1
|
Chbel A, Lafnoune A, Nait Irahal I, Bourhim N. Macromolecules from mushrooms, venoms, microorganisms, and plants for diabetes treatment - Progress or setback? Biochimie 2024:S0300-9084(24)00163-9. [PMID: 38996998 DOI: 10.1016/j.biochi.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Diabetes is a substantial public health issue, while its prevalence continues to rise worldwide, affecting millions of persons between the ages of 20 and 80, the development of new therapeutic classes improving glycemic control and consequently micro and macrovascular complications are needed. Today, diabetes treatment is daily for life, and should not be interrupted. However, insulin secretagogues medications, and exogenous self-administration of insulin provide efficient antidiabetic effects, but their misuse leads to hypoglycemic complications besides other risks, hence the need to look for other natural products not to use solely but in concert with others types of medications. In this review, we will highlight briefly the pathophysiology of diabetes and its complications, then we will report the main bioactive macromolecules derived from various sources of natural products providing anti-diabetic properties. However, further researches need to be carried out to face the limitations hampering the development of effective natural drugs for diabetes treatment.
Collapse
Affiliation(s)
- Asmaa Chbel
- Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Ayoub Lafnoune
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur Du Maroc, 1, Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Imane Nait Irahal
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco; INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807, Villejuif Cedex, France.
| | - Noureddine Bourhim
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| |
Collapse
|
2
|
Al-Taie A, Sheta N. Clinically Approved Monoclonal Antibodies-based Immunotherapy: Association With Glycemic Control and Impact Role of Clinical Pharmacist for Cancer Patient Care. Clin Ther 2024; 46:e29-e44. [PMID: 37932154 DOI: 10.1016/j.clinthera.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Compared with more conventional, nonspecific therapy options, such as radiotherapy and chemotherapy, monoclonal antibodies (mAbs) constitute a crucial approach of cancer treatment. Multiple autoimmune diseases have been observed during treatment with mAb medications, including autoimmune diabetes mellitus (DM). This study provides a narrative review of clinically approved mAbs in cancer treatment and focuses on the development of hyperglycemia and DM arising from using these therapies. Furthermore, it highlights the critical role of oncology clinical pharmacists in the management of autoimmune DM and patient care while using these medications in an oncology setting. METHODS An extensive literature search was conducted using various sources of electronic databases, such as Scopus, Embase, Web of Science, and PubMed, and search engines, such as Google Scholar, for studies on mAb classification, types, mechanisms of action, pharmacokinetic properties, current clinical applications, and the associated common adverse effects with significant recommendations for patient care in an oncology setting, along with focusing on the proposed mechanisms and clinical studies that reported the association of DM after the use of these therapies. FINDINGS There are 4 types (murine, chimeric, humanized, and human) and 3 classes (unconjugated, conjugated, and bispecific) of mAbs with several mechanisms of action that can destroy cancer cells, including preventing tumor cell survival cascades, inhibiting tumor growth by interfering with tumor angiogenesis, evading programmed cell death, and bypassing immune checkpoints. However, multiple endocrinopathies, autoimmune diseases, and complications were reported from the use of these medications, including the development of autoimmune DM and diabetic ketoacidosis. These autoimmune disorders were reported most with the use of immune checkpoint inhibitors, including inhibitors of the programmed cell death protein 1 (nivolumab and pembrolizumab), its ligand (atezolizumab, avelumab, and durvalumab), and cytotoxic T-lymphocyte-associated protein 4 (ipilimumab). IMPLICATIONS mAbs are considered important approaches for the treatment of many cancer types. However, a high incidence of hyperglycemia, type 1 DM, and diabetic ketoacidosis is observed with the use of these medications, particularly immune checkpoint inhibitors. It is important for oncologic clinical pharmacists to be involved in addressing these autoimmune disorders from the use of these immunotherapies via the provision of patient education, medication adherence support, close monitoring, and follow-up, which will lead to better health-related outcomes and improved patient quality of life.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Clinical Pharmacy Department, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye.
| | - Najat Sheta
- Clinical Pharmacy Department, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
| |
Collapse
|
3
|
Mateus Gonçalves L, Fahd Qadir MM, Boulina M, Makhmutova M, Pereira E, Almaça J. Pericyte dysfunction and impaired vasomotion are hallmarks of islets during the pathogenesis of type 1 diabetes. Cell Rep 2023; 42:112913. [PMID: 37531253 PMCID: PMC10529889 DOI: 10.1016/j.celrep.2023.112913] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Pancreatic islets are endocrine organs that depend on their microvasculature to function. Along with endothelial cells, pericytes comprise the islet microvascular network. These mural cells are crucial for microvascular stability and function, but it is not known if/how they are affected during the development of type 1 diabetes (T1D). Here, we investigate islet pericyte density, phenotype, and function using living pancreas slices from donors without diabetes, donors with a single T1D-associated autoantibody (GADA+), and recent onset T1D cases. Our data show that islet pericyte and capillary responses to vasoactive stimuli are impaired early on in T1D. Microvascular dysfunction is associated with a switch in the phenotype of islet pericytes toward myofibroblasts. Using publicly available RNA sequencing (RNA-seq) data, we further found that transcriptional alterations related to endothelin-1 signaling and vascular and extracellular matrix (ECM) remodeling are hallmarks of single autoantibody (Aab)+ donor pancreata. Our data show that microvascular dysfunction is present at early stages of islet autoimmunity.
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| | - Maria Boulina
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Madina Makhmutova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Rose Lukesh N, Middleton DD, Bachelder EM, Ainslie KM. Particle-Based therapies for antigen specific treatment of type 1 diabetes. Int J Pharm 2023; 631:122500. [PMID: 36529362 PMCID: PMC9841461 DOI: 10.1016/j.ijpharm.2022.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus (T1D) is the leading metabolic disorder in children worldwide. Over time, incidence rates have continued to rise with 20 million individuals affected globally by the autoimmune disease. The current standard of care is costly and time-consuming requiring daily injections of exogenous insulin. T1D is mediated by autoimmune effector responses targeting autoantigens expressed on pancreatic islet β-cells. One approach to treat T1D is to skew the immune system away from an effector response by taking an antigen-specific approach to heighten a regulatory response through a therapeutic vaccine. An antigen-specific approach has been shown with soluble agents, but the effects have been limited. Micro or nanoparticles have been used to deliver a variety of therapeutic agents including peptides and immunomodulatory therapies to immune cells. Particle-based systems can be used to deliver cargo into the cell and microparticles can passively target phagocytic cells. Further, surface modification and controlled release of encapsulated cargo can enhance delivery over soluble agents. The induction of antigen-specific immune tolerance is imperative for the treatment of autoimmune diseases such as T1D. This review highlights studies that utilize particle-based platforms for the treatment of T1D.
Collapse
Affiliation(s)
- Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
5
|
Fukui T, Takehana N, Mori Y, Hiromura M, Terasaki M, Kushima H, Takada M, Tomoyasu M, Sato N, Hayashi T, Ohara M, Kikuchi T, Ito Y, Kobayashi T, Yamagishi SI. Efficacy of a new enzyme-linked immunosorbent assay system for three islet cell autoantibodies in Japanese patients with acute-onset type 1 diabetes. Endocr J 2022; 69:1343-1349. [PMID: 35753761 DOI: 10.1507/endocrj.ej22-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To evaluate the clinical efficacy of a new enzyme-linked immunosorbent assay (ELISA) system for simultaneously detecting three islet cell autoantibodies against glutamic acid decarboxylase (GADA), insulinoma-associated antigen-2 (IA-2A), and zinc transporter 8 (ZnT8A) (3 Screen ICA ELISA) in Japanese patients with acute-onset type 1 diabetes (T1D). In addition, clinical factors affecting the 3 Screen ICA ELISA index were investigated. We compared the positivity values of 3 Screen ICA ELISA with that of each autoantibody alone in 97 patients with acute-onset T1D (mean age 48.7 years, 49% male) and 100 non-diabetic subjects (mean age 47.0 years, 50% male). Serum thyroid stimulating hormone receptor antibody, thyroid peroxidase antibody (TPOAb) and thyroglobulin autoantibody levels were also evaluated. The cut-off value of the 3 Screen ICA ELISA was determined based on the 97th percentile of 100 non-diabetic controls (threshold for positivity, ≥14 index). The mean age of disease onset and duration of diabetes were 34.2 years and 14.5 years, respectively. Among all T1D patients, the positivity of 3 Screen ICA ELISA was 71.1%, while that of GADA, IA-2A, and ZnT8A were 59.8%, 25.8%, and 25.8%, respectively. The median 3 Screen ICA index was 121.9 (8.7-468.2) and was associated with titers of each autoantibody, most so with GADA, and was significantly higher in TPOAb-positive patients than in TPOAb-negative patients. Our findings suggests that the 3 Screen ICA ELISA may be a time-saving diagnostic tool for evaluating islet autoantibodies in acute-onset T1D patients.
