1
|
Alzumaili BA, Fisch AS, Faquin WC, Nosé V, Randolph GW, Sadow PM. Detection of RAS p.Q61R by Immunohistochemistry in Practice: A Clinicopathologic Study of 217 Thyroid Nodules with Molecular Correlates. Endocr Pathol 2024; 35:219-229. [PMID: 39096324 DOI: 10.1007/s12022-024-09821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
RAS p.Q61R is the most prevalent hot-spot mutation in RAS and RAS-like mutated thyroid nodules. A few studies evaluated RAS p.Q61R by immunohistochemistry (RASQ61R-IHC). We performed a retrospective study of an institutional cohort of 150 patients with 217 thyroid lesions tested for RASQ61R-IHC, including clinical, cytologic and molecular data. RASQ61R-IHC was performed on 217 nodules (18% positive, 80% negative, and 2% equivocal). RAS p.Q61R was identified in 76% (n = 42), followed by RAS p.Q61K (15%; n = 8), and RAS p.G13R (5%; n = 3). NRAS p.Q61R isoform was the most common (44%; n = 15), followed by NRAS p.Q61K (17%; n = 6), KRAS p.Q61R (12%; n = 4), HRAS p.Q61R (12%; n = 4), HRAS p.Q61K (6%; n = 2), HRAS p.G13R (6%; n = 2), and NRAS p.G13R (3%; n = 1). RASQ61R-IHC was positive in 47% of noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP; 17/36), 22% of follicular thyroid carcinomas (FTC; 5/23), 10% of follicular thyroid adenomas (FTA; 4/40), and 8% of papillary thyroid carcinomas (PTC; 9/112). Of PTC studied (n = 112), invasive encapsulated follicular variant (IEFVPTC; n = 16) was the only subtype with positive RASQ61R-IHC (56%; 9/16). Overall, 31% of RAS-mutated nodules were carcinomas (17/54); and of the carcinomas, 94% (16/17) were low-risk per American Thyroid Associated (ATA) criteria, with only a single case (6%; 1/17) considered ATA high-risk. No RAS-mutated tumors recurred, and none showed local or distant metastasis (with a follow-up of 0-10 months). We found that most RAS-mutated tumors are low-grade neoplasms. RASQ61R-IHC is a quick, cost-effective, and reliable way to detect RAS p.Q61R in follicular-patterned thyroid neoplasia and, when malignant, guide surveillance.
Collapse
Affiliation(s)
- Bayan A Alzumaili
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA
| | - Adam S Fisch
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA
| | - William C Faquin
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Vania Nosé
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA
| | - Gregory W Randolph
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Departments of Pathology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Warren 219, Boston, MA, 02114, USA.
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
2
|
Wu Y, Jia Q, Tang Q, Chen L, Deng H, He Y, Tang F. A specific super-enhancer actuated by berberine regulates EGFR-mediated RAS-RAF1-MEK1/2-ERK1/2 pathway to induce nasopharyngeal carcinoma autophagy. Cell Mol Biol Lett 2024; 29:92. [PMID: 38943090 PMCID: PMC11214260 DOI: 10.1186/s11658-024-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), primarily found in the southern region of China, is a malignant tumor known for its highly metastatic characteristics. The high mortality rates caused by the distant metastasis and disease recurrence remain unsolved clinical problems. In clinic, the berberine (BBR) compound has widely been in NPC therapy to decrease metastasis and disease recurrence, and BBR was documented as a main component with multiple anti-NPC effects. However, the mechanism by which BBR inhibits the growth and metastasis of nasopharyngeal carcinoma remains elusive. Herein, we show that BBR effectively inhibits the growth, metastasis, and invasion of NPC via inducing a specific super enhancer (SE). From a mechanistic perspective, the RNA sequencing (RNA-seq) results suggest that the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway, activated by the epidermal growth factor receptor (EGFR), plays a significant role in BBR-induced autophagy in NPC. Blockading of autophagy markedly attenuated the effect of BBR-mediated NPC cell growth and metastasis inhibition. Notably, BBR increased the expression of EGFR by transcription, and knockout of EGFR significantly inhibited BBR-induced microtubule associated protein 1 light chain 3 (LC3)-II increase and p62 inhibition, proposing that EGFR plays a pivotal role in BBR-induced autophagy in NPC. Chromatin immunoprecipitation sequencing (ChIP-seq) results found that a specific SE existed only in NPC cells treated with BBR. This SE knockdown markedly repressed the expression of EGFR and phosphorylated EGFR (EGFR-p) and reversed the inhibition of BBR on NPC proliferation, metastasis, and invasion. Furthermore, BBR-specific SE may trigger autophagy by enhancing EGFR gene transcription, thereby upregulating the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway. In addition, in vivo BBR effectively inhibited NPC cells growth and metastasis, following an increase LC3 and EGFR and a decrease p62. Collectively, this study identifies a novel BBR-special SE and established a new epigenetic paradigm, by which BBR regulates autophagy, inhibits proliferation, metastasis, and invasion. It provides a rationale for BBR application as the treatment regime in NPC therapy in future.
