRoyal Veterinary College, Royal College Street, London NW1 0TU, UKThe Hatter Cardiovascular InstituteUniversity College London, London WC1E 6HX, UK
| | - Derek M Yellon
- Department of Comparative Biomedical SciencesRoyal Veterinary College, Royal College Street, London NW1 0TU, UKThe Hatter Cardiovascular InstituteUniversity College London, London WC1E 6HX, UK
| | - Sean M Davidson
- Department of Comparative Biomedical SciencesRoyal Veterinary College, Royal College Street, London NW1 0TU, UKThe Hatter Cardiovascular InstituteUniversity College London, London WC1E 6HX, UK
| |
Collapse
|
21
|
Hänzelmann S, Wang J, Güney E, Tang Y, Zhang E, Axelsson AS, Nenonen H, Salehi AS, Wollheim CB, Zetterberg E, Berntorp E, Costa IG, Castelo R, Rosengren AH. Thrombin stimulates insulin secretion via protease-activated receptor-3. Islets 2015; 7:e1118195. [PMID: 26742564 PMCID: PMC4878264 DOI: 10.1080/19382014.2015.1118195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes ('module') including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a 'tethered ligand' to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca(2+) release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D.
Collapse
Affiliation(s)
- Sonja Hänzelmann
- Research Program on Biomedical Informatics (GRIB); Hospital del Mar Medical Research Institute (IMIM); Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra; Parc de Recerca Biomédica de Barcelona; Barcelona, Catalonia, Spain
- Lund University Diabetes Center; Lund University; Malmö, Sweden
- Interdisciplinary Center for Clinical Research (IZKF); RWTH University Medical School; Aachen, Germany
- These authors contributed equally to this work
| | - Jinling Wang
- Lund University Diabetes Center; Lund University; Malmö, Sweden
- These authors contributed equally to this work
| | - Emre Güney
- Universitat Pompeu Fabra; Parc de Recerca Biomédica de Barcelona; Barcelona, Catalonia, Spain
- Center for Complex Network Research; Northeastern University; Boston, MA USA
| | - Yunzhao Tang
- Lund University Diabetes Center; Lund University; Malmö, Sweden
| | - Enming Zhang
- Lund University Diabetes Center; Lund University; Malmö, Sweden
| | | | - Hannah Nenonen
- Lund University Diabetes Center; Lund University; Malmö, Sweden
| | - Albert S Salehi
- Lund University Diabetes Center; Lund University; Malmö, Sweden
| | - Claes B Wollheim
- Lund University Diabetes Center; Lund University; Malmö, Sweden
- Department of Cell Physiology and Metabolism; University Medical Center; Geneva, Switzerland
| | - Eva Zetterberg
- Clinical Coagulation Research Unit; Department of Clinical Sciences Malmö; Lund University; Malmö, Sweden
| | - Erik Berntorp
- Clinical Coagulation Research Unit; Department of Clinical Sciences Malmö; Lund University; Malmö, Sweden
| | - Ivan G Costa
- Interdisciplinary Center for Clinical Research (IZKF); RWTH University Medical School; Aachen, Germany
- Helmholtz-Institute for Biomedical Engineering; RWTH University Medical School; Aachen, Germany
| | - Robert Castelo
- Research Program on Biomedical Informatics (GRIB); Hospital del Mar Medical Research Institute (IMIM); Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra; Parc de Recerca Biomédica de Barcelona; Barcelona, Catalonia, Spain
| | - Anders H Rosengren
- Lund University Diabetes Center; Lund University; Malmö, Sweden
- These authors contributed equally to this work
- Correspondence to: Anders H Rosengren;
| |
Collapse
|
22
|
Tenenbaum A, Klempfner R, Fisman EZ. Hypertriglyceridemia: a too long unfairly neglected major cardiovascular risk factor. Cardiovasc Diabetol 2014; 13:159. [PMID: 25471221 PMCID: PMC4264548 DOI: 10.1186/s12933-014-0159-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 12/27/2022] Open
Abstract
The existence of an independent association between elevated triglyceride (TG) levels, cardiovascular (CV) risk and mortality has been largely controversial. The main difficulty in isolating the effect of hypertriglyceridemia on CV risk is the fact that elevated triglyceride levels are commonly associated with concomitant changes in high density lipoprotein (HDL), low density lipoprotein (LDL) and other lipoproteins. As a result of this problem and in disregard of the real biological role of TG, its significance as a plausible therapeutic target was unfoundedly underestimated for many years. However, taking epidemiological data together, both moderate and severe hypertriglyceridaemia are associated with a