Collapse
Affiliation(s)
- Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Nobuaki Takehana
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Michiya Takada
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa 224-8503, Japan
| | - Masako Tomoyasu
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Kanagawa 224-8503, Japan
| | - Nobuko Sato
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Toshiyuki Hayashi
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| | | | | | - Tetsuro Kobayashi
- Division of Immunology and Molecular Medicine, Okinaka Memorial Institute for Medical Research, Tokyo 105-8470, Japan
| | - Sho-Ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan
| |
Collapse
|
6
|
Kim KY, Kim MS, Lee YJ, Lee YA, Lee SY, Shin CH, Kim JH. Glutamic Acid Decarboxylase and Tyrosine Phosphatase-Related Islet Antigen-2 Positivity among Children and Adolescents with Diabetes in Korea. Diabetes Metab J 2022; 46:948-952. [PMID: 35263538 PMCID: PMC9723202 DOI: 10.4093/dmj.2021.0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Autoantibodies against glutamic acid decarboxylase (GADA), tyrosine phosphatase-related islet antigen 2 (IA2A), insulin (INSA), and islet cells (ICA) are critical for determining the type of diabetes and management strategy in new-onset diabetes mellitus (NODM), but there have been few reports of all diabetes-associated autoantibody (DAA) in Korea. We retrospectively analyzed 193 patients with NODM aged 0 to 18 years who were followed at two tertiary centers in Korea (2017 to 2021). Patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) were 93 (48.2%) and 100 (51.8%), respectively. In T1DM patients, the DAA positivity rate was 94.6%; prevalence of GADA, IA2A, INSA, and ICA was 71.0%, 71.0%, 31.2%, and 10.8%, respectively; and IA2A added 10.7% point autoantibody positivity (83.9% for GADA+INSA+ICA and 94.6% for GADA+INSA+ICA+IA2A). Among the patients with T2DM, 12 (12.0%) were positive for DAA, and all were positive for INSA. These findings suggest that DAA at diagnosis, especially GADA and IA2A, is useful for classifying diabetes in Korean children and adolescents.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| | - Min Seung Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Yong Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Ma H, Murphy C, Loscher CE, O’Kennedy R. Autoantibodies - enemies, and/or potential allies? Front Immunol 2022; 13:953726. [PMID: 36341384 PMCID: PMC9627499 DOI: 10.3389/fimmu.2022.953726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 08/13/2023] Open
Abstract
Autoantibodies are well known as potentially highly harmful antibodies which attack the host via binding to self-antigens, thus causing severe associated diseases and symptoms (e.g. autoimmune diseases). However, detection of autoantibodies to a range of disease-associated antigens has enabled their successful usage as important tools in disease diagnosis, prognosis and treatment. There are several advantages of using such autoantibodies. These include the capacity to measure their presence very early in disease development, their stability, which is often much better than their related antigen, and the capacity to use an array of such autoantibodies for enhanced diagnostics and to better predict prognosis. They may also possess capacity for utilization in therapy, in vivo. In this review both the positive and negative aspects of autoantibodies are critically assessed, including their role in autoimmune diseases, cancers and the global pandemic caused by COVID-19. Important issues related to their detection are also highlighted.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Caroline Murphy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Richard O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Research, Development and Innovation, Qatar Foundation, Doha, Qatar
- Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
8
|
HERV-K Envelope Protein Induces Long-Lasting Production of Autoantibodies in T1DM Patients at Onset in Comparison to ZNT8 Autoantibodies. Pathogens 2022; 11:pathogens11101188. [PMID: 36297245 PMCID: PMC9607583 DOI: 10.3390/pathogens11101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Human endogenous retroviruses (HERVs) have been thought of as silent passengers within our genomes, but their reactivation has been linked with several autoimmune diseases, including type 1 diabetes (T1DM). In order to evaluate the potential role of HERVs, in addition to the recognized role of HERV-W, we focused on the debated role of the HERV-K family in T1DM. Therefore, we performed a serological evaluation of IgG antibodies against HERV-K Env epitope (HERV-K Env19−37) in comparison to an important β-cellular autoimmunity biomarker, ZnT8, from plasma samples of Sardinian children at the onset of T1DM, different T1DM groups (1−5 and 6−12 years since diagnosis), and healthy controls (HCs), by an indirect enzyme-linked immunosorbent assay (ELISA). A significant antibody response was observed against HERV-K Env19−37 (p < 0.0001) in T1DM patients compared to HCs, and significantly higher IgG responses were detected in the group at the onset compared to the other T1DM groups and HCs. Unlike the trend of the β-cellular autoimmunity autoantibodies, for HERV-K Env antibodies we observed positive values that persist over time up to 5 years since the onset of T1DM. Our results add new evidence about the presence of antibodies against HERV-K in T1DM, but further investigations are necessary to relate these results with the established role of HERVs, considering the contrasting results for HERV-K.
Collapse
|
9
|
Corkey BE, Kilpatrick LE, Evans-Molina C. Hypothesis: Induction of Autoimmunity in Type 1 Diabetes-A Lipid Focus. Diabetes 2022; 71:2067-2074. [PMID: 36126206 PMCID: PMC10477405 DOI: 10.2337/db22-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/10/2022] [Indexed: 11/13/2022]
Abstract
Several unrelated findings led us to hypothesize that induction of autoimmunity is a consequence of a prior major inflammatory event in individuals with susceptible HLA phenotypes and elevated sensitivity to cytokines and free fatty acids (FFA). We observed provocative enhanced responsiveness of cultured human fibroblasts from individuals with type 1 diabetes (T1D), but not control subjects, to FFA and the inflammatory cytokines TNFα and IL1-β. Major infections increase inflammatory cytokines as well as circulating FFA. Endotoxin-treated animal models of sepsis also exhibit elevated inflammatory cytokines that inhibit FFA oxidation and elevate FFA. The pancreatic β-cell possesses low reactive oxygen species (ROS) scavenging capacity and responds to both elevated FFA and cytokines with increased ROS production, a combination that increases exocytosis and trafficking of secretory vesicles to the plasma membrane. Increased trafficking is accompanied by increased cycling of secretory granule proteins and may be linked with increased surface presentation of granule proteins to the immune system. We propose that this ultimately targets β-cell granular proteins at the cell surface and is consistent with the preponderance of autoantibodies to granule proteins. Our hypothesis encourages testing of potential early therapeutic interventions to prevent progression of β-cell destruction.
Collapse
Affiliation(s)
- Barbara E. Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Laurie E. Kilpatrick
- Center for Inflammation and Lung Research, Department of Microbiology, Immunology and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Carmella Evans-Molina
- Departments of Pediatrics and Medicine, Center for Diabetes and Metabolic Diseases, and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
10
|
Zhang X, Dong Y, Liu D, Yang L, Xu J, Wang Q. Antigen-specific immunotherapies in type 1 diabetes. J Trace Elem Med Biol 2022; 73:127040. [PMID: 35868165 DOI: 10.1016/j.jtemb.2022.127040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/18/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by the destruction of pancreatic beta cells, in which immune system disorder plays an important role. Finding a cure for T1DM and restoring beta cell function has been a long-standing goal. Research has shown that immune regulation with pancreatic islet auto-antigens may be the most specific and safe treatment for T1DM. Immunological intervention using diabetogenic auto-antigens as a target can help identify T1DM in high-risk individuals by early screening of autoantibodies (AAbs) before the loss of pancreatic islet function and thus achieve primary prevention of T1DM. However, induction of self-tolerance in patients with pre-diabetes can also slow down the attack of autoimmunity, and achieve secondary prevention. Antigen-based immune therapy opens up new avenues for the prevention and treatment of T1DM. The zinc transporter 8 (ZnT8) protein, presents in the serum of pre-diabetic and diabetic patients, is immunogenic and can cause T1D autoimmune responses. ZnT8 has become a potential target of humoral autoimmunity; it is of great significance for the early diagnosis of T1D. ZnT8-specific CD8+ T cells can be detected in most T1DM patients, and play a key role in the progression of T1D. As an immunotherapy target, it can improve the dysfunction of beta cells in T1DM and provide new ideas for the treatment of T1D. In this review, we summarize research surrounding antigen-specific immunotherapies (ASI) over the past 10 years and the ZnT8 antigen as an autoimmune target to induce self-tolerance for T1DM.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Ying Dong
- Department of Radiation Oncology, Jilin Cancer Hospital, Changchun 130000, China
| | - Dianyuan Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Liu Yang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China
| | - Jiayi Xu
- School of Public Health, Jilin University, Changchun 130000, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
11
|
Firdous P, Nissar K, Masoodi SR, Ganai BA. Biomarkers: Tools for Discriminating MODY from Other Diabetic Subtypes. Indian J Endocrinol Metab 2022; 26:223-231. [PMID: 36248040 PMCID: PMC9555386 DOI: 10.4103/ijem.ijem_266_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/24/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Maturity Onset Diabetes of Young (MODY), characterized by the pancreatic b-cell dysfunction, the autosomal dominant mode of inheritance and early age of onset (often ≤25 years). It differs from normal type 1 and type 2 diabetes in that it occurs at a low rate of 1-5%, three-generational autosomal dominant patterns of inheritance and lacks typical diabetic features such as obesity. MODY patients can be managed by diet alone for many years, and sulfonylureas are also recommended to be very effective for managing glucose levels for more than 30 years. Despite rapid advancements in molecular disease diagnosis methods, MODY cases are frequently misdiagnosed as type 1 or type 2 due to overlapping clinical features, genetic testing expenses, and a lack of disease understanding. A timely and accurate diagnosis method is critical for disease management and its complications. An early diagnosis and differentiation of MODY at the clinical level could reduce the risk of inappropriate insulin or sulfonylurea treatment therapy and its associated side effects. We present a broader review to highlight the role and efficacy of biomarkers in MODY differentiation and patient selection for genetic testing analysis.
Collapse
Affiliation(s)
- Parveena Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| | - Kamran Nissar
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir
| | | | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir
| |
Collapse
|
12
|
Eriksson M, Litwak SA, Yun Y, Stanley WJ, Thorn P, Ahlgren U, Gurzov EN. Insulin-Binding Peptide Probes Provide a Novel Strategy for Pancreatic β-Cell Imaging. Mol Pharm 2021; 18:4428-4436. [PMID: 34649437 DOI: 10.1021/acs.molpharmaceut.1c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type 1 diabetes develops in childhood and adolescence, with peak incidence in the early teenage years. There is an urgent need for an accurate method to detect insulin-producing β-cells in patients that is not affected by alterations in β-cell function. As part of our research program to design specific probes to measure β-cell mass, we recently developed a novel insulin-binding peptide probe (IBPP) for the detection of β-cells in vivo. Here, we applied our innovative method to show specific labeling of this IBPP to human and mouse fixed β-cells in pancreatic islets. Importantly, we showed staining of human and mouse islets in culture without any negative functional or cell viability impact. Moreover, the IBPP-stained mouse islets after tail vein injection in vivo, albeit with batch differences in staining efficiency. In conclusion, we provide evidence showing that the IBPP can be used for future accurate detection of β-cell mass in a variety of preclinical models of diabetes.