Collapse
Affiliation(s)
- Yao Wu
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
| | - Qi Tang
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Lin Chen
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Hongyu Deng
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
| | - Yingchun He
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China.
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China.
| |
Collapse
|
3
|
Padhye BD, Nawaz U, Hains PG, Reddel RR, Robinson PJ, Zhong Q, Poulos RC. Proteomic insights into paediatric cancer: Unravelling molecular signatures and therapeutic opportunities. Pediatr Blood Cancer 2024; 71:e30980. [PMID: 38556739 DOI: 10.1002/pbc.30980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Survival rates in some paediatric cancers have improved greatly over recent decades, in part due to the identification of diagnostic, prognostic and predictive molecular signatures, and the development of risk-directed therapies. However, other paediatric cancers have proved difficult to treat, and there is an urgent need to identify novel biomarkers that reveal therapeutic opportunities. The proteome is the total set of expressed proteins present in a cell or tissue at a point in time, and is vastly more dynamic than the genome. Proteomics holds significant promise for cancer research, as proteins are ultimately responsible for cellular phenotype and are the target of most anticancer drugs. Here, we review the discoveries, opportunities and challenges of proteomic analyses in paediatric cancer, with a focus on mass spectrometry (MS)-based approaches. Accelerating incorporation of proteomics into paediatric precision medicine has the potential to improve survival and quality of life for children with cancer.
Collapse
Affiliation(s)
- Bhavna D Padhye
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Kids Research, Children's Cancer Research Unit, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Urwah Nawaz
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Roger R Reddel
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Qing Zhong
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Rebecca C Poulos
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Tornaas S, Kleftogiannis D, Fromreide S, Smeland HYH, Aarstad HJ, Vintermyr OK, Akslen LA, Costea DE, Dongre HN. Development of a high dimensional imaging mass cytometry panel to investigate spatial organization of tissue microenvironment in formalin-fixed archival clinical tissues. Heliyon 2024; 10:e31191. [PMID: 38803925 PMCID: PMC11128903 DOI: 10.1016/j.heliyon.2024.e31191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
To decipher the interactions between various components of the tumor microenvironment (TME) and tumor cells in a preserved spatial context, a multiparametric approach is essential. In this pursuit, imaging mass cytometry (IMC) emerges as a valuable tool, capable of concurrently analyzing up to 40 parameters at subcellular resolution. In this study, a set of antibodies was selected to spatially resolve multiple cell types and TME elements, including a comprehensive panel targeted at dissecting the heterogeneity of cancer-associated fibroblasts (CAF), a pivotal TME component. This antibody panel was standardized and optimized using formalin-fixed paraffin-embedded tissue (FFPE) samples from different organs/lesions known to express the markers of interest. The final composition of the antibody panel was determined based on the performance of conjugated antibodies in both immunohistochemistry (IHC) and IMC. Tissue images were segmented employing the Steinbock framework. Unsupervised clustering of single-cell data was carried out using a bioinformatics pipeline developed in R program. This paper provides a detailed description of the staining procedure and analysis workflow. Subsequently, the panel underwent validation on clinical FFPE samples from head and neck squamous cell carcinoma (HNSCC). The panel and bioinformatics pipeline established here proved to be robust in characterizing different TME components of HNSCC while maintaining a high degree of spatial detail. The platform we describe shows promise for understanding the clinical implications of TMA heterogeneity in large patient cohorts with FFPE tissues available in diagnostic biobanks worldwide.