substantially increased long term total mortality and CV risk. Plasma TG levels partially reflect the concentration of the triglyceride-carrying lipoproteins (TRL): very low density lipoprotein (VLDL), chylomicrons and their remnants. Furthermore, hypertriglyceridemia commonly leads to reduction in HDL and increase in atherogenic small dense LDL levels. TG may also stimulate atherogenesis by mechanisms, such excessive free fatty acids (FFA) release, production of proinflammatory cytokines, fibrinogen, coagulation factors and impairment of fibrinolysis. Genetic studies strongly support hypertriglyceridemia and high concentrations of TRL as causal risk factors for CV disease. The most common forms of hypertriglyceridemia are related to overweight and sedentary life style, which in turn lead to insulin resistance, metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM). Intensive lifestyle therapy is the main initial treatment of hypertriglyceridemia. Statins are a cornerstone of the modern lipids-modifying therapy. If the primary goal is to lower TG levels, fibrates (bezafibrate and fenofibrate for monotherapy, and in combination with statin; gemfibrozil only for monotherapy) could be the preferable drugs. Also ezetimibe has mild positive effects in lowering TG. Initial experience with en ezetimibe/fibrates combination seems promising. The recently released IMPROVE-IT Trial is the first to prove that adding a non-statin drug (ezetimibe) to a statin lowers the risk of future CV events. In conclusion, the classical clinical paradigm of lipids-modifying treatment should be changed and high TG should be recognized as an important target for therapy in their own right. Hypertriglyceridemia should be treated.
Collapse
Affiliation(s)
- Alexander Tenenbaum
- Cardiac Rehabilitation Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel.
| | - Robert Klempfner
- Cardiac Rehabilitation Institute, Sheba Medical Center, 52621, Tel-Hashomer, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel.
| | - Enrique Z Fisman
- Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel. .,Cardiovascular Diabetology Research Foundation, 58484, Holon, Israel.
| |
Collapse
|
23
|
Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 2013; 34:2436-43. [PMID: 23641007 PMCID: PMC3743069 DOI: 10.1093/eurheartj/eht149] [Citation(s) in RCA: 698] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia and insulin resistance are key players in the development of atherosclerosis and its complications. A large body of evidence suggest that metabolic abnormalities cause overproduction of reactive oxygen species (ROS). In turn, ROS, via endothelial dysfunction and inflammation, play a major role in precipitating diabetic vascular disease. A better understanding of ROS-generating pathways may provide the basis to develop novel therapeutic strategies against vascular complications in this setting. Part I of this review will focus on the most current advances in the pathophysiological mechanisms of vascular disease: (i) emerging role of endothelium in obesity-induced insulin resistance; (ii) hyperglycemia-dependent microRNAs deregulation and impairment of vascular repair capacities; (iii) alterations of coagulation, platelet reactivity, and microparticle release; (iv) epigenetic-driven transcription of ROS-generating and proinflammatory genes. Taken together these novel insights point to the development of mechanism-based therapeutic strategies as a promising option to prevent cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Francesco Paneni
- Cardiology and Cardiovascular Research, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Stolla MC, Li D, Lu L, Woulfe DS. Enhanced platelet activity and thrombosis in a murine model of type I diabetes are partially insulin-like growth factor 1-dependent and phosphoinositide 3-kinase-dependent. J Thromb Haemost 2013; 11:919-29. [PMID: 23406214 DOI: 10.1111/jth.12170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/29/2013] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To determine whether dysregulation of platelet signaling mechanisms contributes to the increased risk of thrombosis associated with diabetes, using a type I diabetes mouse model. METHODS AND RESULTS Type I diabetes was induced in C57Bl6 mice following streptozotocin injection. Arterial thrombosis, platelet signaling and function were assessed 4 weeks later in comparison with non-diabetic control mice. Fifty-seven per cent of diabetic mice (glucose