1
|
Wu W, Ho V. An overview of Ehlers Danlos syndrome and the link between postural orthostatic tachycardia syndrome and gastrointestinal symptoms with a focus on gastroparesis. Front Neurol 2024; 15:1379646. [PMID: 39268060 PMCID: PMC11390471 DOI: 10.3389/fneur.2024.1379646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
There has been an increasingly reported association between Ehlers-Danlos syndrome (EDS), postural orthostatic tachycardia syndrome (POTS) and gastrointestinal disorders. EDS is a hereditary connective tissue disorder which may manifest as a spectrum of symptoms stemming from collagen defects. The prevalence of EDS is estimated to affect 1 in 5000 individuals which underscores its clinical significance. Notably the hypermobile form (hEDS) accounts for the majority of cases. POTS is characterized by orthostatic intolerance with an increase in heart rate on standing in the absence of hypotension. This condition predominantly affects women between 15 and 45 years of age. Gastrointestinal symptoms in the form of reflux, bloating and abdominal pain significant impact this population. Gastroparesis is a chronic disorder involving symptoms of delayed gastric emptying and may be closely associated with hEDS and POTS, and may be underreported. Autonomic dysfunction associated with hEDS has been proposed as the likely mechanism underlying POTS and gastrointestinal dysfunction though a clear pathophysiological process has not been established.
Collapse
Affiliation(s)
- William Wu
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Vincent Ho
- Department of Gastroenterology, Campbelltown Hospital, Campbelltown, NSW, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
2
|
Korn LL, Kutyavin VI, Bachtel ND, Medzhitov R. Adverse Food Reactions: Physiological and Ecological Perspectives. Annu Rev Nutr 2024; 44:155-178. [PMID: 38724028 DOI: 10.1146/annurev-nutr-061021-022909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
While food is essential for survival, it can also cause a variety of harmful effects, ranging from intolerance to specific nutrients to celiac disease and food allergies. In addition to nutrients, foods contain myriads of substances that can have either beneficial or detrimental effects on the animals consuming them. Consequently, all animals evolved defense mechanisms that protect them from harmful food components. These "antitoxin" defenses have some parallels with antimicrobial defenses and operate at a cost to the animal's fitness. These costs outweigh benefits when defense responses are exaggerated or mistargeted, resulting in adverse reactions to foods. Additionally, pathological effects of foods can stem from insufficient defenses, due to unabated toxicity of harmful food components. We discuss the structure of antitoxin defenses and how their failures can lead to a variety of adverse food reactions.
Collapse
Affiliation(s)
- Lisa L Korn
- Department of Medicine, Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Vassily I Kutyavin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Nathaniel D Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
3
|
Heckmann ND, Palmer R, Mayfield CK, Gucev G, Lieberman JR, Hong K. Glucagon-Like Peptide Receptor-1 Agonists Used for Medically-Supervised Weight Loss in Patients With Hip and Knee Osteoarthritis: Critical Considerations for the Arthroplasty Surgeon. Arthroplast Today 2024; 27:101327. [PMID: 39071832 PMCID: PMC11282421 DOI: 10.1016/j.artd.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 07/30/2024] Open
Abstract
Patients with morbid obesity and concomitant hip or knee osteoarthritis represent a challenging patient demographic to treat as these patients often present earlier in life, have more severe symptoms, and have worse surgical outcomes following total hip and total knee arthroplasty. Previously, bariatric and metabolic surgeries represented one of the few weight loss interventions that morbidly obese patients could undergo prior to total joint arthroplasty. However, data regarding the reduction in complications with preoperative bariatric surgery remain mixed. Glucagon-like peptide receptor-1 (GLP-1) agonists have emerged as an effective treatment option for obesity in patients with and without diabetes mellitus. Furthermore, recent data suggest these medications may serve as potential anti-inflammatory and disease-modifying agents for numerous chronic conditions, including osteoarthritis. This review will discuss the GLP-1 agonists and GLP-1/glucose-dependent insulinotropic polypeptide dual agonists currently available, along with GLP-1/glucose-dependent insulinotropic polypeptide/glucagon triple agonists presently being developed to address the obesity epidemic. Furthermore, this review will address the potential problem of GLP-1-related delayed gastric emptying and its impact on the timing of elective total joint arthroplasty. The review aims to provide arthroplasty surgeons with a primer for implementing this class of medication in their current and future practice, including perioperative instructions and perioperative safety considerations when treating patients taking these medications.
Collapse
Affiliation(s)
- Nathanael D. Heckmann
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ryan Palmer
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cory K. Mayfield
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Gligor Gucev
- Department of Anesthesiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kurt Hong
- Center for Clinical Nutrition, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Knowles JP, Church J. Normal Ileal Mucus Is Inadequate for Epithelial Protection in Ileal Pouch Mucosa. Dis Colon Rectum 2024; 67:635-644. [PMID: 38276959 DOI: 10.1097/dcr.0000000000003163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Clinical, nonspecific pouchitis is common after restorative proctocolectomy for ulcerative colitis, but its cause is unknown. A possible lack of protection for the ileal mucosa in its role as a reservoir for colonic-type bacteria may be the missing piece in defining the causes of pouchitis. OBJECTIVE The study aimed to review the causes of pouchitis and introduce the hypothesis that inadequate mucus protection in the pouch, combined with a predisposition to abnormal inflammation, is the most common cause of nonspecific pouchitis. DATA SOURCES Review of PubMed and MEDLINE for articles discussing pouchitis and intestinal mucus. STUDY SELECTION Studies published from 1960 to 2023. The main search terms were "pouchitis," and "intestinal mucus," whereas Boolean operators were used with multiple other terms to refine the search. Duplicates and case reports were excluded. MAIN OUTCOME MEASURES Current theories about the cause of pouchitis, descriptions of the role of mucus in the physiology of intestinal protection, and evidence of the effects of lack of mucus on mucosal inflammation. RESULTS The crossreference of "intestinal mucus" with "pouchitis" produced 9 references, none of which discussed the role of mucus in the development of pouchitis. Crossing "intestinal mucus" with "pouch" resulted in 32 articles, combining "pouchitis" with "barrier function" yielded 37 articles, and "pouchitis" with "permeability" yielded only 8 articles. No article discussed the mucus coat as a barrier to bacterial invasion of the epithelium or mentioned inadequate mucus as a factor in pouchitis. However, an ileal pouch produces a colonic environment in the small bowel, and the ileum lacks the mucus protection needed for this sort of environment. This predisposes pouch mucosa to bacterial invasion and chronic microscopic inflammation that may promote clinical pouchitis in patients prone to an autoimmune response. LIMITATIONS No prior studies address inadequate mucus protection and the origin of proctitis. There is no objective way of measuring the autoimmune tendency in patients with ulcerative colitis. CONCLUSIONS Studies of intestinal mucus in the ileal pouch and its association with pouchitis are warranted.
Collapse
Affiliation(s)
- Jonathan P Knowles
- Division of Colorectal Surgery, Columbia University Medical Center, New York, New York
| | | |
Collapse
|
5
|
Schop M, Nguyen-Ba H, Jansman AJM, de Vries S, Ellis JL, Bannink A, Gerrits WJJ. SNAPIG: a model to study nutrient digestion and absorption kinetics in growing pigs based on diet and ingredient properties. Animal 2023; 17 Suppl 5:101025. [PMID: 38016827 DOI: 10.1016/j.animal.2023.101025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
Current feed formulation and evaluation practices rely on static values for the nutritional value of feed ingredients and assume additivity. Hereby, the complex interplay among nutrients in the diet and the highly dynamic digestive processes are ignored. Nutrient digestion kinetics and diet × animal interactions should be acknowledged to improve future predictions of the nutritional value of complex diets. Therefore, an in silico nutrient-based mechanistic digestion model for growing pigs was developed: "SNAPIG" (Simulating Nutrient digestion and Absorption kinetics in PIGs). Aiming to predict the rate and extent of nutrient absorption from diets varying in ingredient composition and physicochemical properties, the model represents digestion kinetics of ingested protein, starch, fat, and non-starch polysaccharides, through passage, hydrolysis, absorption, and endogenous secretions of nutrients along the stomach, proximal small intestine, distal small intestine, and caecum + colon. Input variables are nutrient intake and the physicochemical properties (i.e. solubility, and rate and extent of degradability). Data on the rate and extent of starch and protein hydrolysis of different ingredients per digestive segment were derived from in vitro assays. Passage of digesta from the stomach was modelled as a function of feed intake level, dietary nutrient solubility and diet viscosity. Model evaluation included testing against independent data from in vivo studies on nutrient appearance in (portal) blood of growing pigs. When simulating diets varying in physicochemical properties and nutrient source, SNAPIG can explain variation in glucose absorption kinetics (postprandial time of peak, TOP: 20-100 min observed vs 25-98 min predicted), and predict variation in the extent of ileal protein and fat digestion (root mean square prediction errors (RMSPE) = 12 and 16%, disturbance error = 12 and 86%, and concordance correlation coefficient = 0.34 and 0.27). For amino acid absorption, the observed variation in postprandial TOP (61 ± 11 min) was poorly predicted despite accurate mean predictions (58 ± 34 min). Recalibrating protein digestion and amino acid absorption kinetics require data on net-portal nutrient appearance, combined with observations on digestion kinetics, in pigs fed diets varying in ingredient composition. Currently, SNAPIG can be used to forecast the time and extent of nutrient digestion and absorption when simulating diets varying in ingredient and nutrient composition. It enhances our quantitative understanding of nutrient digestion kinetics and identifies knowledge gaps in this field of research. Already useful as research tool, SNAPIG can be coupled with a postabsorptive metabolism model to predict the effects of dietary and feeding-strategies on the pig's growth response.