Collapse
Affiliation(s)
- Stian Tornaas
- Center for Cancer Biomarkers (CCBIO) and Department of Clinical Medicine, University of Bergen, Norway
| | - Dimitrios Kleftogiannis
- Center for Cancer Biomarkers (CCBIO) and Department of Clinical Medicine, University of Bergen, Norway
- Computional Biology Unit, Department of Informatics, University of Bergen, Norway
| | - Siren Fromreide
- Center for Cancer Biomarkers (CCBIO) and Department of Clinical Medicine, University of Bergen, Norway
| | - Hilde Ytre-Hauge Smeland
- Center for Cancer Biomarkers (CCBIO) and Department of Clinical Medicine, University of Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Hans Jørgen Aarstad
- Department for Ear-Nose-and-Throat, Head and Neck Clinic, Haukeland University Hospital, Bergen, Norway
| | | | - Lars Andreas Akslen
- Center for Cancer Biomarkers (CCBIO) and Department of Clinical Medicine, University of Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Daniela Elena Costea
- Center for Cancer Biomarkers (CCBIO) and Department of Clinical Medicine, University of Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Harsh Nitin Dongre
- Center for Cancer Biomarkers (CCBIO) and Department of Clinical Medicine, University of Bergen, Norway
| |
Collapse
|
5
|
Siegfried LG, Bilik SM, Burgess JL, Catanuto P, Jozic I, Pastar I, Stone RC, Tomic-Canic M. An Optimized and Advanced Algorithm for the Quantification of Immunohistochemical Biomarkers in Keratinocytes. JID INNOVATIONS 2024; 4:100270. [PMID: 38756235 PMCID: PMC11097113 DOI: 10.1016/j.xjidi.2024.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 05/18/2024] Open
Abstract
Advancements in pathology have given rise to software applications intended to minimize human error and improve efficacy of image analysis. Still, the subjectivity of image quantification performed manually and the limitations of the most ubiquitous tissue stain analysis software requiring parameters tuned by the observer, reveal the need for a highly accurate, automated nuclear quantification software specific to immunohistochemistry, with improved precision and efficiency compared with the methods currently in use. We present a method for the quantification of immunohistochemical biomarkers in keratinocyte nuclei proposed to overcome these limitations, contributing sensitive shape-focused segmentation, accurate nuclear detection, and automated device-independent color assessment, without observer-dependent analysis parameters.
Collapse
Affiliation(s)
- Lindsey G. Siegfried
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sophie M. Bilik
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jamie L. Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paola Catanuto
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Costa RF, de Oliveira CA, Gomes ÁNDM, Lourenço SV, Coutinho-Camillo CM. Molecular Aspects of Mucoepidermoid Carcinoma and Adenoid Cystic Carcinoma of the Salivary Gland. Head Neck Pathol 2024; 18:34. [PMID: 38658430 PMCID: PMC11043314 DOI: 10.1007/s12105-024-01629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/12/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Salivary gland tumors (SGTs) are rare and highly heterogeneous lesions, making diagnosis a challenging activity. In addition, the small number of studies and samples evaluated difficults the determination of prognosis and diagnosis. Despite the solid advances achieved by research, there is still an intense need to investigate biomarkers for diagnosis, prognosis and that explain the evolution and progression of SGTs. METHODS We performed a comprehensive literature review of the molecular alterations focusing on the most frequent malignant SGTs: mucoepidermoid carcinoma and adenoid cystic carcinoma. RESULTS Due to the importance of biomarkers in the tumorigenenic process, this review aimed to address the mechanisms involved and to describe molecular and biomarker pathways to better understand some aspects of the pathophysiology of salivary gland tumorigenesis. CONCLUSIONS Molecular analysis is essential not only to improve the diagnosis and prognosis of the tumors but also to identify novel driver pathways in the precision medicine scenario.