Collapse
Affiliation(s)
- Maria Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Johan Bures väg 12, Umeå 901 87, Sweden
| | - Sara A Litwak
- St Vincent's Institute of Medical Research, 9 Princes Street, Melbourne 3065, Australia
| | - Yan Yun
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Johns Hopkins Dr, Sydney 2006, Australia
| | - William J Stanley
- St Vincent's Institute of Medical Research, 9 Princes Street, Melbourne 3065, Australia.,Department of Medicine, The University of Melbourne, Parkville, Melbourne 3065, Australia
| | - Peter Thorn
- Charles Perkins Centre, Discipline of Physiology, School of Medical Sciences, University of Sydney, Johns Hopkins Dr, Sydney 2006, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Johan Bures väg 12, Umeå 901 87, Sweden
| | - Esteban N Gurzov
- Department of Medicine, The University of Melbourne, Parkville, Melbourne 3065, Australia.,Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Route de Lennik 808, Brussels 1070, Belgium
| |
Collapse
|
13
|
Li M, Itoh A, Xi J, Yu C, Wu Y, Ridgway WM, Liu H. Enhancing Antigen Presentation and Inducing Antigen-Specific Immune Tolerance with Amphiphilic Peptides. THE JOURNAL OF IMMUNOLOGY 2021; 207:2051-2059. [PMID: 34526376 DOI: 10.4049/jimmunol.1901301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/06/2021] [Indexed: 11/19/2022]
Abstract
Ag-specific immunotherapy to restore immune tolerance to self-antigens, without global immune suppression, is a long-standing goal in the treatment of autoimmune disorders such as type 1 diabetes (T1D). However, vaccination with autoantigens such as insulin or glutamic acid decarboxylase have largely failed in human T1D trials. Induction and maintenance of peripheral tolerance by vaccination requires efficient autoantigen presentation by APCs. In this study, we show that a lipophilic modification at the N-terminal end of CD4+ epitopes (lipo-peptides) dramatically improves peptide Ag presentation. We designed amphiphilic lipo-peptides to efficiently target APCs in the lymph nodes by binding and trafficking with endogenous albumin. Additionally, we show that lipophilic modification anchors the peptide into the membranes of APCs, enabling a bivalent cell-surface Ag presentation. The s.c. injected lipo-peptide accumulates in the APCs in the lymph node, enhances the potency and duration of peptide Ag presentation by APCs, and induces Ag-specific immune tolerance that controls both T cell- and B cell-mediated immunity. Immunization with an amphiphilic insulin B chain 9-23 peptide, an immunodominant CD4+ T cell epitope in NOD mice, significantly suppresses the activation of T cells, increases inhibitory cytokine production, induces regulatory T cells, and delays the onset and lowers the incidence of T1D. Importantly, treatment with a lipophilic β-cell peptide mixture delays progression to end-stage diabetes in acutely diabetic NOD mice, whereas the same doses of standard soluble peptides were not effective. Amphiphilic modification effectively enhances Ag presentation for peptide-based immune regulation of autoimmune diseases.
Collapse
Affiliation(s)
- Meng Li
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI
| | - Arata Itoh
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA
| | - Jingchao Xi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI
| | - Chunsong Yu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI
| | - Yuehong Wu
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA
| | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, Davis, CA
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI; .,Department of Oncology, Wayne State University, Detroit, MI; and.,Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI
| |
Collapse
|
14
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
15
|
Refaie AF, Elbassiouny BL, Kloc M, Sabek OM, Khater SM, Ismail AM, Mohamed RH, Ghoneim MA. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations. Front Immunol 2021; 12:690623. [PMID: 34248981 PMCID: PMC8262452 DOI: 10.3389/fimmu.2021.690623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy for type 1 diabetes mellitus (T1DM) has been the subject matter of many studies over the past few decades. The wide availability, negligible teratogenic risks and differentiation potential of MSCs promise a therapeutic alternative to traditional exogenous insulin injections or pancreatic transplantation. However, conflicting arguments have been reported regarding the immunological profile of MSCs. While some studies support their immune-privileged, immunomodulatory status and successful use in the treatment of several immune-mediated diseases, others maintain that allogeneic MSCs trigger immune responses, especially following differentiation or in vivo transplantation. In this review, the intricate mechanisms by which MSCs exert their immunomodulatory functions and the influencing variables are critically addressed. Furthermore, proposed avenues to enhance these effects, including cytokine pretreatment, coadministration of mTOR inhibitors, the use of Tregs and gene manipulation, are presented. As an alternative, the selection of high-benefit, low-risk donors based on HLA matching, PD-L1 expression and the absence of donor-specific antibodies (DSAs) are also discussed. Finally, the necessity for the transplantation of human MSC (hMSC)-derived insulin-producing cells (IPCs) into humanized mice is highlighted since this strategy may provide further insights into future clinical applications.
Collapse
Affiliation(s)
- Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Malgorzata Kloc
- Department of Immunobiology, The Houston Methodist Research Institute, Houston, TX, United States.,Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Omaima M Sabek
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Cell and Microbiology Biology, Weill Cornell Medical Biology, New York, NY, United States
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
16
|
Hu Y, Wang Y, Wang X, Wu X, Fu L, Liu X, Wen Y, Sheng J, Zhang J. The Role of Cation Diffusion Facilitator CDF-1 in Lipid Metabolism in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2021; 11:6237889. [PMID: 33871589 PMCID: PMC8495940 DOI: 10.1093/g3journal/jkab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
Zinc is one of the most important trace elements as it plays a vital role in many biological processes. As well, aberrant zinc metabolism has been implicated in lipid-related metabolic diseases. Previously, we showed that zinc antagonizes iron to regulate sterol regulatory element-binding proteins and the stearoyl-CoA desaturase (SREBP-SCD) pathway in lipid metabolism in the model organism Caenorhabditis elegans. In this study, we present the identification of another cation diffusion facilitator, CDF-1, which regulates lipid metabolism along with SUR-7 in response to zinc. Inactivation of SBP-1, the only homolog of SREBPs, leads to an increased zinc level but decreased lipid accumulation. However, either the cdf-1(n2527) or sur-7(tm6523) mutation could successfully restore the altered fatty acid profile, fat content, and zinc level of the sbp-1(ep79) mutant. Furthermore, we found that CDF-1/SUR-7 may functionally bypass SBP-1 to directly affect the conversion activity of SCD in the biosynthesis of unsaturated fatty acids and lipid accumulation. Collectively, these results consistently support the link between zinc homeostasis and lipid metabolism via the SREBP-SCD axis by the cation diffusion facilitators CDF-1 and SUR-7.
Collapse
Affiliation(s)
- Ying Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xuanjun Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyun Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiayu Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yu Wen
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
17
|
Alcazar O, Hernandez LF, Nakayasu ES, Nicora CD, Ansong C, Muehlbauer MJ, Bain JR, Myer CJ, Bhattacharya SK, Buchwald P, Abdulreda MH. Parallel Multi-Omics in High-Risk Subjects for the Identification of Integrated Biomarker Signatures of Type 1 Diabetes. Biomolecules 2021; 11:383. [PMID: 33806609 PMCID: PMC7999903 DOI: 10.3390/biom11030383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biomarkers are crucial for detecting early type-1 diabetes (T1D) and preventing significant β-cell loss before the onset of clinical symptoms. Here, we present proof-of-concept studies to demonstrate the potential for identifying integrated biomarker signature(s) of T1D using parallel multi-omics. METHODS Blood from human subjects at high risk for T1D (and healthy controls; n = 4 + 4) was subjected to parallel unlabeled proteomics, metabolomics, lipidomics, and transcriptomics. The integrated dataset was analyzed using Ingenuity Pathway Analysis (IPA) software for disturbances in the at-risk subjects compared to controls. RESULTS The final quadra-omics dataset contained 2292 proteins, 328 miRNAs, 75 metabolites, and 41 lipids that were detected in all samples without exception. Disease/function enrichment analyses consistently indicated increased activation, proliferation, and migration of CD4 T-lymphocytes and macrophages. Integrated molecular network predictions highlighted central involvement and activation of NF-κB, TGF-β, VEGF, arachidonic acid, and arginase, and inhibition of miRNA Let-7a-5p. IPA-predicted candidate biomarkers were used to construct a putative integrated signature containing several miRNAs and metabolite/lipid features in the at-risk subjects. CONCLUSIONS Preliminary parallel quadra-omics provided a comprehensive picture of disturbances in high-risk T1D subjects and highlighted the potential for identifying associated integrated biomarker signatures. With further development and validation in larger cohorts, parallel multi-omics could ultimately facilitate the classification of T1D progressors from non-progressors.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Luis F. Hernandez
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (E.S.N.); (C.D.N.); (C.A.)
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - James R. Bain
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; (M.J.M.); (J.R.B.)
| | - Ciara J. Myer
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanjoy K. Bhattacharya
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (O.A.); (L.F.H.)
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.J.M.); (S.K.B.)
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
18
|
Ergun-Longmire B, Clemente E, Vining-Maravolo P, Roberts C, Buth K, Greydanus DE. Diabetes education in pediatrics: How to survive diabetes. Dis Mon 2021; 67:101153. [PMID: 33541707 DOI: 10.1016/j.disamonth.2021.101153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is the most common abnormal carbohydrate metabolism disorder affecting millions of people worldwide. It is characterized by hyperglycemia as a result of ß-cell destruction or dysfunction by both genetic and environmental factors. Over time chronic hyperglycemia leads to microvascular (i.e., retinopathy, nephropathy and neuropathy) and macrovascular (i.e., ischemic heart disease, peripheral vascular disease, and cerebrovascular disease) complications of diabetes. Diabetes complication trials showed the importance of achieving near-normal glycemic control to prevent and/or reduce diabetes-related morbidity and mortality. There is a staggering rate of increased incidence of diabetes in youth, raising concerns for future generations' health, quality of life and its enormous economic burden. Despite advancements in the technology, diabetes management remains cumbersome. Training individuals with diabetes to gain life-long survival skills requires a comprehensive and ongoing diabetes education by a multidisciplinary team. Diabetes education and training start at the time of diagnosis of diabetes and should be continuous throughout the course of disease. The goal is to empower the individuals and families to gain diabetes self-management skills. Diabetes education must be individualized depending on the individual's age, education, family dynamics, and support. In this article, we review the history of diabetes, etiopathogenesis and clinical presentation of both type 1 and type 2 diabetes in children as well as adolescents. We then focus on diabetes management with education methods and materials.