Collapse
Affiliation(s)
- M Schop
- Animal Nutrition Group, Wageningen University & Research, PO BOX 338, 6700 AH Wageningen, the Netherlands.
| | - H Nguyen-Ba
- Wageningen Livestock Research, PO BOX 338, 6700 AH Wageningen, the Netherlands
| | - A J M Jansman
- Wageningen Livestock Research, PO BOX 338, 6700 AH Wageningen, the Netherlands
| | - S de Vries
- Animal Nutrition Group, Wageningen University & Research, PO BOX 338, 6700 AH Wageningen, the Netherlands
| | - J L Ellis
- Centre for Nutrition Modelling, University of Guelph, Ontario N1G 2W1, Canada
| | - A Bannink
- Wageningen Livestock Research, PO BOX 338, 6700 AH Wageningen, the Netherlands
| | - W J J Gerrits
- Animal Nutrition Group, Wageningen University & Research, PO BOX 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
6
|
Dogra R, Chhabra MK, Chhibber P. Distal enteral feeding can replace total parenteral feeding to support nutrition in patients with high output stoma (jejunostomy) - A case series. Clin Nutr ESPEN 2023; 57:537-541. [PMID: 37739703 DOI: 10.1016/j.clnesp.2023.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/17/2023] [Accepted: 07/18/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Ostomy/Stoma is a common entity in patients operated for small bowel perforation in developing countries. Delay in presentation, poor general condition, malnutrition and lack of health infrastructure in peripheral areas are some of the causes leading to severe sepsis at presentation. Exteriorising the perforation site as stoma/ostomy is the preferred salvage procedure. Proximal stoma/ostomy is high output and cause fluid and electrolyte imbalance. Also it is difficult to maintain nutrition with oral feeds, as partially digested food along with digestive enzymes gets lost through the stoma. Parenteral nutrition (PN) is widely used in these patients, which is expensive requires hospitalisation, also not without risks e.g. liver dysfunction and associated with complications of central line insertion. AIM We hereby report our experience of managing three patients of high output jejunostomy with distal enteral feeding provided by feeding chyme and partially digested food into the distal stoma. METHOD After confirming the distal patency of the bowel, we started feeding through distal lumen of stoma (known as distal enteral feeding) in our 3 patients with jejunostomies immediately in postoperative period along with PN. After few days we started decreasing PN, we gradually switched to complete enteral nutrition; and increasing distal feeding and then totally stopping the PN in few days only. We kept a watch on the different parameters of the patient like calories and protein intake, weight, electrolytes, liver function, etc. RESULTS: Distal enteral feeding improved their body weight, maintained their serum electrolytes and liver function tests including serum albumin. After achieving the good nutritional status, we were able to do successful surgical closure of stomas in all the three patients. CONCLUSION In our experience, patients with high-output stomas can be nutritionally maintained with distal enteral feeding without the need of long term PN. Use of distal enteral feeding, if used appropriately and with proper monitoring, can nutritionally build up the patient avoiding the complications of PN.
Collapse
Affiliation(s)
- Reetu Dogra
- Department of General Surgery, Deen Dayal Upadhyay Hospital, New Delhi, India.
| | | | - Puneet Chhibber
- Department of General Surgery, Deen Dayal Upadhyay Hospital, New Delhi, India.
| |
Collapse
|
7
|
Hibberd TJ, Ramsay S, Spencer-Merris P, Dinning PG, Zagorodnyuk VP, Spencer NJ. Circadian rhythms in colonic function. Front Physiol 2023; 14:1239278. [PMID: 37711458 PMCID: PMC10498548 DOI: 10.3389/fphys.2023.1239278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
A rhythmic expression of clock genes occurs within the cells of multiple organs and tissues throughout the body, termed "peripheral clocks." Peripheral clocks are subject to entrainment by a multitude of factors, many of which are directly or indirectly controlled by the light-entrainable clock located in the suprachiasmatic nucleus of the hypothalamus. Peripheral clocks occur in the gastrointestinal tract, notably the epithelia whose functions include regulation of absorption, permeability, and secretion of hormones; and in the myenteric plexus, which is the intrinsic neural network principally responsible for the coordination of muscular activity in the gut. This review focuses on the physiological circadian variation of major colonic functions and their entraining mechanisms, including colonic motility, absorption, hormone secretion, permeability, and pain signalling. Pathophysiological states such as irritable bowel syndrome and ulcerative colitis and their interactions with circadian rhythmicity are also described. Finally, the classic circadian hormone melatonin is discussed, which is expressed in the gut in greater quantities than the pineal gland, and whose exogenous use has been of therapeutic interest in treating colonic pathophysiological states, including those exacerbated by chronic circadian disruption.
Collapse
Affiliation(s)
- Timothy J. Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Stewart Ramsay
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Phil G. Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Colorectal Surgical Unit, Division of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | | | - Nick J. Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
8
|
Norsa L, Goulet O, Alberti D, DeKooning B, Domellöf M, Haiden N, Hill S, Indrio F, Kӧglmeier J, Lapillonne A, Luque V, Moltu SJ, Saenz De Pipaon M, Savino F, Verduci E, Bronsky J. Nutrition and Intestinal Rehabilitation of Children With Short Bowel Syndrome: A Position Paper of the ESPGHAN Committee on Nutrition. Part 1: From Intestinal Resection to Home Discharge. J Pediatr Gastroenterol Nutr 2023; 77:281-297. [PMID: 37256827 DOI: 10.1097/mpg.0000000000003849] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Short bowel syndrome (SBS) is the leading cause of intestinal failure (IF) in children. The mainstay of treatment for IF is parenteral nutrition (PN). The aim of this position paper is to review the available evidence on managing SBS and to provide practical guidance to clinicians dealing with this condition. All members of the Nutrition Committee of the European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) contributed to this position paper. Some renowned experts in the field joined the team to guide with their experience. A systematic literature search was performed from 2005 to May 2021 using PubMed, MEDLINE, and Cochrane Database of Systematic Reviews. In the absence of evidence, recommendations reflect the expert opinion of the authors. Literature on SBS mainly consists of retrospective single-center experience, thus most of the current papers and recommendations are based on expert opinion. All recommendations were voted on by the expert panel and reached >90% agreement. The first part of this position paper focuses on the physiological mechanism of intestinal adaptation after surgical resection. It subsequently provides some clinical practice recommendations for the primary management of children with SBS from surgical resection until discharged home on PN.
Collapse
Affiliation(s)
- Lorenzo Norsa
- From the Department of Paediatric Hepatology, Gastroenterology and Transplantation, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Olivier Goulet
- the Department of Pediatric Gastroenterology-Hepatology-Nutrition, Necker-Enfants Malades Hospital, Université Paris Descartes, Paris, France
| | - Daniele Alberti
- the Department of Pediatric Surgery, ASST Spedali Civili, Brescia, Italy
- the Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara DeKooning
- the Paediatric Gastroenterology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Magnus Domellöf
- the Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Nadja Haiden
- the Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Susan Hill
- the Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Flavia Indrio
- the Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Jutta Kӧglmeier
- the Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alexandre Lapillonne
- the Neonatal Intensive Care Unit, Necker-Enfants Malades Hospital, Paris University, Paris, France
- the CNRC, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Veronica Luque
- Serra Hunter, Universitat Rovira I Virgili, IISPV, Tarragona, Spain
| | - Sissel J Moltu
- the Department of Neonatology, Oslo University Hospital, Oslo, Norway
| | - Miguel Saenz De Pipaon
- the Department of Neonatology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz - IdiPAZ, Hospital Universitario La Paz - Universidad Autónoma de Madrid, Madrid, Spain
| | - Francesco Savino
- the Dipartimento di Patologia e cura del bambino "Regina Margherita", A.U.O. Città delle Salute e della Scienza di Torino, Torino, Italy
| | - Elvira Verduci
- the Department of Pediatrics, Ospedale dei Bambini Vittore Buzzi University of Milan, Milan, Italy
| | - Jiri Bronsky
- the Department of Paediatrics, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
9
|
Merlo FD, Aimasso U, Ossola M, Ippolito M, Cravero L, Ponzo V, Bo S. Effects of Treatment with Liraglutide Early after Surgical Intervention on Clinical Outcomes in Patients with Short Bowel Syndrome: A Pilot Observational "Real-Life" Study. Nutrients 2023; 15:2740. [PMID: 37375644 DOI: 10.3390/nu15122740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Liraglutide, a glucagon-like peptide-1 agonist, has been shown to have beneficial effects on fecal output in short bowel syndrome (SBS) by small human studies. Its potential effects early after gut resection are not known. In this pilot observational study, we described the 1- and 6-month liraglutide effects in 19 adult patients with a new SBS diagnosis within 1 month after surgical resection. Stomal/fecal and urinary outcomes, serum/urinary electrolytes, and body composition were assessed. Both within-group differences and between-group comparisons with 20 SBS patients refusing liraglutide treatment were evaluated. The main liraglutide-related side effect was mild nausea, except in one patient, who experienced severe nausea/vomiting. The median ostomy/fecal output was significantly reduced by -550 mL/day after 6 months of treatment (vs. -200 mL/day in untreated, p = 0.04). The number of patients reaching a ≥20% output reduction was 10/19 (52.6%) treated vs. 3/20 (15.0%) untreated patients (p = 0.013) at 1 month and 12/19 (63.2%) vs. 6/20 (30.0%) (p = 0.038) at 6 months, respectively. Participants with a clinically relevant output reduction at 6 months had a significantly lower baseline weight and BMI. Energy parenteral supply significantly decreased, while infused volumes, oral energy, and fluid intakes slightly decreased, though not significantly. This pilot study supports liraglutide benefits in ostomy/fecal output early after surgical gut resection in SBS patients, particularly in those with lower baseline weight values.
Collapse
Affiliation(s)
- Fabio Dario Merlo
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Umberto Aimasso
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Marta Ossola
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Mirko Ippolito
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Leila Cravero
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Valentina Ponzo
- Department of Medical Science, University of Torino, C.so Dogliotti 14, 10126 Torino, Italy
| | - Simona Bo
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
- Department of Medical Science, University of Torino, C.so Dogliotti 14, 10126 Torino, Italy
| |
Collapse
|
10
|
Bering J, DiBaise JK. Short bowel syndrome: Complications and management. Nutr Clin Pract 2023; 38 Suppl 1:S46-S58. [PMID: 37115034 DOI: 10.1002/ncp.10978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 04/29/2023] Open
Abstract
Short bowel syndrome (SBS) occurs when a patient loses bowel length or function significantly enough to cause malabsorption, oftentimes requiring lifelong parenteral support. In adults, this occurs most commonly in the setting of massive intestinal resection, whereas congenital anomalies and necrotizing enterocolitis predominate in children. Many patients with SBS develop long-term clinical complications over time related to their altered intestinal anatomy and physiology or to various treatment interventions such as parenteral nutrition and the central venous catheter through which it is administered. Identifying, preventing, and treating these complications can be challenging. This review will focus on the diagnosis, treatment, and prevention of several complications that can occur in this patient population, including diarrhea, fluid and electrolyte imbalance, vitamin and trace element derangements, metabolic bone disease, biliary disorders, small intestinal bacterial overgrowth, d-lactic acidosis, and complications of central venous catheters.