Collapse
Affiliation(s)
- Raisa Ferreira Costa
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | - Carolinne Alves de Oliveira
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | - Ágatha Nagli de Mello Gomes
- International Research Center, A.C.Camargo Cancer Center, Rua Taguá, 440 - Primeiro andar, São Paulo, 01508-010, Brazil
| | | | | |
Collapse
|
7
|
Perez KA, Deppe DW, Filas A, Singh SA, Aikawa E. Multimodal Analytical Tools to Enhance Mechanistic Understanding of Aortic Valve Calcification. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:539-550. [PMID: 37517686 PMCID: PMC10988764 DOI: 10.1016/j.ajpath.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023]
Abstract
This review focuses on technologies at the core of calcific aortic valve disease (CAVD) and drug target research advancement, including transcriptomics, proteomics, and molecular imaging. We examine how bulk RNA sequencing and single-cell RNA sequencing have engendered organismal genomes and transcriptomes, promoting the analysis of tissue gene expression profiles and cell subpopulations, respectively. We bring into focus how the field is also largely influenced by increasingly accessible proteome profiling techniques. In unison, global transcriptional and protein expression analyses allow for increased understanding of cellular behavior and pathogenic pathways under pathologic stimuli including stress, inflammation, low-density lipoprotein accumulation, increased calcium and phosphate levels, and vascular injury. We also look at how direct investigation of protein signatures paves the way for identification of targetable pathways for pharmacologic intervention. Here, we note that imaging techniques, once a clinical diagnostic tool for late-stage CAVD, have since been refined to address a clinical need to identify microcalcifications using positron emission tomography/computed tomography and even detect in vivo cellular events indicative of early stage CAVD and map the expression of identified proteins in animal models. Together, these techniques generate a holistic approach to CAVD investigation, with the potential to identify additional novel regulatory pathways.
Collapse
Affiliation(s)
- Katelyn A Perez
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel W Deppe
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aidan Filas
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Yumnamcha T, Khangembam R, Yanglem S, Ophelia K, Thokchom S, Damayanti Devi M. Confocal Microscopy Technique in Teratogenicity Testing Using Zebrafish (Danio rerio) Embryos as Model. Methods Mol Biol 2024; 2753:533-542. [PMID: 38285365 DOI: 10.1007/978-1-0716-3625-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Teratogenicity refers to the ability to cause adverse effects on the normal development of embryos resulting in retardation of growth as well as structural and functional abnormalities in the developing embryos. Zebrafish (Danio rerio) is one of the prime model organisms for teratogenicity testing, owing to the many advantages it offers, particularly its relatively large and initially transparent embryos, which allow real-time imaging of the various developmental stages. Confocal microscopy provides the best technique for imaging cellular dynamics within zebrafish embryos as it gives high-resolution imaging of thick tissues. This chapter focuses on major teratogenicity testing techniques using confocal microscopy. Terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL) assay, immunohistochemistry assay, and reactive oxygen species (ROS) detection are important methods for studying the teratogenicity of drugs or compounds using 6 h post-fertilization Zebrafish embryos.
Collapse
|
9
|
Qian C, Pan C, Liu J, Wu L, Pan J, Liu C, Zhang H. Differential expression of immune checkpoints (OX40/OX40L and PD-1/PD-L1) in decidua of unexplained recurrent spontaneous abortion women. Hum Immunol 2024; 85:110745. [PMID: 38142184 DOI: 10.1016/j.humimm.2023.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
In this study, we aimed to investigate the expression of OX40, OX40L, PD-1 and PD-L1 in patients with unexplained recurrent spontaneous abortion (URSA) compared to normal pregnancies (NP). A total of 50 patients who were diagnosed with URSA and 41 NP were recruited to this study. Real-time polymerase chain reaction (RT-PCR) was used to determine the expression of OX40, OX40L, PD-1 and PD-L1 in decidual tissues; Immunohistochemistry (IHC) was conducted to characterize the distribution of the involved genes in decidual tissues; Double immunofluorescence staining was used to prove the localization of the involved genes in decidual tissues. The concentrations of OX40L and PD-L1 in plasma were measured with enzyme-linked immunosorbent assay (ELISA). The expression of OX40L in the decidua of URSA patients was significantly increased compared to that in the NP group, while the expression of PD-L1 in the URSA group was decreased compared to that in the NP group. Both proteins are localized in the decidual stroma as analyzed by double immunofluorescence staining. The staining results were confirmed at the mRNA level of decidual tissues, while the mRNA level of peripheral blood showed no significant difference. In conclusion, the results suggest that decidual stromal cells may promote the interaction with OX40 on T cells by upregulating the expression of OX40L and reduce the interaction with PD-1 on T cells by downregulating the expression of PD-L1 in URSA patients, which may interfere with the immune tolerance of the maternal-fetal interface, leading to poor pregnancy outcomes.