level of > 250 mg dL(-1) ) developed stable occlusive thrombi after FeCl3 injury, as compared with 5% of their non-diabetic counterparts, suggesting that diabetic mice are more sensitive to arterial injury (P ≤ 0.02). Platelets from diabetic mice were more sensitive to protease-activated receptor 4 (PAR4) agonist-induced fibrinogen binding than platelets from non-diabetic mice, and the average Akt phosphorylation induced by PAR4 agonist peptide was greater (P ≤ 0.01) in platelets from diabetic mice. Recent studies suggest that insulin-like growth factor 1 (IGF-1) potentiates Akt phosphorylation in platelets. To determine whether IGF-1 signaling contributes to the increase in PAR4 sensitivity in platelets from diabetic mice, platelet signaling and function were evaluated in the presence of inhibitors of the IGF-1 receptor. IGF-1 receptor inhibition reduced Akt phosphorylation and fibrinogen binding in platelets from diabetic mice to levels consistent with those seen in normoglycemic platelets, but had no significant effect on platelets from non-diabetic mice. CONCLUSIONS The results suggest that platelets from mice with streptozotocin-induced diabetes show enhanced platelet Akt phosphorylation and activity resulting from IGF-1-dependent mechanisms. Increases in platelet Akt activation may explain the enhanced sensitivity to thrombotic insult seen in diabetic mice.
Collapse
Affiliation(s)
- M C Stolla
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
25
|
Beckman JA, Paneni F, Cosentino F, Creager MA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 2013; 34:2444-52. [DOI: 10.1093/eurheartj/eht142] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
McGovern K, Lascola K, Smith S, Clark-Price S, Wilkins P, Schaeffer D, Foreman J. The Effects of Hyperglycemia and Endotoxemia on Coagulation Parameters in Healthy Adult Horses. J Vet Intern Med 2013; 27:347-53. [DOI: 10.1111/jvim.12052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- K.F. McGovern
- Department of Veterinary Clinical Medicine; University of Illinois; Urbana IL
| | - K.M. Lascola
- Department of Veterinary Clinical Medicine; University of Illinois; Urbana IL
| | - S.A. Smith
- College of Medicine; University of Illinois; Urbana IL
| | - S.C. Clark-Price
- Department of Veterinary Clinical Medicine; University of Illinois; Urbana IL
| | - P.A. Wilkins
- Department of Veterinary Clinical Medicine; University of Illinois; Urbana IL
| | - D.J. Schaeffer
- Department of Biosciences; University of Illinois; Urbana IL
| | - J.H. Foreman
- Department of Veterinary Clinical Medicine; University of Illinois; Urbana IL
| |
Collapse
|
27
|
Dombrowski NC, Karounos DG. Pathophysiology and management strategies for hyperglycemia for patients with acute illness during and following a hospital stay. Metabolism 2013; 62:326-36. [PMID: 22999713 DOI: 10.1016/j.metabol.2012.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/15/2023]
Abstract
Hyperglycemia in the inpatient setting is associated with poor clinical outcomes and is often suboptimally managed. This review addresses the pathophysiology of hyperglycemia, current recommendations for management of inpatient hyperglycemia in the general medical and surgical care setting, the transition between different diabetes treatments, and the transition from inpatient to outpatient therapy. The preferred drug for management of inpatient hyperglycemia is insulin. Successful use of intravenous and subcutaneous insulin in the hospital is based on the implementation of standardized protocols. Current guidelines recommend basal-bolus subcutaneous insulin in non-critically ill patients. The methods of switching from intravenous to subcutaneous, sliding-scale to basal-bolus, and biphasic to basal-bolus are discussed. Transition from an inpatient to an outpatient insulin regimen, especially in patients new to insulin therapy, requires special attention to ensure that patients have the knowledge to administer insulin safely and effectively. The optimal regimen at discharge must be individualized. Patients with acute infections may benefit from insulin therapy until the infection is resolved. Strategies to optimize diabetes therapy after discharge are discussed. Prompt outpatient follow-up is crucial to ensure optimal glycemic control. Despite the challenges, improved glycemic control in individuals with acute illness has the potential to reduce morbidity and mortality in individuals with this widespread metabolic illness.