Collapse
Affiliation(s)
- Berrin Ergun-Longmire
- Associate Professor, Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA.
| | - Ethel Clemente
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Patricia Vining-Maravolo
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Cheryl Roberts
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Koby Buth
- Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Donald E Greydanus
- Professor, Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI United States
| |
Collapse
|
19
|
Tarigan TJE, Dwijayanti A, Setyowati S, Louisa M. Immunogenicity and Efficacy of Insulin Glargine Biosimilar Ezelin versus Originator Insulin Glargine in Patients with Type 2 Diabetes. Diabetes Metab Syndr Obes 2021; 14:107-116. [PMID: 33469328 PMCID: PMC7811452 DOI: 10.2147/dmso.s279385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To compare the immunogenicity and efficacy of insulin glargine biosimilar Ezelin (EZL) versus originator insulin glargine Lantus (LAN) as a reference basal insulin in patients with type 2 diabetes (T2D). PATIENTS AND METHODS This was a randomized, multicenter, open-label, 24-week study in insulin-naïve patients with T2D, with HbA1c of >7.0%. We randomly assigned 133 eligible patients to receive either EZL or LAN. Baseline characteristics, including insulin autoantibody (IAA), zinc transporter 8 (ZnT8) antibody, HbA1C, fasting plasma glucose (FPG), 2-hour postprandial plasma glucose (2hPPG), AST, ALT, BUN, eGFR, and oral antidiabetic drugs, were obtained before starting insulin treatment. After starting treatment, insulin dose was titrated to achieve FPG target along with oral antidiabetic drugs. Patients were given home glucometer and assisted to record plasma glucose measurement and adverse event (AE). Every month, patients came to the diabetes clinic and performed a regular physical examination and intensifying treatment if needed. Out of the 133 randomized patients, only 122 completed the study and can be examined for their IAA and ZnT8 after 6 months of treatment. The study was registered in clinicaltrials.gov, NCT03352674. RESULTS There is a similar proportion of patients with changes of IAA from baseline: 1 out of 58 (1.7%) patients receiving EZL versus 1 out of 64 (1.6%) patients receiving LAN (p = 1.000). One patient in the EZL group (1.7%) versus none in the LAN group experienced a change of ZnT8 antibody from baseline. Similar glucose control in EZL versus LAN was determined by the change in HbA1c, FPG, and 2hPPG (-2.0%, -67.46 mg/dL, and -76.51 mg/dL in the EZL group versus -1.7%, -58.11 mg/dL, and -70.03 mg/dL in the LAN group). There were six events of documented hypoglycemia in the EZL group versus five events in the LAN group. No patients experienced diabetic ketoacidosis during the study. CONCLUSION Overall, insulin glargine biosimilar EZL and originator insulin glargine LAN have shown a similar immunogenicity profile, as well as efficacy in providing glucose control and safety findings in T2D populations.
Collapse
Affiliation(s)
- Tri Juli Edi Tarigan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Correspondence: Tri Juli Edi Tarigan Division of Endocrinology and Metabolism, Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, IndonesiaTel +62 21-3907703 Email
| | - Adisti Dwijayanti
- Department of Medical Pharmacy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Susie Setyowati
- Division of Endocrinology, Department of Internal Medicine, Gatot Soebroto Presidential Hospital, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
20
|
Bolandi V, Azghadi SK, Shahami M, Fereidouni M. Prevalence of IA-2 antibody in patients suffering from diabetes and their first-degree relatives. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-020-00882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Bost C, Jordan T, Magali D, Françoise F, Nicole F. Anti-ZnT8 autoantibodies: A new marker to be screened in patients with anti-adrenal antibodies. Clin Chim Acta 2020; 511:1-6. [PMID: 32946793 DOI: 10.1016/j.cca.2020.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 01/21/2023]
Abstract
Patients with autoimmune Addison's disease (AAD) can develop other autoimmune diseases. They often display autoantibodies other than anti-adrenal cortex autoantibodies (ACA) which could be of interest in predicting the development of other diseases such as type 1 diabetes (T1D). Among the well-established autoantibodies associated with T1D, anti-ZnT8 autoantibodies (ZnT8A) could be found in absence of anti-GADA and anti-IA2A. Thus, the aim of our study was to evaluate the prevalence of ZnT8A in a cohort of AAD patients. The presence of ZnT8A was studied in 36 patients (19 children and 17 adults) displaying ACA. ZnT8A were detected in both children and adults with an overall prevalence of 19%. The results also indicated that ZnT8A were associated with coexisting T1D in more than 70% of this population regardless of age. Even if the titer of ZnT8A for the one third of patients without T1D was low, they have to be followed due to the potential risk of developing T1D. ZnT8A in those cases could also be a marker of autoimmunity associated to the adrenal gland destruction in AAD. As ZnT8A screening has been included in the diagnostic investigation of T1D, it should also be incorporated in the autoantibodies screening panel of the AAD population.
Collapse
Affiliation(s)
- Chloé Bost
- Immunology Laboratory, IFB, Toulouse University Hospital, 31000 Toulouse, France.
| | - Teoli Jordan
- Immunology Laboratory, Hospices Civils of Lyon, 69495 Pierre-Bénite, France.
| | - Dechomet Magali
- Immunology Laboratory, Hospices Civils of Lyon, 69495 Pierre-Bénite, France.
| | - Fortenfant Françoise
- Immunology Laboratory, IFB, Toulouse University Hospital, 31000 Toulouse, France.
| | - Fabien Nicole
- Immunology Laboratory, Hospices Civils of Lyon, 69495 Pierre-Bénite, France.
| |
Collapse
|
22
|
Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 2020; 17:585-607. [PMID: 32080423 PMCID: PMC7849055 DOI: 10.1038/s41569-020-0339-2] [Citation(s) in RCA: 383] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis and clinical features of diabetic cardiomyopathy have been well-studied in the past decade, but effective approaches to prevent and treat this disease are limited. Diabetic cardiomyopathy occurs as a result of the dysregulated glucose and lipid metabolism associated with diabetes mellitus, which leads to increased oxidative stress and the activation of multiple inflammatory pathways that mediate cellular and extracellular injury, pathological cardiac remodelling, and diastolic and systolic dysfunction. Preclinical studies in animal models of diabetes have identified multiple intracellular pathways involved in the pathogenesis of diabetic cardiomyopathy and potential cardioprotective strategies to prevent and treat the disease, including antifibrotic agents, anti-inflammatory agents and antioxidants. Some of these interventions have been tested in clinical trials and have shown favourable initial results. In this Review, we discuss the mechanisms underlying the development of diabetic cardiomyopathy and heart failure in type 1 and type 2 diabetes mellitus, and we summarize the evidence from preclinical and clinical studies that might provide guidance for the development of targeted strategies. We also highlight some of the novel pharmacological therapeutic strategies for the treatment and prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Chao Zheng
- The Second Affiliated Hospital Center of Chinese-American Research Institute for Diabetic Complications, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
- Division of Endocrinology, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Wendy Novak Diabetes Center, University of Louisville, Norton Children's Hospital, Louisville, KY, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
23
|
Yun K, Daniels G, Gold K, Mccowen K, Patel SP. Rapid onset type 1 diabetes with anti-PD-1 directed therapy. Oncotarget 2020; 11:2740-2746. [PMID: 32733645 PMCID: PMC7367652 DOI: 10.18632/oncotarget.27665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
Type 1 diabetes is a rare immune-related adverse event (irAE) caused by checkpoint inhibitors with serious risk for diabetic ketoacidosis (DKA). Using our electronic medical record, we identified 1327 adult patients who received PD-(L)1 or CTLA-4 inhibitors from 2013 to 2018. Of the patients who received immunotherapy, 5 (0.38%) patients were found to have type 1 diabetes, all of whom presented with DKA requiring insulin at 20 to 972 days from their first anti-PD-(L)1 dose. All patients were treated with anti-PD-1 therapy (nivolumab or pembrolizumab). Four patients had new onset diabetes with mean HbA1c of 9.1% on DKA presentation and persistent elevations over time. Two patients who tested positive for glutamic acid decarboxylase (GAD) antibodies presented with DKA at 20 and 106 days from first anti-PD-1 administration whereas patients who were autoantibody negative had DKA more than a year later. Type 1 diabetes occurs within a wide time frame after anti-PD-1 initiation and commences with an abrupt course. Our case series suggests that monitoring glycemia in patients on PD-1 inhibitors is not predictive for diabetes occurrence. GAD autoantibodies could portend earlier onset for diabetes, although further prospective studies are needed to elucidate their diagnostic utility and contribution in therapeutic interception.