Collapse
Affiliation(s)
- Jamie Bering
- Division of Gastroenterology and Hepatology, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| | - John K DiBaise
- Division of Gastroenterology and Hepatology, Mayo Clinic in Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
11
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
12
|
Rahimzadeh G, Tay A, Travica N, Lacy K, Mohamed S, Nahavandi D, Pławiak P, Qazani MC, Asadi H. Nutritional and Behavioral Countermeasures as Medication Approaches to Relieve Motion Sickness: A Comprehensive Review. Nutrients 2023; 15:nu15061320. [PMID: 36986050 PMCID: PMC10052985 DOI: 10.3390/nu15061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The mismatch in signals perceived by the vestibular and visual systems to the brain, also referred to as motion sickness syndrome, has been diagnosed as a challenging condition with no clear mechanism. Motion sickness causes undesirable symptoms during travel and in virtual environments that affect people negatively. Treatments are directed toward reducing conflicting sensory inputs, accelerating the process of adaptation, and controlling nausea and vomiting. The long-term use of current medications is often hindered by their various side effects. Hence, this review aims to identify non-pharmacological strategies that can be employed to reduce or prevent motion sickness in both real and virtual environments. Research suggests that activation of the parasympathetic nervous system using pleasant music and diaphragmatic breathing can help alleviate symptoms of motion sickness. Certain micronutrients such as hesperidin, menthol, vitamin C, and gingerol were shown to have a positive impact on alleviating motion sickness. However, the effects of macronutrients are more complex and can be influenced by factors such as the food matrix and composition. Herbal dietary formulations such as Tianxian and Tamzin were shown to be as effective as medications. Therefore, nutritional interventions along with behavioral countermeasures could be considered as inexpensive and simple approaches to mitigate motion sickness. Finally, we discussed possible mechanisms underlying these interventions, the most significant limitations, research gaps, and future research directions for motion sickness.
Collapse
Affiliation(s)
- Ghazal Rahimzadeh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
| | - Abdullatif Tay
- PepsiCo Inc., Food Safety and Global Process Authority, 433 W Van Buren St., Chicago, IL 60607, USA
- Correspondence: (A.T.); (S.M.); Tel.: +61-3-522-72599 (S.M.)
| | - Nikolaj Travica
- Food & Mood Centre, IMPACT—The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia
| | - Kathleen Lacy
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, VIC 3220, Australia
| | - Shady Mohamed
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
- Correspondence: (A.T.); (S.M.); Tel.: +61-3-522-72599 (S.M.)
| | - Darius Nahavandi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
| | - Mohammadreza Chalak Qazani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
| | - Houshyar Asadi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
13
|
D'Eusebio C, Merlo FD, Ossola M, Bioletto F, Ippolito M, Locatelli M, De Francesco A, Anrò M, Romagnoli R, Strignano P, Bo S, Aimasso U. Mortality and parenteral nutrition weaning in patients with chronic intestinal failure on home parenteral nutrition: A 30-year retrospective cohort study. Nutrition 2023; 107:111915. [PMID: 36566610 DOI: 10.1016/j.nut.2022.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Home parenteral nutrition (HPN) is the standard treatment for patients with chronic intestinal failure (CIF). Mortality and weaning rates of these patients differ widely among cohorts; however, these outcomes were often considered independent-rather than competing-events, leading to an upward bias of the retrieved estimates. OBJECTIVES The aim of this retrospective cohort study was to evaluate, evaluating through a competing risk analysis, the rates and predictors of mortality and weaning in CIF patients from an Italian referral center. METHODS All adult patients with CIF receiving > 3 mo HPN from 1985 until 2016 were enrolled. Clinical information was collected from the database of the Intestinal Failure Unit of Torino, Italy. Patients were stratified according to the presence or not of short bowel syndrome (SBS). RESULTS The cumulative incidences of death and weaning were 27.3% and 32.3% and 39.0% and 33.7% at 5 and 10 y from HPN initiation, respectively. At multivariable competing risk analyses, mortality was predicted by age (sub-distribution hazard ratio [SHR] = 1.65 per 10-y increase; 95% CI, 1.35-2.01), type 3 SBS (SHR = 0.38; 0.15-0.94), small bowel length ≥ 100 cm (SHR = 0.42; 0.22-0.83), and reconstructive surgery (SHR = 0.11; 0.02-0.64) in SBS patients, and by age (SHR = 1.38 per 10-y increase; 1.16-1.64) and presence of stoma (SHR = 0.30; 0.12-0.78) in non-SBS patients. In the same model, weaning was predicted by type 3 SBS (SHR = 6.86; 3.10-15.16), small bowel length ≥ 100 cm (SHR = 3.54; 1.99-6.30), and reconstructive surgery (SHR = 2.86; 1.44-5.71) in SBS patients, and by age (SHR = 0.79 per 10-y increase; 0.66-0.94) and presence of stoma (SHR = 2.64; 1.38-5.07) in non-SBS patients. CONCLUSIONS Surgical procedures strongly affected mortality and weaning risk in CIF patients.
Collapse
Affiliation(s)
- Chiara D'Eusebio
- Department of Medical Science, University of Torino, 10124 Torino, Italy
| | - Fabio Dario Merlo
- Unit of Dietetic and Clinical Nutrition, Città della Salute e della Scienza Hospital, 10126 Torino, Italy.
| | - Marta Ossola
- Unit of Dietetic and Clinical Nutrition, Città della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Fabio Bioletto
- Department of Medical Science, University of Torino, 10124 Torino, Italy
| | - Mirko Ippolito
- Department of Medical Science, University of Torino, 10124 Torino, Italy
| | - Monica Locatelli
- Food Chemistry, Biotechnology and Nutrition Unit, University of Piemonte Orientale, 28100 Novara, Italy
| | - Antonella De Francesco
- Unit of Dietetic and Clinical Nutrition, Città della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Marta Anrò
- Unit of Dietetic and Clinical Nutrition, Città della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Renato Romagnoli
- General Surgery 2U, Liver Transplantation Unit, Città della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Paolo Strignano
- General Surgery 2U, Liver Transplantation Unit, Città della Salute e della Scienza Hospital, 10126 Torino, Italy
| | - Simona Bo
- Unit of Dietetic and Clinical Nutrition, Città della Salute e della Scienza Hospital, 10126 Torino, Italy.
| | - Umberto Aimasso
- Unit of Dietetic and Clinical Nutrition, Città della Salute e della Scienza Hospital, 10126 Torino, Italy
| |
Collapse
|
14
|
Hayashi M, Kaye JA, Douglas ER, Joshi NR, Gribble FM, Reimann F, Liberles SD. Enteroendocrine cell lineages that differentially control feeding and gut motility. eLife 2023; 12:78512. [PMID: 36810133 PMCID: PMC10032656 DOI: 10.7554/elife.78512] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Enteroendocrine cells are specialized sensory cells of the gut-brain axis that are sparsely distributed along the intestinal epithelium. The functions of enteroendocrine cells have classically been inferred by the gut hormones they release. However, individual enteroendocrine cells typically produce multiple, sometimes apparently opposing, gut hormones in combination, and some gut hormones are also produced elsewhere in the body. Here, we developed approaches involving intersectional genetics to enable selective access to enteroendocrine cells in vivo in mice. We targeted FlpO expression to the endogenous Villin1 locus (in Vil1-p2a-FlpO knock-in mice) to restrict reporter expression to intestinal epithelium. Combined use of Cre and Flp alleles effectively targeted major transcriptome-defined enteroendocrine cell lineages that produce serotonin, glucagon-like peptide 1, cholecystokinin, somatostatin, or glucose-dependent insulinotropic polypeptide. Chemogenetic activation of different enteroendocrine cell types variably impacted feeding behavior and gut motility. Defining the physiological roles of different enteroendocrine cell types provides an essential framework for understanding sensory biology of the intestine.
Collapse
Affiliation(s)
- Marito Hayashi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Judith A Kaye
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Ella R Douglas
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Narendra R Joshi
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Fiona M Gribble
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Stephen D Liberles
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
15
|
Karaki SI. A Technique of Measurement of Gastrointestinal Luminal Nutrient Sensing and These Absorptions: Ussing Chamber (Short-Circuit Current) Technique. J Nutr Sci Vitaminol (Tokyo) 2023; 69:164-175. [PMID: 37394421 DOI: 10.3177/jnsv.69.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The gastrointestinal (GI) tract is a series of hollow organs that play roles in food digestion and nutrient absorption. To perform these functions, they should recognize the luminal environment and elicit adequate physiological responses, including digestive juice secretion, peristaltic movements, etc. The Ussing chamber technique is an electrophysiological method for measuring transepithelial ion transport and permeability as short-circuit current (Isc) and transepithelial electrical tissue conductance (Gt) or resistance (TEER), respectively, in vitro. This technique can be applied for the measurement of luminal nutrient sensing and absorption. This article introduces practical methods for measuring luminal nutrient sensing and absorption using intestinal mucosa specimens isolated from humans and experimental animals.
Collapse
Affiliation(s)
- Shin-Ichiro Karaki
- Laboratory of Physiology, Department of Environmental and Life Sciences, University of Shizuoka
| |
Collapse
|
16
|
Impact of gastric and bowel surgery on gastrointestinal drug delivery. Drug Deliv Transl Res 2023; 13:37-53. [PMID: 35585472 PMCID: PMC9726802 DOI: 10.1007/s13346-022-01179-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 01/01/2023]
Abstract
General surgical procedures on the gastrointestinal tract are commonly performed worldwide. Surgical resections of the stomach, small intestine, or large intestine can have a significant impact on the anatomy and physiological environment of the gastrointestinal tract. These physiological changes can affect the effectiveness of orally administered formulations and drug absorption and, therefore, should be considered in rational drug formulation design for specific pathological conditions that are commonly associated with surgical intervention. For optimal drug delivery, it is important to understand how different surgical procedures affect the short-term and long-term functionality of the gastrointestinal tract. The significance of the surgical intervention is dependent on factors such as the specific region of resection, the degree of the resection, the adaptive and absorptive capacity of the remaining tissue, and the nature of the underlying disease. This review will focus on the common pathological conditions affecting the gastric and bowel regions that may require surgical intervention and the physiological impact of the surgery on gastrointestinal drug delivery. The pharmaceutical considerations for conventional and novel oral drug delivery approaches that may be impacted by general surgical procedures of the gastrointestinal tract will also be addressed.