Collapse
Affiliation(s)
- Nicole C Dombrowski
- Division of Endocrinology and Molecular Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | | |
Collapse
|
28
|
Rollini F, Franchi F, Muñiz-Lozano A, Angiolillo DJ. Platelet function profiles in patients with diabetes mellitus. J Cardiovasc Transl Res 2013; 6:329-45. [PMID: 23404189 DOI: 10.1007/s12265-013-9449-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/25/2013] [Indexed: 12/22/2022]
Abstract
Patients with diabetes mellitus (DM) are at high risk for several cardiovascular disorders such as coronary heart disease, stroke, peripheral arterial disease, and congestive heart failure. DM has reached epidemic proportions and its strong association with coronary artery disease is responsible for increased cardiovascular morbidity and mortality. DM patients are characterized by platelet hyperreactivity, which contribute to the enhanced atherothrombotic risk of these subjects. Several mechanisms are involved in the hyperreactive platelet phenotype characterizing DM patients. Furthermore, a large proportion of DM patients show inadequate response to standard antiplatelet treatments and high rate of adverse recurrent cardiovascular events despite compliance with standard antiplatelet treatment regimens. Therefore, new antiplatelet treatment regimens are warranted in DM patients to reduce their atherothrombotic risk. The present manuscript provides an overview on the current status of knowledge on platelet function profiles in patients with DM and therapeutic considerations.
Collapse
Affiliation(s)
- Fabiana Rollini
- University of Florida College of Medicine-Jacksonville, 655 West 8th Street, Jacksonville, FL 32209, USA
| | | | | | | |
Collapse
|
29
|
McGovern KF, Lascola KM, Smith SA, Clark-Price SC, McMichael M, Wilkins PA. Assessment of acute moderate hyperglycemia on traditional and thromboelastometry coagulation parameters in healthy adult horses. J Vet Emerg Crit Care (San Antonio) 2012; 22:550-7. [DOI: 10.1111/j.1476-4431.2012.00792.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 07/16/2012] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Stephanie A. Smith
- College of Medicine; University of Illinois; 1008 W Hazelwood Drive; Urbana; IL; 61802
| | | | | | | |
Collapse
|
30
|
Jellinger PS, Smith DA, Mehta AE, Ganda O, Handelsman Y, Rodbard HW, Shepherd MD, Seibel JA. American Association of Clinical Endocrinologists' Guidelines for Management of Dyslipidemia and Prevention of Atherosclerosis. Endocr Pract 2012; 18 Suppl 1:1-78. [PMID: 22522068 DOI: 10.4158/ep.18.s1.1] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharmacol 2012; 3:87. [PMID: 22582044 PMCID: PMC3348620 DOI: 10.3389/fphar.2012.00087] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/19/2012] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disorder arising from lack of insulin production or insulin resistance (Diagnosis and classification of diabetes mellitus, 2007). DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR; ALR2; EC 1.1.1.21), a key enzyme in the polyol pathway, catalyzes nicotinamide adenosine dinucleotide phosphate-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS) in various tissues of DM including the heart, vasculature, neurons, eyes, and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis) and myocardium (heart failure) leading to severe morbidity and mortality (reviewed in Heather and Clarke, 2011). In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis, and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.