Collapse
Affiliation(s)
- Chenyue Qian
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China; Department of Pharmacy, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, China
| | - Chenhuan Pan
- Department of Obstetrics and Gynecology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijuan Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Institute of Clinical Immunology & Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Linguanti F, Abenavoli EM, Calabretta R, Berti V, Lopci E. ImmunoPET Targeting Receptor Tyrosine Kinase: Clinical Applications. Cancers (Basel) 2023; 15:5886. [PMID: 38136430 PMCID: PMC10741542 DOI: 10.3390/cancers15245886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Receptor tyrosine kinases, or RTKs, are one large family of cell surface receptors involved in signal transduction, which represent an integral part of the signaling pathways. They play a crucial role in most important cellular processes, starting with the cell cycle, proliferation and differentiation, as well as cell migration, metabolism and survival. The introduction of ImmunoPET evaluating the expression of RTKs by specific monoclonal antibodies (mAbs) or antibody fragments is regarded as a promising tool for imaging treatment efficacy and developing anticancer therapeutics. Our review focuses mainly on the current clinical research regarding ImmunoPET targeting RTKs, with particular interest in the epidermal growth factor family, or HER family, and vascular endothelial-derived growth factor/receptor.
Collapse
Affiliation(s)
- Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (V.B.)
- Nuclear Medicine Department, Ospedale San Donato, 52100 Arezzo, Italy
| | | | - Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (V.B.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
11
|
Wei F, Jiang X, He D, Diao Y, Tang Y. Localization and distribution of goose astrovirus 2 antigens in different tissues at different times. BMC Vet Res 2023; 19:173. [PMID: 37741982 PMCID: PMC10517483 DOI: 10.1186/s12917-023-03688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/07/2023] [Indexed: 09/25/2023] Open
Abstract
Goose astrovirus 2 (GAstV-2) causes visceral gout in goslings and has resulted in significant economic losses in the goose industry of China since its outbreak in 2017. To further investigate the distribution and localization of GAstV-2 in different tissues at different times, a monoclonal antibody (mAb)-based immunohistochemical (IHC) assay was developed to detect GAstV-2. A total of 80 1-day-old healthy goslings were inoculated with GAstV-2 via the oral (n = 40) and intramuscular routes (n = 40). GAstV-2 in the tissues of interest was detected using the established IHC assay. The results showed that positive signals were detected in most tissues at 1 day post-infection (dpi). Viral antigens were mainly distributed in the cytoplasm, and the staining intensity was higher in the renal tubular epithelial cells than in other cells. Taken together, our data demonstrated that GAstV-2 has a broad tissue tropism and primarily targets the kidneys. These results are likely to provide a scientific basis for further elucidation of the pathogenesis of GAstV-2.
Collapse
Affiliation(s)
- Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
| | - Xiaoning Jiang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
| | - Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China.