Collapse
|
17
|
Rauch CE, Mika AS, McCubbin AJ, Huschtscha Z, Costa RJS. Effect of prebiotics, probiotics, and synbiotics on gastrointestinal outcomes in healthy adults and active adults at rest and in response to exercise-A systematic literature review. Front Nutr 2022; 9:1003620. [PMID: 36570133 PMCID: PMC9768503 DOI: 10.3389/fnut.2022.1003620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction A systematic literature search was undertaken to assess the impact of pre-, pro-, and syn-biotic supplementation on measures of gastrointestinal status at rest and in response to acute exercise. Methods Six databases (Ovid MEDLINE, EMBASE, Cinahl, SportsDISCUS, Web of Science, and Scopus) were used. Included were human research studies in healthy sedentary adults, and healthy active adults, involving supplementation and control or placebo groups. Sedentary individuals with non-communicable disease risk or established gastrointestinal inflammatory or functional diseases/disorders were excluded. Results A total of n = 1,204 participants were included from n = 37 papers reported resting outcomes, and n = 13 reported exercise-induced gastrointestinal syndrome (EIGS) outcomes. No supplement improved gastrointestinal permeability or gastrointestinal symptoms (GIS), and systemic endotoxemia at rest. Only modest positive changes in inflammatory cytokine profiles were observed in n = 3/15 studies at rest. Prebiotic studies (n = 4/5) reported significantly increased resting fecal Bifidobacteria, but no consistent differences in other microbes. Probiotic studies (n = 4/9) increased the supplemented bacterial species-strain. Only arabinoxylan oligosaccharide supplementation increased total fecal short chain fatty acid (SCFA) and butyrate concentrations. In response to exercise, probiotics did not substantially influence epithelial injury and permeability, systemic endotoxin profile, or GIS. Two studies reported reduced systemic inflammatory cytokine responses to exercise. Probiotic supplementation did not substantially influence GIS during exercise. Discussion Synbiotic outcomes resembled probiotics, likely due to the minimal dose of prebiotic included. Methodological issues and high risk of bias were identified in several studies, using the Cochrane Risk of Bias Assessment Tool. A major limitation in the majority of included studies was the lack of a comprehensive approach of well-validated biomarkers specific to gastrointestinal outcomes and many included studies featured small sample sizes. Prebiotic supplementation can influence gut microbial composition and SCFA concentration; whereas probiotics increase the supplemented species-strain, with minimal effect on SCFA, and no effect on any other gastrointestinal status marker at rest. Probiotic and synbiotic supplementation does not substantially reduce epithelial injury and permeability, systemic endotoxin and inflammatory cytokine profiles, or GIS in response to acute exercise.
Collapse
Affiliation(s)
- Christopher E. Rauch
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alice S. Mika
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Alan J. McCubbin
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Zoya Huschtscha
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia,*Correspondence: Ricardo J. S. Costa
| |
Collapse
|
18
|
Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine 2022; 17:3933-3966. [PMID: 36105620 PMCID: PMC9465052 DOI: 10.2147/ijn.s375229] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
As per the WHO, colorectal cancer (CRC) caused around 935,173 deaths worldwide in 2020 in both sexes and at all ages. The available anticancer therapies including chemotherapy, radiotherapy and anticancer drugs are all associated with limited therapeutic efficacy, adverse effects and low chances. This has urged to emerge several novel therapeutic agents as potential therapies for CRC including synthetic and natural materials. Orally administrable and targeted drug delivery systems are attractive strategies for CRC therapy as they minimize the side effects, enhance the efficacy of anticancer drugs. Nevertheless, oral drug delivery till today faces several challenges like poor drug solubility, stability, and permeability. Various oral nano-based approaches and targeted drug delivery systems have been developed recently, as a result of the ability of nanoparticles to control the release of the encapsulant, drug targeting and reduce the number of dosages administered. The unique physicochemical properties of chitosan polymer assist to overcome oral drug delivery barriers and target the colon tumour cells. Chitosan-based nanocarriers offered additional improvements by enhancing the stability, targeting and bioavailability of several anti-colorectal cancer agents. Modified chitosan derivatives also facilitated CRC targeting through strengthening the protection of encapsulant against acidic and enzyme degradation of gastrointestinal track (GIT). This review aims to provide an overview of CRC pathology, therapy and the barriers against oral drug delivery. It also emphasizes the role of nanotechnology in oral drug targeted delivery system and the growing interest towards chitosan and its derivatives. The present review summarizes the relevant works to date that have studied the potential applications of chitosan-based nanocarrier towards CRC treatment.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| | - Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu, 22200, Malaysia
| |
Collapse
|
19
|
Savulescu-Fiedler I, Gurghean AL, Siliste RN. The complex involvement of the digestive tract in human defense behavior - structural and functional arguments. J Med Life 2022; 15:1081-1089. [PMID: 36415517 PMCID: PMC9635236 DOI: 10.25122/jml-2022-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
The digestive system has an innate monitoring and defense capacity, which allows the recognition and elimination of different dangerous substances. The complex analysis of the intestinal content comprises the cross-interactions between the epithelial cells, the enteroendocrine cells, the neural tissue and the cellular defense mechanisms. The enteric nervous system, also called "the enteric brain" or "the second brain" is the only neuronal network outside the central nervous system capable of autonomous reflex activity. The enteric nervous system activity is mostly independent of the central nervous system, but not in all aspects. In fact, even the enteral reflexes are a consequence of the bidirectional intestine-brain relation. The central nervous and enteric nervous systems are coupled through the sympathetic and parasympathetic branches of the autonomic nervous system. The gastrointestinal functions are regulated due to the interaction between the intrinsic neurons within the gastrointestinal wall and the extrinsic neurons outside the gastrointestinal tract. Here we provide an overview of the important role of the enteric brain in defensive behavior, as well as its structural and functional particularities that make it a special organ.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Internal Medicine and Cardiology Department, Coltea Clinical Hospital, Bucharest, Romania
- Department 1 Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Adriana Luminita Gurghean
- Internal Medicine and Cardiology Department, Coltea Clinical Hospital, Bucharest, Romania
- Department 1 Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Roxana-Nicoleta Siliste
- Internal Medicine and Cardiology Department, Coltea Clinical Hospital, Bucharest, Romania
- Department 1 Medical Semiology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| |
Collapse
|
20
|
Assessment of Exercise-Associated Gastrointestinal Perturbations in Research and Practical Settings: Methodological Concerns and Recommendations for Best Practice. Int J Sport Nutr Exerc Metab 2022; 32:387-418. [PMID: 35963615 DOI: 10.1123/ijsnem.2022-0048] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Strenuous exercise is synonymous with disturbing gastrointestinal integrity and function, subsequently prompting systemic immune responses and exercise-associated gastrointestinal symptoms, a condition established as "exercise-induced gastrointestinal syndrome." When exercise stress and aligned exacerbation factors (i.e., extrinsic and intrinsic) are of substantial magnitude, these exercise-associated gastrointestinal perturbations can cause performance decrements and health implications of clinical significance. This potentially explains the exponential growth in exploratory, mechanistic, and interventional research in exercise gastroenterology to understand, accurately measure and interpret, and prevent or attenuate the performance debilitating and health consequences of exercise-induced gastrointestinal syndrome. Considering the recent advancement in exercise gastroenterology research, it has been highlighted that published literature in the area is consistently affected by substantial experimental limitations that may affect the accuracy of translating study outcomes into practical application/s and/or design of future research. This perspective methodological review attempts to highlight these concerns and provides guidance to improve the validity, reliability, and robustness of the next generation of exercise gastroenterology research. These methodological concerns include participant screening and description, exertional and exertional heat stress load, dietary control, hydration status, food and fluid provisions, circadian variation, biological sex differences, comprehensive assessment of established markers of exercise-induced gastrointestinal syndrome, validity of gastrointestinal symptoms assessment tool, and data reporting and presentation. Standardized experimental procedures are needed for the accurate interpretation of research findings, avoiding misinterpreted (e.g., pathological relevance of response magnitude) and overstated conclusions (e.g., clinical and practical relevance of intervention research outcomes), which will support more accurate translation into safe practice guidelines.
Collapse
|
21
|
Jalleh RJ, Wu T, Jones KL, Rayner CK, Horowitz M, Marathe CS. Relationships of Glucose, GLP-1, and Insulin Secretion With Gastric Emptying After a 75-g Glucose Load in Type 2 Diabetes. J Clin Endocrinol Metab 2022; 107:e3850-e3856. [PMID: 35608823 PMCID: PMC9387705 DOI: 10.1210/clinem/dgac330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The relationships of gastric emptying (GE) with the glycemic response at 120 minutes, glucagon-like peptide-1 (GLP-1), and insulin secretion following a glucose load in type 2 diabetes (T2D) are uncertain. OBJECTIVE We evaluated the relationship of plasma glucose, GLP-1, and insulin secretion with GE of a 75-g oral glucose load in T2D. DESIGN Single-center, cross-sectional, post hoc analysis. SETTING Institutional research center. PARTICIPANTS 43 individuals with T2D age 65.6 ± 1.1 years, hemoglobin A1c 7.2 ± 1.0%, median duration of diabetes 5 years managed by diet and/or metformin. INTERVENTION Participants consumed the glucose drink radiolabeled with 99mTc-phytate colloid following an overnight fast. GE (scintigraphy), plasma glucose, GLP-1, insulin, and C-peptide were measured between 0 and 180 minutes. MAIN OUTCOME MEASURES The relationships of the plasma glucose at 120 minutes, plasma GLP-1, and insulin secretion (calculated by Δinsulin0-30/ Δglucose0-30 and ΔC-peptide0-30/Δglucose0-30) with the rate of GE (scintigraphy) were evaluated. RESULTS There were positive relationships of plasma glucose at 30 minutes (r = 0.56, P < 0.001), 60 minutes (r = 0.57, P < 0.001), and 120 minutes (r = 0.51, P < 0.001) but not at 180 minutes (r = 0.13, P = 0.38), with GE. The 120-minute plasma glucose and GE correlated weakly in multiple regression models adjusting for age, GLP-1, and insulin secretion (P = 0.04 and P = 0.06, respectively). There was no relationship of plasma GLP-1 with GE. Multiple linear regression analysis indicated that there was no significant effect of GE on insulin secretion. CONCLUSION In T2D, while insulin secretion is the dominant determinant of the 120-minute plasma glucose, GE also correlates. Given the relevance to interpreting the results of an oral glucose tolerance test, this relationship should be evaluated further. There appears to be no direct effect of GE on either GLP-1 or insulin secretion.