Collapse
Affiliation(s)
- Wai Ho Tang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University New Haven, CT, USA
| | | | | |
Collapse
|
32
|
El-Hagracy RS, Kamal GM, Sabry IM, Saad AA, Abou El Ezz NF, Nasr HAR. Tissue Factor, Tissue Factor Pathway Inhibitor and Factor VII Activity in Cardiovascular Complicated Type 2 Diabetes Mellitus. Oman Med J 2011; 25:173-8. [PMID: 22043333 DOI: 10.5001/omj.2010.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Accepted: 03/02/2010] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Tissue factor (TF) is the main initiator of the extrinsic coagulation pathway through factor VII (FVII) activation, which is physiologically inhibited by tissue factor pathway inhibitor (TFPI). Alteration of this pathway has been described in Type 2 diabetes mellitus (T2DM). The aim of this study is to assess TF and TFPI plasma levels and FVII coagulant activity (FVIIa) in T2DM in relation to cardiothrombotic disease and their correlation to metabolic and clinical behavior of the patients. METHODS The study was conducted on 80 T2DM patients divided to accordingly; groupI: 40 patients without a history or clinically detected heart disease, and groupII: 40 patients with a history of myocardial infarction compared to 30 controls. The patients were recruited from Ain Shams University diabetes clinic from September 2007 to February 2009 after informed consent was obtained. Peripheral blood samples were taken for measurement of plasma TF and TFPI levels using ELISA technique and quantitative FVIIa using FVII deficient plasma. RESULTS Plasma levels of TF, TFPI and FVIIa were significantly higher in T2DM patients compared to the controls (p<0.001). TF (236.50±79.23)and TFPI (242.33±85.84)were significantly higher in group II, compared to group I (150.33±81.16), (152.8± 82.46), (p<0.001). TF and TFPI were significantly correlated to body mass index and glycemic control. Also, TF and TFPI were significantly higher in hypertensives (p=0.001) and dyslipidemics (p=0.006) but not in smokers (p=0.64), (p=0.11) respectively. CONCLUSION There was a correlation between high TF, TFPI plasma levels, FVIIa activity and cardiothrombotic complications in T2DM especially in the presence of high risk factors such as poor glycemic control, dyslipidemia and obesity. Future target therapy against TF may be beneficial for T2DM patients.
Collapse
|
33
|
Morel O, Kessler L, Ohlmann P, Bareiss P. Diabetes and the platelet: Toward new therapeutic paradigms for diabetic atherothrombosis. Atherosclerosis 2010; 212:367-76. [DOI: 10.1016/j.atherosclerosis.2010.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 03/05/2010] [Accepted: 03/18/2010] [Indexed: 01/21/2023]
|
34
|
Abstract
Patients with diabetes mellitus (DM) have accelerated atherosclerosis, which is the main underlying factor contributing to the high risk of atherothrombotic events in these patients. Atherothrombotic complications are the leading cause of morbidity and mortality in patients with DM. Among factors contributing to the prothrombotic condition which characterise patients with DM, platelet hyperreactivity plays a pivotal role. Platelets of DM patients are characterised by dysregulation of several signalling pathways leading to intensified adhesion, activation and aggregation. Multiple mechanisms are involved in platelet dysfunction of patients with DM, which can be categorised as follows: a) hyperglycaemia, b) insulin deficiency and resistance, c) associated metabolic conditions, and d) other cellular abnormalities.The present manuscript aims to provide an overview on the current status of knowledge on platelet abnormalities that characterise patients with DM.