Collapse
Affiliation(s)
- Karen Yun
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA
| | - Gregory Daniels
- Division of Hematology-Oncology in the Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathryn Gold
- Division of Hematology-Oncology in the Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen Mccowen
- Division of Endocrinology in the Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Sandip Pravin Patel
- Division of Hematology-Oncology in the Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
24
|
Jia X, Gu Y, High H, Yu L. Islet autoantibodies in disease prediction and pathogenesis. Diabetol Int 2020; 11:6-10. [PMID: 31949998 PMCID: PMC6942067 DOI: 10.1007/s13340-019-00414-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes (T1D) is now predictable by measuring specific islet autoantibodies (IAbs). Almost all children who developed multiple IAbs will progress to T1D with time, while individuals with single IAb have a very low risk although it is an important earlier biomarker. The poor prediction of single IAb has been found to be associated with IAb affinity. Majority of single IAb generated in current standard IAb radio-binding assay (RBA) are of low affinity, which have been demonstrated low risk in T1D development. New generation of nonradioactive IAb assay with electrochemiluminescence (ECL) technology has been shown to discriminate high-affinity from low-affinity IAbs and greatly improve sensitivity and disease specificity. With a high-affinity IAb assay, like ECL assay, single IAb will be expected to be a reliable biomarker for T1D early prediction. Although appearance of IAbs is most reliable biomarkers for T1D, there are no direct evidences that IAbs contribute to β-cell damage. With recent studies on ZnT8, a merging protein on β-cell surface membrane associated with insulin secretion, a subclass of ZnT8 autoantibodies directed to extra-cellular epitopes of ZnT8 on β-cell surface has recently been identified in T1D patients and these cell surface autoantibodies have been found to appear very early, before other IAbs. These findings lead us to a hypothesis that the immunogenic epitopes on β-cell surface might be early targets for autoimmune disease and IAbs to cell surface epitopes might be involved in β-cell destruction, which will change the paradigm of IAbs in T1D pathogenesis.
Collapse
Affiliation(s)
- Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045 USA
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Yong Gu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045 USA
| | - Hilary High
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045 USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045 USA
| |
Collapse
|
25
|
Human Leukocyte Antigen (HLA) and Islet Autoantibodies Are Tools to Characterize Type 1 Diabetes in Arab Countries: Emphasis on Kuwait. DISEASE MARKERS 2019; 2019:9786078. [PMID: 31827651 PMCID: PMC6886320 DOI: 10.1155/2019/9786078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/15/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
The incidence rate of type 1 diabetes in Kuwait had been increasing exponentially and has doubled in children ≤ 14 years old within almost two decades. Therefore, there is a dire need for a careful systematic familial cohort study. Several immunogenetic factors affect the pathogenesis of the disease. The human leukocyte antigen (HLA) accounts for the major genetic susceptibility to the disease. The triggering agents initiate disease onset by type 1 destruction of pancreatic β-cells. Both HLA and anti-islet antibodies can be used to characterize, predict susceptibility to the disease, innovate, or delay the β-cell destruction. Evidence from prospective longitudinal studies suggested that the underlying disease process represents a continuum that begins before the symptoms are clinically evident. Autoimmunity of the functional pancreatic β-cells results in symptomatic type 1 diabetes and lifelong insulin dependence. The autoantibodies against glutamic acid decarboxylase (GADA), insulinoma antigen-2 (IA-2A), insulin (IAA), and zinc transporter-8 (ZnT-8A) comprise the most reliable biomarkers for type 1 diabetes in both children and adults. Although Kuwait is the second among the top 10 countries with a high incidence rate of type 1 diabetes, there have been no proper diagnostic and prediction tools as per the World Health Organization. The Kuwaiti Type 1 Diabetes Study (KADS) was initiated to understand the disease pathogenesis as well as the HLA and anti-islet autoantibody profile of type 1 diabetes in Kuwait. Understanding the disease sequela in a homogenous gene pool and highly consanguineous population of Kuwaitis could help solve the challenges and pathogenesis, as well as hasten the prevention, of type 1 diabetes.
Collapse
|
26
|
Williams CL, Long AE. What has zinc transporter 8 autoimmunity taught us about type 1 diabetes? Diabetologia 2019; 62:1969-1976. [PMID: 31444530 PMCID: PMC6805822 DOI: 10.1007/s00125-019-04975-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/21/2019] [Indexed: 12/23/2022]
Abstract
Zinc transporter 8 (ZnT8), a protein highly specific to pancreatic insulin-producing beta cells, is vital for the biosynthesis and secretion of insulin. ZnT8 autoantibodies (ZnT8A) are among the most recently discovered and least-characterised islet autoantibodies. In combination with autoantibodies to several other islet antigens, including insulin, ZnT8A help predict risk of future type 1 diabetes. Often, ZnT8A appear later in the pathogenic process leading to type 1 diabetes, suggesting that the antigen is recognised as part of the spreading, rather than the initial, autoimmune response. The development of autoantibodies to different forms of ZnT8 depends on the genotype of an individual for a polymorphic ZnT8 residue. This genetic variant is associated with susceptibility to type 2 but not type 1 diabetes. Levels of ZnT8A often fall rapidly after diagnosis while other islet autoantibodies can persist for many years. In this review, we consider the contribution made by ZnT8 to our understanding of type 1 diabetes over the past decade and what remains to be investigated in future research.
Collapse
Affiliation(s)
- Claire L Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Anna E Long
- Translational Health Sciences, Bristol Medical School, University of Bristol, Level 2, Learning and Research, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
27
|
Merriman C, Fu D. Down-regulation of the islet-specific zinc transporter-8 (ZnT8) protects human insulinoma cells against inflammatory stress. J Biol Chem 2019; 294:16992-17006. [PMID: 31591269 DOI: 10.1074/jbc.ra119.010937] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
Zinc transporter-8 (ZnT8) primarily functions as a zinc-sequestrating transporter in the insulin-secretory granules (ISGs) of pancreatic β-cells. Loss-of-function mutations in ZnT8 are associated with protection against type-2 diabetes (T2D), but the protective mechanism is unclear. Here, we developed an in-cell ZnT8 assay to track endogenous ZnT8 responses to metabolic and inflammatory stresses applied to human insulinoma EndoC-βH1 cells. Unexpectedly, high glucose and free fatty acids did not alter cellular ZnT8 levels, but proinflammatory cytokines acutely, reversibly, and gradually down-regulated ZnT8. Approximately 50% of the cellular ZnT8 was localized to the endoplasmic reticulum (ER), which was the primary target of the cytokine-mediated ZnT8 down-regulation. Transcriptome profiling of cytokine-exposed β-cells revealed an adaptive unfolded protein response (UPR) including a marked immunoproteasome activation that coordinately degraded ZnT8 and insulin over a 1,000-fold cytokine concentration range. RNAi-mediated ZnT8 knockdown protected cells against cytokine cytotoxicity, whereas inhibiting immunoproteasomes blocked cytokine-induced ZnT8 degradation and triggered a transition of the adaptive UPR to cell apoptosis. Hence, cytokine-induced down-regulation of the ER ZnT8 level promotes adaptive UPR, acting as a protective mechanism that decongests the ER burden of ZnT8 to protect β-cells from proapoptotic UPR during chronic low-grade inflammation.
Collapse
Affiliation(s)
- Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
28
|
Enhancement of the Soluble Form of OX40 and OX40L Costimulatory Molecules but Reduction of the Membrane Form in Type 1 Diabetes (T1D). J Immunol Res 2019; 2019:1780567. [PMID: 31467932 PMCID: PMC6701347 DOI: 10.1155/2019/1780567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/15/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
This study analyzed the expression of membrane OX40 and OX40L (mOX40 and mOX40L) and levels of soluble OX40 and OX40L (sOX40 and sOX40L) in T1D patients to determine their clinical significance. Peripheral blood (PB) was collected from patients with T1D and healthy control participants. Expression of mOX40 and mOX40L on immune cells was detected by flow cytometry. Levels of sOX40 and sOX40L in sera were measured by ELISA. We demonstrated for the first time enhanced sOX40 and sOX40L expression and reduced mOX40 and mOX40L levels in T1D patients which correlated with the clinical characteristics and inflammatory factors. These results suggest that OX40/OX40L signal may be promising biomarkers and associated with the pathogenesis of T1D.
Collapse
|
29
|
Jahromi M, Al-Mulla F, Al-Ozairi E. Autoimmune signatures for prediction and diagnosis of autoimmune diabetes in Kuwait. Autoimmun Rev 2019; 18:642-644. [PMID: 30959212 DOI: 10.1016/j.autrev.2019.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Mohamed Jahromi
- Clinical Care Research, Medical Division, Dasman Diabetes Institute, Kuwait.
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Kuwait
| | | |
Collapse
|
30
|
Sørgjerd EP. Type 1 Diabetes-related Autoantibodies in Different Forms of Diabetes. Curr Diabetes Rev 2019; 15:199-204. [PMID: 30058495 DOI: 10.2174/1573399814666180730105351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/29/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Autoantibodies against Glutamic Acid Decarboxylase (GADA), insulinoma antigen-2 (IA- 2A), insulin (IAA) and the most recently Zinc Transporter 8 (ZnT8A) are one of the most reliable biomarkers for autoimmune diabetes in both children and adults. They are today the only biomarkers that can distinguish Latent Autoimmune Diabetes in Adults (LADA) from phenotypically type 2 diabetes. As the frequency of autoantibodies at diagnosis in childhood type 1 diabetes depends on age, GADA is by far the most common in adult onset autoimmune diabetes, especially LADA. Being multiple autoantibody positive have also shown to be more common in childhood diabetes compared to adult onset diabetes, and multiple autoantibody positivity have a high predictive value of childhood type 1 diabetes. Autoantibodies have shown inconsistent results to predict diabetes in adults. Levels of autoantibodies are reported to cause heterogeneity in LADA. Reports indicate that individuals with high levels of autoantibodies have a more type 1 diabetes like phenotype and individuals with low levels of autoantibody positivity have a more type 2 diabetes like phenotype. It is also well known that autoantibody levels can fluctuate and transient autoantibody positivity in adult onset autoimmune diabetes have been reported to affect the phenotype.