Collapse
Affiliation(s)
- Ryan J Jalleh
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Tongzhi Wu
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Christopher K Rayner
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
| | - Chinmay S Marathe
- Correspondence: Chinmay S. Marathe, MBBS, PhD, FRACP, Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide Medical School, The University of Adelaide, Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia. ; Level 5, Adelaide Health and Medical Science building, North Terrace, Adelaide SA 5000, Australia
| |
Collapse
|
22
|
Heyer CME, Jaworski NW, Page GI, Zijlstra RT. Effect of Fiber Fermentation and Protein Digestion Kinetics on Mineral Digestion in Pigs. Animals (Basel) 2022; 12:2053. [PMID: 36009643 PMCID: PMC9404855 DOI: 10.3390/ani12162053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/10/2023] Open
Abstract
Nutrient kinetic data and the timing of nutrient release along the gastrointestinal tract (GIT), are not yet widely used in current feed formulations for pigs and poultry. The present review focuses on interactions between fermentable substrates (e.g., starch, fiber, and protein) and selected minerals on nutrient digestion and absorption to determine nutritional solutions to maximize animal performance, principally in the grower-finisher phase, with the aim of minimizing environmental pollution. For phosphorus (P), myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6), copper (Cu), and zinc (Zn), no standardized methodologies to assess in vitro mineral digestion exist. The stepwise degradation of InsP6 to lower inositol phosphate (InsP) forms in the GIT is rare, and inositol phosphate4 (InsP4) might be the limiting isomer of InsP degradation in diets with exogenous phytase. Furthermore, dietary coefficients of standardized total tract digestibility (CSTTD) of P might be underestimated in diets with fermentable ingredients because of increased diet-specific endogenous P losses (EPL), and further clarification is required to better calculate the coefficients of true total tract digestibility (CTTTD) of P. The quantification of fiber type, composition of fiber fractions, their influence on digestion kinetics, effects on digesta pH, and nutrient solubility related to fermentation should be considered for formulating diets. In conclusion, applications of nutrient kinetic data should be considered to help enhance nutrient digestion and absorption in the GIT, thereby reducing nutrient excretion.
Collapse
Affiliation(s)
- Charlotte M. E. Heyer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Greg I. Page
- Trouw Nutrition Innovation, 3800 AG Amersfoort, The Netherlands
| | - Ruurd T. Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
23
|
Colonic delivery of surface charge decorated nanocarrier for IBD therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Hojo A, Kobayashi T, Matsubayashi M, Morikubo H, Miyatani Y, Fukuda T, Asonuma K, Sagami S, Nakano M, Matsuda T, Hibi T. Usefulness of colestimide for diarrhea in postoperative Crohn's disease. JGH Open 2022; 6:547-553. [PMID: 35928696 PMCID: PMC9344577 DOI: 10.1002/jgh3.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022]
Abstract
Background and Aim Crohn's disease (CD) often causes intractable diarrhea after intestinal resection. Anion exchange resins have been reported to be effective in patients with bile acid diarrhea after distal ileectomy; furthermore, bile acid metabolism has been implicated in the pathogenesis of CD. Therefore, we aimed to examine the effectiveness of colestimide in the management of postoperative CD, and to compare its impact between patients with and those without ileocecal resection. Methods Postoperative CD patients prescribed colestimide for diarrhea between April 2017 and December 2020 were retrospectively evaluated for changes in the total Crohn's disease activity index (CDAI), each CDAI component including diarrhea frequency/week, albumin, and C‐reactive protein (CRP) was evaluated before and after the administration of colestimide. Furthermore, comprehensive patient and physician assessments were reviewed from medical records during the first outpatient visit as a global clinical judgment after the initiation of colestimide therapy. Results A total of 24 patients were included, of whom 17 had a previous history of ileocecal resection. Significant improvement was noted in CDAI and diarrhea frequency only in the ileocecal resection group (CDAI: 114.5 ± 52.7 and 95.4 ± 34.8, P < 0.05; diarrhea frequency/week 23.8 ± 14.1 and 15.4 ± 11.2, P < 0.05, respectively). There was no significant improvement in other CDAI components, albumin level, or CRP level in either group. In the global clinical judgment, 13 and 4 patients in the ileocecal and non‐ileocecal resection groups, respectively, were judged as “effective,” with an overall efficacy rate of 70.8%. Conclusion Colestimide is effective for diarrhea in patients with postoperative CD, especially after ileocecal resection.
Collapse
Affiliation(s)
- Aya Hojo
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
- Department of Gastroenterology and Hepatology Kitasato University Kitasato Institute Hospital Tokyo Japan
- Division of Gastroenterology and Hepatology Toho University Omori Medical Center Tokyo Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
- Department of Gastroenterology and Hepatology Kitasato University Kitasato Institute Hospital Tokyo Japan
| | - Mao Matsubayashi
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
| | - Hiromu Morikubo
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
- Department of Gastroenterology and Hepatology Kitasato University Kitasato Institute Hospital Tokyo Japan
| | - Yusuke Miyatani
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
| | - Tomohiro Fukuda
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
- Department of Gastroenterology and Hepatology Kitasato University Kitasato Institute Hospital Tokyo Japan
| | - Kunio Asonuma
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
| | - Shintaro Sagami
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
- Department of Gastroenterology and Hepatology Kitasato University Kitasato Institute Hospital Tokyo Japan
| | - Masaru Nakano
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
- Department of Gastroenterology and Hepatology Kitasato University Kitasato Institute Hospital Tokyo Japan
| | - Takahisa Matsuda
- Division of Gastroenterology and Hepatology Toho University Omori Medical Center Tokyo Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment Kitasato University Kitasato Institute Hospital Tokyo Japan
| |
Collapse
|
25
|
Spencer NJ, Hibberd TJ. GLP-1 appetite control via intestinofugal neurons. Cell Res 2022; 32:711-712. [PMID: 35794368 PMCID: PMC9343648 DOI: 10.1038/s41422-022-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Premkumar MH, Soraisham A, Bagga N, Massieu LA, Maheshwari A. Nutritional Management of Short Bowel Syndrome. Clin Perinatol 2022; 49:557-572. [PMID: 35659103 DOI: 10.1016/j.clp.2022.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Short bowel syndrome (SBS) of infancy is a cause of prolonged morbidity with intolerance to enteral feeding, specialized nutritional needs, and partial/total dependence on parenteral nutrition. These infants can benefit from individualized nutritional strategies to support and enhance the process of intestinal adaptation. Early introduction of enteral feeds during the period of intestinal adaptation is crucial, even though the enteral feedings may need to be supplemented with an effective, safe, and nutritionally adequate parenteral nutritional regimen. Newer generation intravenous lipid emulsions can be effective in preventing and treating intestinal failure-associated liver disease. Prevention of infection(s), pharmaceutical interventions to enhance bowel motility and prevent/mitigate bacteria overgrowth, and specialized multidisciplinary care to minimize the injury to other organs such as the liver, kidneys, and the brain can assist in nutritional rehabilitation and lower the morbidity in SBS.
Collapse
Affiliation(s)
- Muralidhar H Premkumar
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin, Suite 6104, Houston, TX 77030, USA.
| | - Amuchou Soraisham
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nitasha Bagga
- Department of Neonatology, Rainbow Children's Hospital, Hyderabad, India
| | - L Adriana Massieu
- Department of Clinical Nutrition Services, Texas Children's Hospital, Houston, TX, USA
| | - Akhil Maheshwari
- Global Newborn Society (https://www.globalnewbornsociety.org/), Clarksville, MD, USA
| |
Collapse
|
27
|
Abstract
Due to recent advances, the mortality due to short bowel syndrome (SBS) has significantly decreased, but the morbidities are still high. Morbidities arising specifically due to dysmotility in SBS include feeding intolerance, prolonged dependence on parenteral nutrition, and associated complications such as intestinal failure associated liver disease, and bloodstream infections. The understanding of the pathogenesis of dysmotility in SBS has improved vastly. However, the tools to diagnose dysmotility in SBS in infants are restrictive, and the medical therapies to treat dysmotility are limited. Surgical techniques available for the treatment after failure of conservative management of dysmotility offer hope but carry their associated risks. The evidence to support either the medical therapies or the surgical techniques to treat dysmotility in SBS in children is scarce and weak. Development of newer therapies and efforts to build evidence to support currently available treatments in treating dysmotility in SBS is needed.
Collapse
Affiliation(s)
- Muralidhar H Premkumar
- Associate Professor, Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin, Suite 6104, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Understanding Cystic Fibrosis Comorbidities and Their Impact on Nutritional Management. Nutrients 2022; 14:nu14051028. [PMID: 35268004 PMCID: PMC8912424 DOI: 10.3390/nu14051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is a chronic, multisystem disease with multiple comorbidities that can significantly affect nutrition and quality of life. Maintaining nutritional adequacy can be challenging in people with cystic fibrosis and has been directly associated with suboptimal clinical outcomes. Comorbidities of CF can result in significantly decreased nutritional intake and intestinal absorption, as well as increased metabolic demands. It is crucial to utilize a multidisciplinary team with expertise in CF to optimize growth and nutrition, where patients with CF and their loved ones are placed in the center of the care model. Additionally, with the advent of highly effective modulators (HEMs), CF providers have begun to identify previously unrecognized nutritional issues, such as obesity. Here, we will review and summarize commonly encountered comorbidities and their nutritional impact on this unique population.