Collapse
Affiliation(s)
- José Luis Ferreiro
- IDIBELL-Hospital Universitari de Bellvitge, Department of Cardiology, Interventional Cardiology Unit, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | |
Collapse
|
35
|
Owens AP, Mackman N. Tissue factor and thrombosis: The clot starts here. Thromb Haemost 2010; 104:432-9. [PMID: 20539911 PMCID: PMC3043984 DOI: 10.1160/th09-11-0771] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/29/2010] [Indexed: 01/17/2023]
Abstract
Thrombosis, or complications from thrombosis, currently occupies the top three positions in the cardiovascular causes of morbidity and mortality in the developed world. There are a limited number of safe and effective drugs to prevent and treat thrombosis. Animal models of thrombosis are necessary to better understand the complex components and interactions involved in the formation of a clot. Tissue factor (TF) is required for the initiation of blood coagulation and likely plays a key role in both arterial and venous thrombosis. Understanding the role of TF in thrombosis may permit the development of new antithrombotic drugs. This review will focus on the role of TF in in vivo models of thrombosis.
Collapse
Affiliation(s)
- A Phillip Owens
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, USA
| | | |
Collapse
|
36
|
Pidala J, Kim J, Kharfan-Dabaja MA, Nishihori T, Field T, Perkins J, Perez L, Fernandez H, Anasetti C. Dysglycemia following glucocorticoid therapy for acute graft-versus-host disease adversely affects transplantation outcomes. Biol Blood Marrow Transplant 2010; 17:239-48. [PMID: 20637884 DOI: 10.1016/j.bbmt.2010.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 07/04/2010] [Indexed: 01/08/2023]
Abstract
Disordered glucose metabolism is a common complication of glucocorticoid therapy for acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic cell transplantation (HCT). We aimed to examine the impact of dysglycemia on outcomes in 173 recipients of HCT treated with glucocorticoids for aGVHD. A total of 147 of these patients contributed data to a landmark analysis performed at 12 weeks post-HCT. Median aGVHD onset was 21 days (range: 5-79) after transplant. Median duration of glucocorticoid therapy was 381 days (range: 15-1632). Glucose values were obtained from glucocorticoid initiation date to death or last follow-up, resulting in 11,588 total values. The median (range) for each parameter were: maximum 292 mg/dL (128-694), minimum 75 mg/dL (34-142), average 142 mg/dL (86-327), and standard deviation 46 mg/dL (12-108). Baseline diabetes mellitus predicted significantly greater maximum, mean, and standard deviation. With median follow-up of 20 months (range: 3-55), median overall survival (OS) was 33.7 months (95% confidence interval [CI] 16.4-not reached). On multivariable analysis, maximum, average, or standard deviation of glucose values predicted OS and maximum or average glucose values predicted nonrelapse mortality (NRM). Minimum glucose values of (0-60 mg/dL) were associated with worsened OS and increased NRM. Those patients treated with insulin or oral agents suffered significantly worse OS and increased NRM compared to patients who did not need therapy. Finally, those with sustained maximum values >200 mg/dL despite treatment suffered worse OS and increased NRM. These data suggest an independent adverse effect of dysglycemia in patients treated with glucocorticoids for aGVHD, and argue for stringent glycemic control in this setting.