Collapse
Affiliation(s)
- Elin Pettersen Sørgjerd
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
31
|
Heneberg P, Šimčíková D, Čecháková M, Rypáčková B, Kučera P, Anděl M. Autoantibodies against ZnT8 are rare in Central-European LADA patients and absent in MODY patients, including those positive for other autoantibodies. J Diabetes Complications 2019; 33:46-52. [PMID: 30377089 DOI: 10.1016/j.jdiacomp.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Testing for autoantibodies against the zinc transporter ZnT8 (ZnTA) is becoming routine in pediatric diabetes. However, available data are inconclusive when focusing on adult-onset diabetes, including autoimmune diabetes, which does not require insulin at diagnosis (LADA). BASIC PROCEDURES We examined the ZnTA prevalence and titers and matched them with the clinical phenotype and PTPN22 genotypes of Czech LADA patients who were positive for GADA and/or IA2A and had a fasting C-peptide level >200 pmol/L at diagnosis as well as HNF4A-, GCK- or HNF1A-MODY patients and healthy controls. MAIN FINDINGS Most LADA patients were negative for ZnTA, and the sensitivity of the assay was only 18-20% for patients with LADA-like progression to insulinotherapy compared to healthy controls. In LADA patients, there was no association between the ZnTA and PTPN22 risk genotypes. LADA patients positive for ZnTA had a lower BMI than those positive for other autoantibodies alone. Importantly, MODY patients were completely negative for ZnTA, and the levels of ZnTA in MODY patients were similar to those in healthy controls. CONCLUSIONS ZnTA quantification did not improve LADA diagnosis. However, positivity for ZnTA can be used as a negative MODY pre-diagnostic criterion even in the region of Central and East Europe, where other islet cell autoantibodies are common in MODY patients.
Collapse
Affiliation(s)
- Petr Heneberg
- Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| | - Daniela Šimčíková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Marie Čecháková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Blanka Rypáčková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Petr Kučera
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Michal Anděl
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
32
|
Nyaga DM, Vickers MH, Jefferies C, Perry JK, O'Sullivan JM. The genetic architecture of type 1 diabetes mellitus. Mol Cell Endocrinol 2018; 477:70-80. [PMID: 29913182 DOI: 10.1016/j.mce.2018.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1D) is a complex autoimmune disorder characterised by loss of the insulin-producing pancreatic beta cells in genetically predisposed individuals, ultimately resulting in insulin deficiency and hyperglycaemia. T1D is most common among children and young adults, and the incidence is on the rise across the world. The aetiology of T1D is hypothesized to involve genetic and environmental factors that result in the T-cell mediated destruction of pancreatic beta cells. There is a strong genetic risk to T1D; with genome-wide association studies (GWAS) identifying over 60 susceptibility regions within the human genome which are marked by single nucleotide polymorphisms (SNPs). Here, we review what is currently known about the genetics of T1D. We argue that advancing our understanding of the aetiology and pathogenesis of T1D will require the integration of genome biology (omics-data) with GWAS data, thereby making it possible to elucidate the putative gene regulatory networks modulated by disease-associated SNPs. This approach has a potential to revolutionize clinical management of T1D in an era of precision medicine.
Collapse
Affiliation(s)
- Denis M Nyaga
- The Liggins Institute, The University of Auckland, New Zealand
| | - Mark H Vickers
- The Liggins Institute, The University of Auckland, New Zealand
| | - Craig Jefferies
- The Liggins Institute, The University of Auckland, New Zealand; Starship Children's Health, Auckland, New Zealand
| | - Jo K Perry
- The Liggins Institute, The University of Auckland, New Zealand
| | | |
Collapse
|
33
|
Yi L, Swensen AC, Qian WJ. Serum biomarkers for diagnosis and prediction of type 1 diabetes. Transl Res 2018; 201:13-25. [PMID: 30144424 PMCID: PMC6177288 DOI: 10.1016/j.trsl.2018.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/02/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes (T1D) culminates in the autoimmune destruction of the pancreatic βcells, leading to insufficient production of insulin and development of hyperglycemia. Serum biomarkers including a combination of glucose, glycated molecules, C-peptide, and autoantibodies have been well established for the diagnosis of T1D. However, these molecules often mark a late stage of the disease when ∼90% of the pancreatic insulin-producing β-cells have already been lost. With the prevalence of T1D increasing worldwide and because of the physical and psychological burden induced by this disease, there is a great need for prognostic biomarkers to predict T1D development or progression. This would allow us to identify individuals at high risk for early prevention and intervention. Therefore, considerable efforts have been dedicated to the understanding of disease etiology and the discovery of novel biomarkers in the last few decades. The advent of high-throughput and sensitive "-omics" technologies for the study of proteins, nucleic acids, and metabolites have allowed large scale profiling of protein expression and gene changes in T1D patients relative to disease-free controls. In this review, we briefly discuss the classical diagnostic biomarkers of T1D but mainly focus on the novel biomarkers that are identified as markers of β-cell destruction and screened with the use of state-of-the-art "-omics" technologies.
Collapse
Affiliation(s)
- Lian Yi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW We provide an overview of pancreas pathology in type 1 diabetes (T1D) in the context of its clinical stages. RECENT FINDINGS Recent studies of pancreata from organ donors with T1D and non-diabetic donors expressing T1D-associated autoantibodies reveal pathological changes/disease mechanisms beyond the well-known loss of β cells and lymphocytic infiltrates of the islets (insulitis), including β-cell stress, dysfunction, and viral infections. Pancreas pathology evolves through disease stages, is asynchronous, and demonstrates a chronic disease that remains active years after diagnosis. Critically, β-cell loss is not complete at onset, although young age is associated with increased severity. The recognition of multiple pathogenic alterations and the chronic nature of disease mechanisms during and after the development of T1D inform improved clinical trial design and reveal additional targets for therapeutic manipulation, in the context of an expanded time window for intervention.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Endocrinology, Department of Microbiology and Immunology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA.
- Diabetes Research Institute, 1450 NW 10th Avenue, Miami, FL, 33136, USA.
| |
Collapse
|
35
|
Jacobsen LM, Haller MJ, Schatz DA. Understanding Pre-Type 1 Diabetes: The Key to Prevention. Front Endocrinol (Lausanne) 2018; 9:70. [PMID: 29559955 PMCID: PMC5845548 DOI: 10.3389/fendo.2018.00070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 01/08/2023] Open
Abstract
While the incidence of type 1 diabetes continues to rise by 3% each year, the ability to prevent this disease remains elusive. Hybrid closed loop devices, artificial pancreas systems, and continuous glucose monitoring technology have helped to ease the daily burden for many people living with type 1 diabetes. However, the artificial pancreas is not a cure; more research is needed to achieve our ultimate goal of preventing type 1 diabetes. The preceding decades have generated a wealth of information regarding the natural history of pre-type 1 diabetes. Islet autoimmunity in the form of multiple autoantibodies is known to be highly predictive of progression to disease. Staging systems have been devised to better characterize pre-type 1, direct mechanistic understanding of disease, and guide the design of prevention studies. However, there are no evidence-based recommendations for practitioners caring for autoantibody patients other than to encourage enrollment in research studies. Close monitoring of high-risk patients in natural history studies markedly reduces diabetic ketoacidosis rates at diagnosis and research participation is critical to finding a means of preventing type 1 diabetes. The discovery of an effective preventative strategy for type 1 diabetes will justify universal risk screening for all children.
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Michael J. Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| | - Desmond A. Schatz
- Division of Endocrinology, Department of Pediatrics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
36
|
Duan K, Ghosh G, Lo JF. Optimizing Multiplexed Detections of Diabetes Antibodies via Quantitative Microfluidic Droplet Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201702323. [PMID: 28990274 PMCID: PMC5755373 DOI: 10.1002/smll.201702323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/11/2017] [Indexed: 05/02/2023]
Abstract
Sensitive, single volume detections of multiple diabetes antibodies can provide immunoprofiling and early screening of at-risk patients. To advance the state-of-the-art suspension assays for diabetes antibodies, porous hydrogel droplets are leveraged in microfluidic serpentine arrays to enhance reagent transport. This spatially multiplexed assay is applied to the detection of antibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2. Optimization of assay protocol results in a shortened assay time of 2 h, with better than 20 pg mL Supporting Information detection limits across all three antibodies. Specificity and cross-reactivity tests show negligible background, nonspecific antibody-antigen, and nonspecific antibody-antibody bindings. Multiplexed detections are able to measure within 15% of target concentrations from low to high ranges. The technique enables quantifications of as little as 8000 molecules in each 500 µm droplet in a single volume, multiplexed assay format, a breakthrough necessary for the adoption of diabetes panels for clinical screening and monitoring in the future.
Collapse
Affiliation(s)
- Kai Duan
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| | - Gargi Ghosh
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| | - Joe Fujiou Lo
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| |
Collapse
|
37
|
Merriman C, Huang Q, Gu W, Yu L, Fu D. A subclass of serum anti-ZnT8 antibodies directed to the surface of live pancreatic β-cells. J Biol Chem 2017; 293:579-587. [PMID: 29184000 DOI: 10.1074/jbc.ra117.000195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/22/2017] [Indexed: 01/17/2023] Open
Abstract
The islet-specific zinc transporter ZnT8 is a major self-antigen found in insulin granules of pancreatic β-cells. Frequent insulin secretion exposes ZnT8 to the cell surface, but the humoral antigenicity of the surface-displayed ZnT8 remains unknown. Here we show that a membrane-embedded human ZnT8 antigen triggered a vigorous immune response in ZnT8 knock-out mice. Approximately 50% of serum immunoreactivities toward ZnT8 were mapped to its transmembrane domain that is accessible to extracellular ZnT8 antibody (ZnT8A). ZnT8A binding was detected on live rat insulinoma INS-1E cells, and the binding specificity was validated by a CRISPR/Cas9 mediated ZnT8 knock-out. Applying established ZnT8A assays to purified serum antibodies from patients with type 1 diabetes, we detected human ZnT8A bound to live INS-1E cells, whereas a ZnT8 knock-out specifically reduced the surface binding. Our results demonstrate that ZnT8 is a cell surface self-antigen, raising the possibility of a direct involvement in antibody-mediated β-cell dysfunction and cytotoxicity.
Collapse
Affiliation(s)
- Chengfeng Merriman
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Qiong Huang
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Wei Gu
- the Section of Metabolic Disorders, Amgen Inc., Thousand Oaks, California 91320, and
| | - Liping Yu
- the Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado 80045
| | - Dax Fu
- From the Department of Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205,
| |
Collapse
|
38
|
Abstract
Type 1 diabetes mellitus is a chronic state of insulin deficiency which results from destruction of beta cells by the immune system. The long term microvascular and macrovascular complications can be devastating. Since the discovery of insulin almost 100 years ago new medical therapies have improved the long-term survival for people with type 1 diabetes. Each year we come closer to discovering a cure but much work still needs to be done to eliminate this disease.