Collapse
|
29
|
Rauch CE, McCubbin AJ, Gaskell SK, Costa RJS. Feeding Tolerance, Glucose Availability, and Whole-Body Total Carbohydrate and Fat Oxidation in Male Endurance and Ultra-Endurance Runners in Response to Prolonged Exercise, Consuming a Habitual Mixed Macronutrient Diet and Carbohydrate Feeding During Exercise. Front Physiol 2022; 12:773054. [PMID: 35058795 PMCID: PMC8764139 DOI: 10.3389/fphys.2021.773054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Using metadata from previously published research, this investigation sought to explore: (1) whole-body total carbohydrate and fat oxidation rates of endurance (e.g., half and full marathon) and ultra-endurance runners during an incremental exercise test to volitional exhaustion and steady-state exercise while consuming a mixed macronutrient diet and consuming carbohydrate during steady-state running and (2) feeding tolerance and glucose availability while consuming different carbohydrate regimes during steady-state running. Competitively trained male endurance and ultra-endurance runners (n = 28) consuming a balanced macronutrient diet (57 ± 6% carbohydrate, 21 ± 16% protein, and 22 ± 9% fat) performed an incremental exercise test to exhaustion and one of three 3 h steady-state running protocols involving a carbohydrate feeding regime (76-90 g/h). Indirect calorimetry was used to determine maximum fat oxidation (MFO) in the incremental exercise and carbohydrate and fat oxidation rates during steady-state running. Gastrointestinal symptoms (GIS), breath hydrogen (H2), and blood glucose responses were measured throughout the steady-state running protocols. Despite high variability between participants, high rates of MFO [mean (range): 0.66 (0.22-1.89) g/min], Fatmax [63 (40-94) % V̇O2max], and Fatmin [94 (77-100) % V̇O2max] were observed in the majority of participants in response to the incremental exercise test to volitional exhaustion. Whole-body total fat oxidation rate was 0.8 ± 0.3 g/min at the end of steady-state exercise, with 43% of participants presenting rates of ≥1.0 g/min, despite the state of hyperglycemia above resting homeostatic range [mean (95%CI): 6.9 (6.7-7.2) mmol/L]. In response to the carbohydrate feeding interventions of 90 g/h 2:1 glucose-fructose formulation, 38% of participants showed breath H2 responses indicative of carbohydrate malabsorption. Greater gastrointestinal symptom severity and feeding intolerance was observed with higher carbohydrate intakes (90 vs. 76 g/h) during steady-state exercise and was greatest when high exercise intensity was performed (i.e., performance test). Endurance and ultra-endurance runners can attain relatively high rates of whole-body fat oxidation during exercise in a post-prandial state and with carbohydrate provisions during exercise, despite consuming a mixed macronutrient diet. Higher carbohydrate intake during exercise may lead to greater gastrointestinal symptom severity and feeding intolerance.
Collapse
Affiliation(s)
| | | | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Premkumar MH, Huff K, Pammi M. Enteral lipid supplements for the prevention and treatment of parenteral nutrition-associated liver disease in infants. Hippokratia 2021. [DOI: 10.1002/14651858.cd014353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Muralidhar H Premkumar
- Section of Neonatology, Department of Pediatrics; Baylor College of Medicine; Houston Texas USA
| | - Katie Huff
- Department of Pediatrics; Indiana University School of Medicine; Indianapolis Indiana USA
| | - Mohan Pammi
- Section of Neonatology, Department of Pediatrics; Baylor College of Medicine; Houston Texas USA
| |
Collapse
|
31
|
Gaskell SK, Rauch CE, Costa RJS. Gastrointestinal Assessment and Therapeutic Intervention for the Management of Exercise-Associated Gastrointestinal Symptoms: A Case Series Translational and Professional Practice Approach. Front Physiol 2021; 12:719142. [PMID: 34557109 PMCID: PMC8452991 DOI: 10.3389/fphys.2021.719142] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022] Open
Abstract
This translational research case series describes the implementation of a gastrointestinal assessment protocol during exercise (GastroAxEx) to inform individualised therapeutic intervention of endurance athletes affected by exercise-induced gastrointestinal syndrome (EIGS) and associated gastrointestinal symptoms (GIS). A four-phase approach was applied. Phase 1: Clinical assessment and exploring background history of exercise-associated gastrointestinal symptoms. Phase 2: Individual tailored GastroAxEx laboratory simulation designed to mirror exercise stress, highlighted in phase 1, that promotes EIGS and GIS during exercise. Phase 3: Individually programmed therapeutic intervention, based on the outcomes of Phase 2. Phase 4: Monitoring and readjustment of intervention based on outcomes from field testing under training and race conditions. Nine endurance athletes presenting with EIGS, and two control athletes not presenting with EIGS, completed Phase 2. Two athletes experienced significant thermoregulatory strain (peak core temperature attained > 40°C) during the GastroAxEx. Plasma cortisol increased substantially pre- to post-exercise in n = 6/7 (Δ > 500 nmol/L). Plasma I-FABP concentration increased substantially pre- to post-exercise in n = 2/8 (Δ > 1,000 pg/ml). No substantial change was observed in pre- to post-exercise for systemic endotoxin and inflammatory profiles in all athletes. Breath H2 responses showed that orocecal transit time (OCTT) was delayed in n = 5/9 (90-150 min post-exercise) athletes, with the remaining athletes (n = 4/9) showing no H2 turning point by 180 min post-exercise. Severe GIS during exercise was experienced in n = 5/9 athletes, of which n = 2/9 had to dramatically reduce work output or cease exercise. Based on each athlete's identified proposed causal factors of EIGS and GIS during exercise (i.e., n = 9/9 neuroendocrine-gastrointestinal pathway of EIGS), an individualised gastrointestinal therapeutic intervention was programmed and advised, adjusted from a standard EIGS prevention and management template that included established strategies with evidence of attenuating EIGS primary causal pathways, exacerbation factors, and GIS during exercise. All participants reported qualitative data on their progress, which included their previously presenting GIS during exercise, such as nausea and vomiting, either being eliminated or diminished resulting in work output improving (i.e., completing competition and/or not slowing down during training or competition as a result of GIS during exercise). These outcomes suggest GIS during exercise in endurance athletes are predominantly related to gastrointestinal functional and feeding tolerance issues, and not necessarily gastrointestinal integrity and/or systemic issues. GastroAxEx allows for informed identification of potential causal pathway(s) and exacerbation factor(s) of EIGS and GIS during exercise at an individual level, providing a valuable informed individualised therapeutic intervention approach.
Collapse
Affiliation(s)
| | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
32
|
Hydrogel Carbohydrate-Electrolyte Beverage Does Not Improve Glucose Availability, Substrate Oxidation, Gastrointestinal Symptoms or Exercise Performance, Compared With a Concentration and Nutrient-Matched Placebo. Int J Sport Nutr Exerc Metab 2021; 30:25-33. [PMID: 31629348 DOI: 10.1123/ijsnem.2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/04/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022]
Abstract
The impact of a carbohydrate-electrolyte solution with sodium alginate and pectin for hydrogel formation (CES-HGel), was compared to a standard CES with otherwise matched ingredients (CES-Std), for blood glucose, substrate oxidation, gastrointestinal symptoms (GIS; nausea, belching, bloating, pain, regurgitation, flatulence, urge to defecate, and diarrhea), and exercise performance. Nine trained male endurance runners completed 3 hr of steady-state running (SS) at 60% V˙O2max, consuming 90 g/hr of carbohydrate from CES-HGel or CES-Std (53 g/hr maltodextrin, 37 g/hr fructose, 16% w/v solution) in a randomized crossover design, followed by an incremental time to exhaustion (TTE) test. Blood glucose and substrate oxidation were measured every 30 min during SS and oxidation throughout TTE. Breath hydrogen (H2) was measured every 30 min during exercise and every 15 min for 2 hr postexercise. GIS were recorded every 15 min throughout SS, immediately after and every 15-min post-TTE. No differences in blood glucose (incremental area under the curve [mean ± SD]: CES-HGel 1,100 ± 96 mmol·L-1·150 min-1 and CES-Std 1,076 ± 58 mmol·L-1·150 min-1; p = .266) were observed during SS. There were no differences in substrate oxidation during SS (carbohydrate: p = .650; fat: p = .765) or TTE (carbohydrate: p = .466; fat: p = .633) and no effect of trial on GIS incidence (100% in both trials) or severity (summative rating score: CES-HGel 29.1 ± 32.6 and CES-Std 34.8 ± 34.8; p = .262). Breath hydrogen was not different between trials (p = .347), nor was TTE performance (CES-HGel 722 ± 182 s and CES-Std: 756 ± 187 s; p = .08). In conclusion, sodium alginate and pectin added to a CES consumed during endurance running does not alter the blood glucose responses, carbohydrate malabsorption, substrate oxidation, GIS, or TTE beyond those of a CES with otherwise matched ingredients.
Collapse
|
33
|
Sports Dietitians Australia Position Statement: Nutrition for Exercise in Hot Environments. Int J Sport Nutr Exerc Metab 2021; 30:83-98. [PMID: 31891914 DOI: 10.1123/ijsnem.2019-0300] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022]
Abstract
It is the position of Sports Dietitians Australia (SDA) that exercise in hot and/or humid environments, or with significant clothing and/or equipment that prevents body heat loss (i.e., exertional heat stress), provides significant challenges to an athlete's nutritional status, health, and performance. Exertional heat stress, especially when prolonged, can perturb thermoregulatory, cardiovascular, and gastrointestinal systems. Heat acclimation or acclimatization provides beneficial adaptations and should be undertaken where possible. Athletes should aim to begin exercise euhydrated. Furthermore, preexercise hyperhydration may be desirable in some scenarios and can be achieved through acute sodium or glycerol loading protocols. The assessment of fluid balance during exercise, together with gastrointestinal tolerance to fluid intake, and the appropriateness of thirst responses provide valuable information to inform fluid replacement strategies that should be integrated with event fuel requirements. Such strategies should also consider fluid availability and opportunities to drink, to prevent significant under- or overconsumption during exercise. Postexercise beverage choices can be influenced by the required timeframe for return to euhydration and co-ingestion of meals and snacks. Ingested beverage temperature can influence core temperature, with cold/icy beverages of potential use before and during exertional heat stress, while use of menthol can alter thermal sensation. Practical challenges in supporting athletes in teams and traveling for competition require careful planning. Finally, specific athletic population groups have unique nutritional needs in the context of exertional heat stress (i.e., youth, endurance/ultra-endurance athletes, and para-sport athletes), and specific adjustments to nutrition strategies should be made for these population groups.
Collapse
|
34
|
Henen S, Denton C, Teckman J, Borowitz D, Patel D. Review of Gastrointestinal Motility in Cystic Fibrosis. J Cyst Fibros 2021; 20:578-585. [PMID: 34147362 DOI: 10.1016/j.jcf.2021.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Gastrointestinal manifestations in patients with cystic fibrosis (CF) are extremely common and have recently become a research focus. Gastrointestinal (GI) dysfunction is poorly understood in the CF population, despite many speculations including the role of luminal pH, bacterial overgrowth, and abnormal microbiome. Nevertheless, dysmotility is emerging as a possible key player in CF intestinal symptoms. Our review article aims to explore the sequelae of defective cystic fibrosis transmembrane conductance regulator (CFTR) genes on the GI tract as studied in both animals and humans, describe various presentations of intestinal dysmotility in CF, review newer diagnostic motility techniques including intraluminal manometry, and review the current literature regarding the potential role of dysmotility in CF-related intestinal pathologies.