Collapse
Affiliation(s)
- Joseph Pidala
- Department of Blood and Marrow Transplantation, Moffitt Cancer Center, Tampa, Florida, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Razmara M, Hjemdahl P, Ostenson CG, Li N. Platelet hyperprocoagulant activity in Type 2 diabetes mellitus: attenuation by glycoprotein IIb/IIIa inhibition. J Thromb Haemost 2008; 6:2186-92. [PMID: 18983513 DOI: 10.1111/j.1538-7836.2008.03185.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Platelets are hyperactive in Type 2 diabetes mellitus (T2DM), and antiplatelet treatment with glycoprotein (GP) IIb/IIIa inhibitors provides better thrombotic protection in DM than in non-diabetic subjects. OBJECTIVE We hypothesized that diabetic platelets are hyperprocoagulant, and that this hyperactivity can be inhibited by GPIIb/IIIa blockade. METHODS Patients with T2DM and gender/age/body mass index-matched non-diabetic controls were recruited (n = 12 for both) to study the effect of GPIIb/IIIa blockade on platelet procoagulant activity. Platelet phosphotidylserine (PS), factor (F) Va expression, and platelet-derived microparticle (PDMP) generation were measured by whole blood flow cytometry. Platelet-dependent thrombin generation and plasma clotting time were monitored in recalcified platelet-rich plasma. RESULTS Compared to controls, basal platelet activation was similar, while thrombin receptor activating peptide stimulated activation was enhanced in patients with T2DM. Diabetic platelets also displayed more profound elevations of platelet PS exposure, FVa binding, and PDMP generation upon stimulation. These alterations resulted in a hyperprocoagulant state, as evidenced by a marked increase in the platelet procoagulant index, enhanced thrombin generation, and a shortened plasma clotting time. GPIIb/IIIa blockade by c7E3 or SR121566 decreased platelet PS exposure and FVa binding, and diminished platelet procoagulant activity in patients with T2DM. CONCLUSIONS Platelets have increased procoagulant activity in patients with T2DM. The hyperprocoagulant activity is counteracted by GPIIb/IIIa blockade.
Collapse
Affiliation(s)
- M Razmara
- Department of Medicine, Clinical Pharmacology Unit, Karolinska University Hospital, Solna, Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
Abstract
Plasma free fatty acid (FFA) levels are elevated in obesity. FFAs cause insulin resistance in all major insulin target organs (skeletal muscle, liver, endothelial cells) and have emerged as a major link between obesity, the development of the metabolic syndrome, and atherosclerotic vascular disease. FFAs also produce low-grade inflammation in skeletal muscle, liver, and fat, which may contribute to cardiovascular events. The challenges for the future include the prevention or correction of obesity and elevated plasma FFA levels through methods that include decreased caloric intake and increased caloric expenditure, the development of methods to measure FFAs in small blood samples, and the development of efficient pharmacologic approaches to normalize increased plasma FFA levels.
Collapse
Affiliation(s)
- Guenther Boden
- Department of Medicine, Division of Endocrinology/Diabetes/Metabolism, Temple University School of Medicine, Temple University Hospital, 3401 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
39
|
Ettelaie C, Su S, Li C, Collier MEW. Tissue factor-containing microparticles released from mesangial cells in response to high glucose and AGE induce tube formation in microvascular cells. Microvasc Res 2008; 76:152-60. [PMID: 18725234 DOI: 10.1016/j.mvr.2008.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 07/23/2008] [Indexed: 11/18/2022]
Abstract
Hyperglycaemia and the associated formation of advanced glycation end-products (AGE) have been implicated in the pathogenesis of diabetic vasculopathy. In addition to its role in coagulation, tissue factor (TF) is known to regulate vascular proliferation and angiogenesis. In this study, the influence of AGE and glucose on the expression of TF in human renal mesangial cells (HRMC) and the subsequent induction of capillary formation by human dermal microvascular endothelial cells (HDMEC) were measured. Furthermore, the activity of TF, incorporated into microparticles was investigated. Both AGE and elevated glucose were capable of upregulating the expression of TF expression in a concentration-dependent manner in HRMC but not in HDMEC. This TF antigen and activity in the conditioned media from HRMC was associated with microparticles. Moreover, the formation of capillaries was readily induced on supplementation of HDMEC with conditioned media, from AGE-treated or high glucose-treated HRMC but not on incubation of HDMEC with either AGE or hyperphysiological concentrations of glucose. Furthermore, the rate of capillary formation was suppressed on incubation of the conditioned media with a polyclonal antibody against TF but not against VEGF. This study indicates that TF-containing microparticles are an important pro-inflammatory mediator acting as a mediator between elevated glucose and the development of diabetic vasculopathy by altering the angiogenic properties of endothelial cells and offers one explanation for the correlation between diabetes and microvascular disease.
Collapse
Affiliation(s)
- Camille Ettelaie
- Biomedical Section, Department of Biological Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | | | | |
Collapse
|