Collapse
Affiliation(s)
- Melanie Copenhaver
- Division of Pediatric Endocrinology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Robert P Hoffman
- Division of Pediatric Endocrinology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
39
|
Abstract
Underlying type 1 diabetes is a genetic aetiology dominated by the influence of specific HLA haplotypes involving primarily the class II DR-DQ region. In genetically predisposed children with the DR4-DQ8 haplotype, exogenous factors, yet to be identified, are thought to trigger an autoimmune reaction against insulin, signalled by insulin autoantibodies as the first autoantibody to appear. In children with the DR3-DQ2 haplotype, the triggering reaction is primarily against GAD signalled by GAD autoantibodies (GADA) as the first-appearing autoantibody. The incidence rate of insulin autoantibodies as the first-appearing autoantibody peaks during the first years of life and declines thereafter. The incidence rate of GADA as the first-appearing autoantibody peaks later but does not decline. The first autoantibody may variably be followed, in an apparently non-HLA-associated pathogenesis, by a second, third or fourth autoantibody. Although not all persons with a single type of autoantibody progress to diabetes, the presence of multiple autoantibodies seems invariably to be followed by loss of functional beta cell mass and eventually by dysglycaemia and symptoms. Infiltration of mononuclear cells in and around the islets appears to be a late phenomenon appearing in the multiple-autoantibody-positive with dysglycaemia. As our understanding of the aetiology and pathogenesis of type 1 diabetes advances, the improved capability for early prediction should guide new strategies for the prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Simon E Regnell
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Jan Waldenströms gata 35, SE-20502, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, Jan Waldenströms gata 35, SE-20502, Malmö, Sweden.
| |
Collapse
|
40
|
Burbelo PD, Iadarola MJ, Alevizos I, Sapio MR. Transcriptomic Segregation of Human Autoantigens Useful for the Diagnosis of Autoimmune Diseases. Mol Diagn Ther 2017; 20:415-27. [PMID: 27259330 DOI: 10.1007/s40291-016-0211-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The measurement of autoantibodies in the clinical care of autoimmune patients allows for diagnosis, monitoring, and even disease prediction. Despite their clinical utility, the functional significance of autoantibody target proteins in many autoimmune diseases remains unclear. Here we present a comprehensive review of 52 autoantigens commonly employed for the serological diagnosis of 24 autoimmune diseases. We discuss their function, whether they have extracellular-exposed epitopes, and whether antibodies to these proteins are known to be pathogenic. Transcriptomics (RNA-Seq) datasets were mined to display messenger RNA (mRNA) expression of the autoantigens across 32 tissues and organs. This analysis revealed that autoantigens cluster into one of three groups: expression in the tissue most strongly affected in the disease (Group I), ubiquitous expression with enrichment in immune tissues (Group II), or expression in other tissues not typically associated with the clinical presentation (Group III). Clustering demonstrated that the autoantigens within Group I were often proteins containing extracellular epitopes, many of which are targets of pathogenic autoantibodies. Group II autoantigens were targets for several rheumatological diseases, including Sjögren syndrome, systemic lupus erythematosus, myositis, and systemic sclerosis, and were ubiquitously expressed with enrichment in immune-rich tissues. This raises the possibility that immune cells in Group II disorders may be the source of autoimmunization and/or targets of immune cell responses. Since tissues showing enriched autoantigen gene expression may contribute to the development of autoantibodies and subsequent autoimmunity, the emergent patterns arising from the autoantigen transcriptomic profiles may provide a new heuristic framework to deconvolute these complex disorders.
Collapse
Affiliation(s)
- Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg. 10, Rm. 5N102, Bethesda, MD, 20892, USA.
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ilias Alevizos
- Sjögren's Syndrome and Salivary Gland Dysfunction Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Hasilo CP, Negi S, Allaeys I, Cloutier N, Rutman AK, Gasparrini M, Bonneil É, Thibault P, Boilard É, Paraskevas S. Presence of diabetes autoantigens in extracellular vesicles derived from human islets. Sci Rep 2017; 7:5000. [PMID: 28694505 PMCID: PMC5504025 DOI: 10.1038/s41598-017-04977-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/23/2017] [Indexed: 12/29/2022] Open
Abstract
Beta-cell (β-cell) injury is the hallmark of autoimmune diabetes. However, the mechanisms by which autoreactive responses are generated in susceptible individuals are not well understood. Extracellular vesicles (EV) are produced by mammalian cells under normal and stressed physiological states. They are an important part of cellular communication, and may serve a role in antigen processing and presentation. We hypothesized that isolated human islets in culture produce EV that contain diabetes autoantigens (DAA) from these otherwise normal, non-diabetic donors. Here we report the caspase-independent production of EV by human islets in culture, and the characterization of DAA glutamic acid decarboxylase 65 (GAD65) and zinc transporter 8 (ZnT8), as well as the β-cell resident glucose transporter 2 (Glut2), present within the EV.
Collapse
Affiliation(s)
- Craig P Hasilo
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Sarita Negi
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Isabelle Allaeys
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - Nathalie Cloutier
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Marco Gasparrini
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada.,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Éric Bonneil
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Thibault
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montréal, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Éric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculté de Médecine de l'Université Laval, Québec, Québec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada
| | - Steven Paraskevas
- Human Islet Transplant Laboratory, McGill University Health Centre, Montréal, Québec, Canada. .,Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. .,Canadian National Transplant Research Program, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Elbadry MI, Espinoza JL, Nakao S. Induced pluripotent stem cell technology: A window for studying the pathogenesis of acquired aplastic anemia and possible applications. Exp Hematol 2017; 49:9-18. [DOI: 10.1016/j.exphem.2016.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/09/2016] [Accepted: 12/25/2016] [Indexed: 01/08/2023]
|
43
|
Mitutsova V, Yeo WWY, Davaze R, Franckhauser C, Hani EH, Abdullah S, Mollard P, Schaeffer M, Fernandez A, Lamb NJC. Adult muscle-derived stem cells engraft and differentiate into insulin-expressing cells in pancreatic islets of diabetic mice. Stem Cell Res Ther 2017; 8:86. [PMID: 28420418 PMCID: PMC5395782 DOI: 10.1186/s13287-017-0539-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic beta cells are unique effectors in the control of glucose homeostasis and their deficiency results in impaired insulin production leading to severe diabetic diseases. Here, we investigated the potential of a population of nonadherent muscle-derived stem cells (MDSC) from adult mouse muscle to differentiate in vitro into beta cells when transplanted as undifferentiated stem cells in vivo to compensate for beta-cell deficiency. Results In vitro, cultured MDSC spontaneously differentiated into insulin-expressing islet-like cell clusters as revealed using MDSC from transgenic mice expressing GFP or mCherry under the control of an insulin promoter. Differentiated clusters of beta-like cells co-expressed insulin with the transcription factors Pdx1, Nkx2.2, Nkx6.1, and MafA, and secreted significant levels of insulin in response to glucose challenges. In vivo, undifferentiated MDSC injected into streptozotocin (STZ)-treated mice engrafted within 48 h specifically to damaged pancreatic islets and were shown to differentiate and express insulin 10–12 days after injection. In addition, injection of MDSC into hyperglycemic diabetic mice reduced their blood glucose levels for 2–4 weeks. Conclusion These data show that MDSC are capable of differentiating into mature pancreatic beta islet-like cells, not only upon culture in vitro, but also in vivo after systemic injection in STZ-induced diabetic mouse models. Being nonteratogenic, MDSC can be used directly by systemic injection, and this potential reveals a promising alternative avenue in stem cell-based treatment of beta-cell deficiencies. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0539-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Violeta Mitutsova
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Wendy Wai Yeng Yeo
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.,Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Romain Davaze
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Celine Franckhauser
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - El-Habib Hani
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France
| | - Syahril Abdullah
- Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Patrice Mollard
- Networks and Rhythms in Endocrine Glands, IGF, CNRS UMR-5203, Montpellier, France
| | - Marie Schaeffer
- Networks and Rhythms in Endocrine Glands, IGF, CNRS UMR-5203, Montpellier, France
| | - Anne Fernandez
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.
| | - Ned J C Lamb
- Mammalian Cell Biology group, IGH CNRS, UM, UMR 9002, 141 rue de la Cardonille, 34396, Montpellier cedex 05, France.
| |
Collapse
|
44
|
Larizza D, De Amici M, Klersy C, Albanesi M, Albertini R, Badulli C, Torre C, Calcaterra V. Anti-Zinc Transporter Protein 8 Antibody Testing Is Not Informative in Routine Prediabetes Screening in Young Patients with Autoimmune Thyroiditis and Celiac Disease. Horm Res Paediatr 2017; 86:100-105. [PMID: 27487045 DOI: 10.1159/000448003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/24/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Patients with type 1 diabetes mellitus (T1DM), autoimmune thyroiditis (ATD), and celiac disease (CD) are at increased risk for developing other autoimmune diseases. We evaluated zinc transporter 8 (ZnT8) prevalence in patients with ATD and/or CD in order to define the usefulness of ZnT8 autoantibodies for prediabetes screening. METHODS Eighty-one young patients with ATD and/or CD were included in the study; 32 subjects with clinical onset of T1DM were enrolled as a control group. GAD65, IA-2, and ZnT8 antibodies were measured. An intravenous glucose tolerance test, C-peptide, glycosylated hemoglobin levels, and genomic analysis of HLA-DQA1* and -DQB1* were also considered in patients positive for autoantibodies. RESULTS The ZnT8 prevalence was higher in T1DM patients than in patients with other autoimmune diseases (p < 0.001); positive ZnT8 detection was found in 2 ATD (p = 0.004) and 3 ATD + CD (p = 0.04) patients. Positive ZnT8 was associated with GAD65 (p = 0.01) but not with IA-2 positivity. No correlation between ZnT8 detection and the number of T1DM-susceptible HLA-DQ heterodimers was found. Pathological C-peptide levels and insulin response were found in subjects with islet autoimmunity and genetic susceptibility. CONCLUSION ZnT8 autoantibodies detection in ATD and/or CD patients is low, and routine ZnT8 screening is not justified. ZnT8 evaluation may be recommended in subjects with autoimmune diseases as a marker for predicting compromised insulin secretion.