Collapse
Affiliation(s)
- Sara Henen
- Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Blvd, St. Louis, MO 63104.
| | - Christine Denton
- Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Blvd, St. Louis, MO 63104
| | - Jeff Teckman
- Interim Chair, Department of Pediatrics, Professor of Pediatrics and Biochemistry, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand BLVD, St. Louis, MO 63104.
| | - Drucy Borowitz
- Emeritus Professor of Clinical Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, NY, 1001 Main Street, Buffalo, NY, 14203.
| | - Dhiren Patel
- Associate Professor and Medical Director, Neurogastroenterology and Motility Program, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Blvd, St. Louis, MO 63104.
| |
Collapse
|
35
|
|
36
|
Florsheim EB, Sullivan ZA, Khoury-Hanold W, Medzhitov R. Food allergy as a biological food quality control system. Cell 2021; 184:1440-1454. [PMID: 33450204 DOI: 10.1016/j.cell.2020.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Food is simultaneously a source of essential nutrients and a potential source of lethal toxins and pathogens. Consequently, multiple sensory mechanisms evolved to monitor the quality of food based on the presence and relative abundance of beneficial and harmful food substances. These include the olfactory, gustatory, and gut chemosensory systems. Here we argue that, in addition to these systems, allergic immunity plays a role in food quality control by mounting allergic defenses against food antigens associated with noxious substances. Exaggeration of these defenses can result in pathological food allergy.
Collapse
Affiliation(s)
- Esther B Florsheim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zuri A Sullivan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William Khoury-Hanold
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA.
| |
Collapse
|
37
|
Höllwarth ME, Solari V. Nutritional and pharmacological strategy in children with short bowel syndrome. Pediatr Surg Int 2021; 37:1-15. [PMID: 33392698 DOI: 10.1007/s00383-020-04781-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Short bowel syndrome in neonates is a severe and life-threatening disease after a major loss of small bowel with or without large bowel. Intestinal adaptation, by which the organism tries to restore digestive and absorptive capacities, is entirely dependent on stimulation of the active enterocytes by enteral nutrition. This review summarizes recent knowledge about the pathophysiologic consequences after the loss of different intestinal parts and outlines the options for enteral nutrition and pharmacological therapies to support the adaptation process.
Collapse
Affiliation(s)
- Michael E Höllwarth
- Univ. Clinic of Pediatric and Adolescent Surgery, Medical University, Graz, Austria.
| | - Valeria Solari
- Department of Pediatric Surgery, Klinik Donaustadt, 1220, Vienna, Austria
| |
Collapse
|
38
|
Jacob EM, Borah A, Pillai SC, Kumar DS. Inflammatory Bowel Disease: The Emergence of New Trends in Lifestyle and Nanomedicine as the Modern Tool for Pharmacotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2460. [PMID: 33316984 PMCID: PMC7764399 DOI: 10.3390/nano10122460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
The human intestine, which harbors trillions of symbiotic microorganisms, may enter into dysbiosis when exposed to a genetic defect or environmental stress. The naissance of chronic inflammation due to the battle of the immune system with the trespassing gut bacteria leads to the rise of inflammatory bowel disease (IBD). Though the genes behind the scenes and their link to the disease are still unclear, the onset of IBD occurs in young adults and has expanded from the Western world into the newly industrialized countries. Conventional drug deliveries depend on a daily heavy dosage of immune suppressants or anti-inflammatory drugs targeted for the treatment of two types of IBD, ulcerative colitis (UC) and Crohn's disease (CD), which are often associated with systemic side effects and adverse toxicities. Advances in oral delivery through nanotechnology seek remedies to overcome the drawbacks of these conventional drug delivery systems through improved drug encapsulation and targeted delivery. In this review, we discuss the association of genetic factors, the immune system, the gut microbiome, and environmental factors like diet in the pathogenesis of IBD. We also review the various physiological concerns required for oral delivery to the gastrointestinal tract (GIT) and new strategies in nanotechnology-derived, colon-targeting drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (E.M.J.); (A.B.); (S.C.P.)
| |
Collapse
|
39
|
Gaskell SK, Taylor B, Muir J, Costa RJ. Impact of 24-h high and low fermentable oligo-, di-, monosaccharide, and polyol diets on markers of exercise-induced gastrointestinal syndrome in response to exertional heat stress. Appl Physiol Nutr Metab 2020; 45:569-580. [DOI: 10.1139/apnm-2019-0187] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study aimed to determine the effects of 24-h high (HFOD) and low (LFOD) fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diets before exertional heat stress on gastrointestinal integrity, function, and symptoms. Eighteen endurance runners consumed a HFOD and a LFOD (double-blind crossover design) before completing 2 h of running at 60% maximal oxygen uptake in 35 °C ambient temperature. Blood samples were collected before and after exercise to determine plasma cortisol and intestinal fatty acid binding protein (I-FABP) concentrations, and bacterial endotoxin and cytokine profiles. Breath hydrogen (H2) and gastrointestinal symptoms (GIS) were determined pre-exercise, every 15 min during, and in recovery. No differences were observed for plasma cortisol concentration between diets. Plasma I-FABP concentration was lower on HFOD compared with LFOD (p = 0.033). A trend for lower lipopolysaccharide binding protein (p = 0.088), but not plasma soluble CD14 (p = 0.478) and cytokine profile (p > 0.05), responses on HFOD was observed. A greater area under the curve breath H2 concentration (p = 0.031) was observed throughout HFOD (mean and 95% confidence interval: HFOD 2525 (1452–3597) ppm·4 h−1) compared with LFOD (1505 (1031–1978) ppm·4 h−1). HFOD resulted in greater severity of GIS compared with LFOD (pre-exercise, p = 0.017; during, p = 0.035; and total, p = 0.014). A 24-h HFOD before exertional heat stress ameliorates disturbances to epithelial integrity but exacerbates carbohydrate malabsorption and GIS severity in comparison with a LFOD. Novelty Twenty-four-hour high FODMAP diet ameliorated disturbances to gastrointestinal integrity. Twenty-four-hour high FODMAP diet results in greater carbohydrate malabsorption compared with low FODMAP diet. Incidence of GIS during exertional heat stress were pronounced on both low and high FODMAP diets, but greater GIS severity was observed with high FODMAP diet.
Collapse
Affiliation(s)
- Stephanie K. Gaskell
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| | - Bonnie Taylor
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| | - Jane Muir
- Department of Gastroenterology - The Alfred Hospital, Monash University, Melbourne, Victoria 3004, Australia
| | - Ricardo J.S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Victoria 3168, Australia
| |
Collapse
|
40
|
Somogyi E, Sigalet D, Adrian TE, Nyakas C, Hoornenborg CW, van Beek AP, Koopmans HS, van Dijk G. Ileal Transposition in Rats Reduces Energy Intake, Body Weight, and Body Fat Most Efficaciously When Ingesting a High-Protein Diet. Obes Surg 2020; 30:2729-2742. [PMID: 32342267 PMCID: PMC7260147 DOI: 10.1007/s11695-020-04565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose Ileal transposition (IT) allows exploration of hindgut effects of bariatric procedures in inducing weight loss and reducing adiposity. Here we investigated the role of dietary macronutrient content on IT effects in rats. Methods Male Lewis rats consuming one of three isocaloric liquid diets enriched with fat (HF), carbohydrates (HC), or protein (HP) underwent IT or sham surgery. Body weight, energy intake, energy efficiency, body composition, and (meal-induced) changes in plasma GIP, GLP-1, PYY, neurotensin, and insulin levels were measured. Results Following IT, HC intake remained highest leading to smallest weight loss among dietary groups. IT in HF rats caused high initial weight loss and profound hypophagia, but the rats caught up later, and finally had the highest body fat content among IT rats. HP diet most efficaciously supported IT-induced reduction in body weight and adiposity, but (as opposed to other diet groups) lean mass was also reduced. Energy efficiency decreased immediately after IT irrespective of diet, but normalized later. Energy intake alone explained variation in post-operative weight change by 80%. GLP-1, neurotensin, and PYY were upregulated by IT, particularly during (0–60 min) and following 17-h post-ingestive intake, with marginal diet effects. Thirty-day post-operative cumulative energy intake was negatively correlated to 17-h post-ingestive PYY levels, explaining 47% of its variation. Conclusion Reduction in energy intake underlies IT-induced weight loss, with highest efficacy of the HP diet. PYY, GLP-1, and neurotensin levels are upregulated by IT, of which PYY may be most specifically related to reduced intake and weight loss after IT.
Collapse
Affiliation(s)
- Edit Somogyi
- School of PhD Studies, University of Physical Education, Budapest, Hungary.,Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - David Sigalet
- Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Thomas E Adrian
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Csaba Nyakas
- School of PhD Studies, University of Physical Education, Budapest, Hungary.,Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Christiaan W Hoornenborg
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.,Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Henry S Koopmans
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Gertjan van Dijk
- Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
41
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
42
|
Kuwelker S, Muthyala A, O’Connor M, Bharucha AE. Clinical features and disturbances of gastrointestinal transit in patients with rapid gastric emptying. Neurogastroenterol Motil 2020; 32:e13779. [PMID: 31960554 PMCID: PMC7085445 DOI: 10.1111/nmo.13779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022]
Abstract
AIMS Some patients with upper gastrointestinal symptoms have rapid gastric emptying (GE). We aimed to compare patients with normal and rapid GE and to identify phenotypes among patients with rapid GE. METHODS Among 2798 patients who underwent GE scintigraphy, we compared patients with normal and rapid GE and separately, patients with rapid GE at 1 hour (GE1), 2 hours (GE2), or both (GE12). RESULTS In 2798 patients, GE was normal (74%), delayed (18%), or rapid (8%). Among 211 patients with rapid GE, patterns were rapid GE1 (48%), 2 hours (17%), or 1 and 2 hours (35%); 42 (20%) had diseases that explain rapid GE. A combination of upper and lower gastrointestinal symptoms (54%) was more common that isolated upper (17%) or lower (28%) gastrointestinal symptoms (P < .001). Constipation was more prevalent in patients with rapid GE 2 (72%) than rapid GE 1 (47%) or rapid GE12 hours (67%) (P < .05). Among 179 diabetes mellitus (DM) patients, 15% had rapid GE, which was not associated with the DM phenotype. By multivariable analysis, insulin therapy (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.15-0.88), and weight loss (OR, 0.10; 95% CI, 0.01-0.78) were associated with a lower risk of rapid than normal GE in DM. CONCLUSIONS Eight percent of patients undergoing scintigraphy had rapid GE, which is most frequently associated with upper and lower gastrointestinal symptoms; constipation is common. Insulin therapy and weight loss were associated with a lower risk of rapid than normal GE in DM patients.