Collapse
Affiliation(s)
- Daniela Larizza
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Apportioning Blame: Autoreactive CD4 + and CD8 + T Cells in Type 1 Diabetes. Arch Immunol Ther Exp (Warsz) 2017; 65:275-284. [PMID: 28083620 DOI: 10.1007/s00005-016-0452-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 12/18/2016] [Indexed: 01/14/2023]
Abstract
Type 1 diabetes (T1D) is one of the most studied archetypal organ-specific autoimmune diseases. Although many clinical, epidemiological, and pathological characteristics have been described, there are still important issues which need to be resolved as these will have a major impact on the development of future antigen-specific immunotherapies. An important question relates to T lymphocytes in the development of the disease, in particular their role in the destruction of insulin-producing beta cells. Since the discovery that certain class II histocompatibility complex molecules (HLA) are linked to the development of T1D, much research has focused on CD4+ helper T lymphocytes; however, recent studies highlight class I HLA molecules as an independent risk factor; hence, research into the role played by CD8+ cytotoxic T lymphocytes has gained momentum. In this review, we summarize recent studies clarifying the role played by both sets of autoreactive T lymphocytes in T1D, discuss the targets recognized by these cells and their phenotype in T1D patients. Finally, we will examine the possible generation of regulatory CD8+ T lymphocytes upon different immuno-intervention strategies.
Collapse
|
46
|
Usero L, Sánchez A, Pizarro E, Xufré C, Martí M, Jaraquemada D, Roura-Mir C. Interleukin-13 Pathway Alterations Impair Invariant Natural Killer T-Cell-Mediated Regulation of Effector T Cells in Type 1 Diabetes. Diabetes 2016; 65:2356-66. [PMID: 27207542 DOI: 10.2337/db15-1350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/24/2016] [Indexed: 11/13/2022]
Abstract
Many studies have shown that human natural killer T (NKT) cells can promote immunity to pathogens, but their regulatory function is still being investigated. Invariant NKT (iNKT) cells have been shown to be effective in preventing type 1 diabetes in the NOD mouse model. Activation of plasmacytoid dendritic cells, modulation of B-cell responses, and immune deviation were proposed to be responsible for the suppressive effect of iNKT cells. We studied the regulatory capacity of human iNKT cells from control subjects and patients with type 1 diabetes (T1D) at disease clinical onset. We demonstrate that control iNKT cells suppress the proliferation of effector T cells (Teffs) through a cell contact-independent mechanism. Of note, suppression depended on the secretion of interleukin-13 (IL-13) by iNKT cells because an antibody blocking this cytokine resulted from the abrogation of Teff suppression; however, T1D-derived iNKT cells showed impaired regulation that could be attributed to the decrease in IL-13 secretion. Thus, alteration of the IL-13 pathway at disease onset may lead to the progression of the autoimmune response in T1D. Advances in the study of iNKT cells and the selection of agonists potentiating IL-13 secretion should permit new therapeutic strategies to prevent the development of T1D.
Collapse
Affiliation(s)
- Lorena Usero
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Sánchez
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduarda Pizarro
- Unitat d'Endocrinologia, Hospital de Mataró, Barcelona, Spain
| | - Cristina Xufré
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Martí
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolores Jaraquemada
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme Roura-Mir
- Immunology Unit, Institut de Biotecnologia i Biomedicina, and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Głowińska-Olszewska B, Michalak J, Łuczyński W, Del Pilar Larosa M, Chen S, Furmaniak J, Smith BR, Bossowski A. Organ-specific autoimmunity in relation to clinical characteristics in children with long-lasting type 1 diabetes. J Pediatr Endocrinol Metab 2016; 29:647-56. [PMID: 27008690 DOI: 10.1515/jpem-2015-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 02/09/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aim of this study was to assess the prevalence of diabetes and other organ-specific autoantibodies (Ab) associated with various autoimmune conditions, in Polish children with type 1 diabetes mellitus (T1DM). METHODS In this study 114 patients, aged 13.4 years, with mean diabetes duration 5.2 years were included. Ab to islet cell antigens: glutamic acid decarboxylase (GAD), insulinoma antigen 2 (IA-2), zinc transporter 8 (ZnT8), together with thyroid peroxidase Ab (TPO Ab), thyroglobulin Ab (Tg Ab), tissue transglutaminase Ab (tTG Ab) and 21-hydroxylase Ab (21-OH Ab) were measured. RESULTS The prevalence of at least one diabetes associated Ab was found in 87%, with the highest prevalence of 64% for ZnT8 Ab. In patients with disease duration <5 years, at least one antibody was present in 90%, the most prevalent was ZnT8 Ab (72%). In patients with duration >10 years, 50% had at least one antibody. The prevalence of other than islet cell autoimmunity was high (34%). Thyroid Ab were detected in 26% patients, 42% in girls vs. 8% in boys, p<0.001. tTG Ab were found in 11% patients, with a greater prevalence in children with early onset (p=0.01). 21-OH Ab were found in 2.6% T1DM patients. CONCLUSIONS Islet Ab were found in most T1DM children and remained positive even 10 years after onset. ZnT8 Ab emerged as an important marker for the diagnosis of T1DM in the Polish children. Screening for non-diabetes Ab in T1DM may be helpful in identifying subclinical cases of autoimmune thyroid, celiac or Addison's disease (AD).
Collapse
|
48
|
Cai T, Notkins AL. Pathophysiologic changes in IA-2/IA-2β null mice are secondary to alterations in the secretion of hormones and neurotransmitters. Acta Diabetol 2016; 53:7-12. [PMID: 25861885 PMCID: PMC5243143 DOI: 10.1007/s00592-015-0750-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/26/2015] [Indexed: 12/13/2022]
Abstract
IA-2 and IA-2β are transmembrane proteins of dense-core vesicles (DCV). The deletion of these proteins results in a reduction in the number of DCV and the secretion of hormones and neurotransmitters. As a result, this leads to a variety of pathophysiologic changes. The purpose of this review is to describe these changes, which are characterized by glucose intolerance, female infertility, behavior and learning abnormalities and alterations in the diurnal circadian rhythms of blood pressure, heart rate, spontaneous physical activity and body temperature. These findings show that the deletion of IA-2 and IA-2β results in multiple pathophysiologic changes and represents a unique in vivo model for studying the effect of hormone and neurotransmitter reduction on known and still unrecognized targets.
Collapse
Affiliation(s)
- Tao Cai
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), B30/Rm106, Bethesda, MD, 20892, USA
| | - Abner L Notkins
- Experimental Medicine Section, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), B30/Rm106, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Akolkar B, Hilner J, Nierras CR. Design and Measurement of Nonislet-Specific Autoantibodies for the Type 1 Diabetes Genetics Consortium Autoantibody Workshop. Diabetes Care 2015; 38 Suppl 2:S4-7. [PMID: 26405071 PMCID: PMC4582913 DOI: 10.2337/dcs15-2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Type 1 Diabetes Genetics Consortium (T1DGC) comprised groups of investigators from many countries throughout the world, with a common goal of identifying genes predisposing to type 1 diabetes. The T1DGC ascertained and collected samples from families with two or more affected siblings with type 1 diabetes and generated a broad array of clinical, genetic, and immunologic data. The T1DGC Autoantibody Workshop was designed to distribute data for analyses to discover genes associated with autoantibodies in those with type 1 diabetes. In the T1DGC-affected sibling pair families, three T1DGC Network laboratories measured antibodies to the islet autoantigens GAD65 and the intracellular portion of protein tyrosine phosphatase (IA-2A). The availability of extensive genetic data provided an opportunity to investigate the associations between type 1 diabetes and other autoimmune diseases for which autoantibodies could be measured. Measurements of additional nonislet autoantibodies, including thyroid peroxidase, tissue transglutaminase, 21-hydroxylase, and the potassium/hydrogen ion transporter H+/K+-ATPase, were performed by the T1DGC laboratory at the Barbara Davis Center for Childhood Diabetes, Aurora, CO. Measurements of all autoantibodies were transmitted to the T1DGC Coordinating Center, and the data were made available to members of the T1DGC Autoantibody Working Groups for analysis in conjunction with existing T1DGC genetic data. This article describes the design of the T1DGC Autoantibody Workshop and the quality-control procedures to maintain and monitor the performance of each laboratory and provides the quality-control results for the nonislet autoantibody measurements.
Collapse
Affiliation(s)
- Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Joan Hilner
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | | |
Collapse
|
50
|
New autoantibody detection technologies yield novel insights into autoimmune disease. Curr Opin Rheumatol 2015; 26:717-23. [PMID: 25203116 DOI: 10.1097/bor.0000000000000107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight recent progress in autoantibody detection technologies and describe how these methods are providing novel information and insights into autoimmune disorders. RECENT FINDINGS In recent years, alternative methods such as comprehensive phage display, fluid-phase immunoassays, and antigen microarrays have been developed for autoantigen discovery and profiling autoantibody responses. Compared with classic approaches such as Western blot and ELISA, these methods show improved diagnostic performance, the ability to measure antibody responses to multiple targets, and/or allow more quantitative analyses. Specific notable findings include uncovering previously unrecognized autoantigens, the improved classification of patient clinical phenotypes, and the discovery of pathogenic autoantibodies promoting disease. SUMMARY Advances in immunoassay technologies offer many opportunities for understanding the relationship between autoantibody detection and the myriad complex, clinical phenotypes characteristic of most autoimmune diseases. Further simplification and standardization of these technologies may allow routine integration into clinical practice with improved diagnostic and therapeutic outcomes.
Collapse
|