Collapse
Affiliation(s)
- Saatchi Kuwelker
- Clinical Enteric Neuroscience Translational and
Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo
Clinic, Rochester, Minnesota
| | - Anjani Muthyala
- Clinical Enteric Neuroscience Translational and
Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo
Clinic, Rochester, Minnesota
| | | | - Adil E. Bharucha
- Clinical Enteric Neuroscience Translational and
Epidemiological Research Program, Division of Gastroenterology and Hepatology, Mayo
Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Hollanda Martins Da Rocha M, Lee ADW, Marin MLDM, Faintuch S, Mishaly A, Faintuch J. Treating short bowel syndrome with pharmacotherapy. Expert Opin Pharmacother 2020; 21:709-720. [DOI: 10.1080/14656566.2020.1724959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mariana Hollanda Martins Da Rocha
- Clinical nutrition multidisciplinary team (MDT), Hospital das Clinicas, Sao Paulo, Brazil
- Head, Short bowel syndrome MDT, Hospital das Clinicas, Sao Paulo, Brazil
| | - André Dong Won Lee
- Clinical nutrition multidisciplinary team (MDT), Hospital das Clinicas, Sao Paulo, Brazil
- Liver and Digestive Organs Transplantation Service, Hospital das Clinicas, Department of Gastroenterology, Hospital das Clinicas, Sao Paulo, Brazil
| | - Marcia Lucia De Mario Marin
- Clinical nutrition multidisciplinary team (MDT), Hospital das Clinicas, Sao Paulo, Brazil
- Research Unit, Central Pharmacy, Hospital das Clinicas, Sao Paulo, Brazil
| | - Salomao Faintuch
- Clinical Director, Vascular and Interventional Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Asher Mishaly
- Medical Student, Americas Faculty of Medicine, Sao Paulo, Brazil
| | - Joel Faintuch
- Department of Gastroenterology, Hospital das Clinicas and Sao Paulo University Medical School, Sao Paulo, Brazil
| |
Collapse
|
44
|
El-Salhy M, Hatlebakk JG, Hausken T. Possible role of peptide YY (PYY) in the pathophysiology of irritable bowel syndrome (IBS). Neuropeptides 2020; 79:101973. [PMID: 31727345 DOI: 10.1016/j.npep.2019.101973] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder of unknown aetiology for which there is no effective treatment. Although IBS does not increase mortality, it reduces the quality of life and is an economic burden to both the patients themselves and society as a whole. Peptide YY (PYY) is localized in endocrine cells located in the ileum, colon and rectum. The concentration of PYY and the density of PYY cells are decreased in both the colon and rectum but unchanged in the ileum of patients with IBS. The low density of PYY cells in the large intestine may be caused by a decreased number of stem cells and their progeny toward endocrine cells. PYY regulates the intestinal motility, secretion and absorption as well as visceral sensitivity via modulating serotonin release. An abnormality in PYY may therefore contribute to the intestinal dysmotility and visceral hypersensitivity seen in IBS patients. Diet management involving consuming a low-FODMAP diet restores the density of PYY cells in the large intestine and improves abdominal symptoms in patients with IBS. This review shows that diet management appears to be a valuable tool for correcting the PYY abnormalities in the large intestine of IBS patients in the clinic.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| |
Collapse
|
45
|
|
46
|
Zeeshan M, Ali H, Khan S, Khan SA, Weigmann B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int J Pharm 2019; 558:201-214. [DOI: 10.1016/j.ijpharm.2018.12.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
|
47
|
Increasing intake of dietary soluble nutrients affects digesta passage rate in the stomach of growing pigs. Br J Nutr 2019; 121:529-537. [DOI: 10.1017/s0007114518003756] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe passage rate of solids and liquids through the gastrointestinal tract differs. Increased dietary nutrient solubility causes nutrients to shift from the solid to the liquid digesta fraction and potentially affect digesta passage kinetics. We quantified: (1) the effect of three levels of dietary nutrient solubility (8, 19 and 31 % of soluble protein and sucrose in the diet) at high feed intake level (S) and (2) the effect of lowv.high feed intake level (F), on digesta passage kinetics in forty male growing pigs. The mean retention time (MRT) of solids and liquids in the stomach and small intestine was assessed using TiO2and Cr-EDTA, respectively. In addition, physicochemical properties of digesta were evaluated. Overall, solids were retained longer than liquids in the stomach (2·0 h,P<0·0001) and stomach+small intestine (1·6 h,P<0·001). When S increased, MRT in stomach decreased by 1·3 h for solids (P=0·01) and 0·7 h for liquids (P=0·002) but only at the highest level of S. When F increased using low-soluble nutrients, MRT in stomach increased by 0·8 h for solids (P=0·041) and 0·7 h for liquids (P=0·0001). Dietary treatments did not affect water-binding capacity and viscosity of digesta. In the stomach of growing pigs, dietary nutrient solubility affects digesta MRT in a non-linear manner, while feed intake level increases digesta MRT depending on dietary nutrient solubility. Results can be used to improve predictions on the kinetics of nutrient passage and thereby of nutrient digestion and absorption in the gastrointestinal tract.
Collapse
|
48
|
Corstens MN, Berton-Carabin CC, Schroën K, Viau M, Meynier A. Emulsion encapsulation in calcium-alginate beads delays lipolysis during dynamic in vitro digestion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
49
|
Yde J, Larsen HM, Laurberg S, Krogh K, Moeller HB. Chronic diarrhoea following surgery for colon cancer-frequency, causes and treatment options. Int J Colorectal Dis 2018; 33:683-694. [PMID: 29589108 DOI: 10.1007/s00384-018-2993-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 02/04/2023]
Abstract
PURPOSE The growing population of survivors after colon cancer warrants increased attention to the long-term outcome of surgical treatment. The change in bowel anatomy after resection disrupts normal gastrointestinal function and may cause symptoms. Thus, many patients surviving colon cancer have to cope with bowel dysfunction for the rest of their lives. We here aim to provide an overview of the literature on this topic. METHODS We review long-term functional outcomes of surgical treatment for colon cancer, the underlying pathology, and treatment options. RESULTS Common symptoms include constipation, urge for defecation and diarrhoea. Causes of diarrhoea after colon cancer surgery are sparsely studied, but they probably include bile acid malabsorption, small intestinal bacterial overgrowth and disruption of the ileal brake. Specific diagnosis should be made to allow individual treatment based on the underlying pathology. Studies on treatment of functional problems after surgery for colon cancer are extremely few, but some lessons can be drawn from the treatment of other patient groups having undergone colon surgery. CONCLUSION Diarrhoea is likely a common long-term complication after colon cancer surgery. Attention to this complication and a specific diagnosis will aid the targeted treatment of patients suffering from this complication.
Collapse
Affiliation(s)
- Jonathan Yde
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 3, Building 1233, 8000, Aarhus, Denmark
| | - Helene M Larsen
- Department of Surgery, Aarhus University Hospital, Aarhus, Denmark.,Danish Cancer Society Centre for Research and Late Adverse Effects After Cancer in the Pelvic Organs, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Laurberg
- Department of Surgery, Aarhus University Hospital, Aarhus, Denmark.,Danish Cancer Society Centre for Research and Late Adverse Effects After Cancer in the Pelvic Organs, Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.,Danish Cancer Society Centre for Research and Late Adverse Effects After Cancer in the Pelvic Organs, Aarhus University Hospital, Aarhus, Denmark
| | - Hanne B Moeller
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 3, Building 1233, 8000, Aarhus, Denmark.
| |
Collapse
|
50
|
Miller KE, Bajzer Ž, Hein SS, Phillips JE, Syed S, Wright AM, Cipriani G, Gibbons SJ, Szurszewski JH, Farrugia G, Ordog T, Linden DR. High temporal resolution gastric emptying breath tests in mice. Neurogastroenterol Motil 2018; 30:e13333. [PMID: 29575442 PMCID: PMC6157017 DOI: 10.1111/nmo.13333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gastric emptying is a complex physiological process regulating the division of a meal into smaller partitions for the small intestine. Disrupted gastric emptying contributes to digestive disease, yet current measures may not reflect different mechanisms by which the process can be altered. METHODS We have developed high temporal resolution solid and liquid gastric emptying breath tests in mice using [13 C]-octanoic acid and off axis- integrated cavity output spectroscopy (OA-ICOS). Stretched gamma variate and 2-component stretched gamma variate models fit measured breath excretion data. KEY RESULTS These assays detect acceleration and delay using pharmacological (7.5 mg/kg atropine) or physiological (nutrients, cold exposure stress, diabetes) manipulations and remain stable over time. High temporal resolution resolved complex excretion curves with 2 components, which was more prevalent in mice with delayed gastric emptying following streptozotocin-induced diabetes. There were differences in the gastric emptying of Balb/c vs C57Bl6 mice, with slower gastric emptying and a greater occurrence of two-phase gastric emptying curves in the latter strain. Gastric emptying of C57Bl6 could be accelerated by halving the meal size, but with no effect on the occurrence of two-phase gastric emptying curves. A greater proportion of two-phase gastric emptying was induced in Balb/c mice with the administration of PYY (8-80 nmol) 60 min following meal ingestion. CONCLUSIONS AND INFERENCES Collectively, these results demonstrate the utility of high temporal resolution gastric emptying assays. Two-phase gastric emptying is more prevalent than previously reported, likely involves intestinal feedback, but contributes little to the overall rate of gastric emptying.
Collapse
Affiliation(s)
- Katie E. Miller
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Željko Bajzer
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic
College of Medicine, Rochester, MN 55905 USA
| | - Stephanie S. Hein
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Jessica E. Phillips
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Sabriya Syed
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic
College of Medicine, Rochester, MN 55905 USA
| | - Alec M. Wright
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| | - Gianluca Cipriani
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Simon J. Gibbons
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Joseph H. Szurszewski
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
- Division of Gastroenterology and Hepatology, Department of Medicine,
Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - David R. Linden
- Department of Physiology and Biomedical Engineering and Enteric
NeuroScience Program, Mayo Clinic College of Medicine, Rochester MN 55905 USA
| |
Collapse
|