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
12
|
Mezzetti E, Costantino A, Leoni M, Pieretti R, Di Paolo M, Frati P, Maiese A, Fineschi V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1364. [PMID: 37629654 PMCID: PMC10456745 DOI: 10.3390/medicina59081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
Autoimmune heart disease is a non-random condition characterised by immune system-mediated aggression against cardiac tissue. Cardiac changes often exhibit nonspecific features and, if unrecognised, can result in fatal outcomes even among seemingly healthy young individuals. In the absence of reliable medical history, the primary challenge lies in differentiating between the various cardiopathies. Numerous immunohistochemical and genetic studies have endeavoured to characterise distinct types of cardiopathies, facilitating their differentiation during autopsy examinations. However, the presence of a standardised protocol that forensic pathologists can employ to guide their investigations would be beneficial. Hence, this summary aims to present the spectrum of autoimmune cardiopathies, including emerging insights such as SARS-CoV-2-induced cardiopathies, and proposes the utilisation of practical tools, such as blood markers, to aid forensic pathologists in their routine practice.
Collapse
Affiliation(s)
- Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Andrea Costantino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Matteo Leoni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Rebecca Pieretti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| |
Collapse
|
13
|
Wang Y, Yang Y, Cao X, Liu Z, Chen B, Du Q, Lu X. Simple and Ultrasensitive Detection of Glioma-Related ctDNAs in Mice Serum by SERS-Based Catalytic Hairpin Assembly Signal Amplification Coupled with Magnetic Aggregation. Int J Nanomedicine 2023; 18:3211-3230. [PMID: 37337576 PMCID: PMC10276994 DOI: 10.2147/ijn.s410080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Circulating tumor DNA (ctDNA) is more representative and accurate than biopsy and is also conducive to dynamic monitoring, facilitating accurate diagnosis and prognosis of glioma. Therefore, the present study aimed to establish and validate a novel amplified method for the detection of IDH1 R132H and BRAF V600E, which were associated with the genetic diagnosis of glioma. Patients and Methods A dual-signal amplification method based on magnetic aggregation and catalytic hairpin assembly (CHA) was constructed for the simultaneous detection of ctDNAs. When target ctDNAs are present, the CHA reaction is initiated and leads to the assembly of Au-Ag nanoshuttles (Au-Ag NSs) onto magnetic beads (MBs). Further enrichment of MBs under an external magnetic field facilitated the dual-signal amplification of SERS. Results The limit of detection (LOD) for IDH1 R132H and BRAF V600E in serum was as low as 6.01 aM and 5.48 aM. The reproducibility and selectivity of the proposed SERS analysis platform was satisfactory. Finally, the platform was applied to quantify IDH1 R132H and BRAF V600E in the serum of subcutaneous-tumor‑bearing nude mice, and the results obtained by SERS were consistent with those from quantitative real-time polymerase chain reaction (qRT-PCR). Conclusion The present study showed that the dual-signal amplification method is a simple and ultrasensitive strategy for gliomas-associated ctDNAs detection, which is crucial for early diagnosis and dynamic monitoring.
Collapse
Affiliation(s)
- Youwei Wang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Yang Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Zhensheng Liu
- Department of Interventional Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Bing Chen
- Department of neurosurgery, The Affiliated hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Qiu Du
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Xiaoxia Lu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
14
|
El Hussein S, Medeiros LJ, Lyapichev KA, Fang H, Jelloul FZ, Fiskus W, Chen J, Wei P, Schlette E, Xu J, Li S, Kanagal-Shamanna R, Yang H, Tang Z, Thakral B, Loghavi S, Jain N, Thompson PA, Ferrajoli A, Wierda WG, Jabbour E, Patel KP, Dabaja BS, Bhalla KN, Khoury JD. Immunophenotypic and genomic landscape of Richter transformation diffuse large B-cell lymphoma. Pathology 2023; 55:514-524. [PMID: 36933995 DOI: 10.1016/j.pathol.2022.12.354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 02/27/2023]
Abstract
Integrated clinicopathological and molecular analyses of Richter transformation of diffuse large B-cell lymphoma subtype (RT-DLBCL) cases remain limited. This study group included 142 patients with RT-DLBCL. Morphological evaluation and immunophenotyping, using immunohistochemistry and/or multicolour flow cytometry, were performed. The results of conventional karyotyping, fluorescence in situ hybridisation analysis and mutation profiling performed using next generation sequencing were reviewed. Patients included 91 (64.1%) men and 51 (35.9%) women with a median age of 65.4 years (range 25.4-84.9 years) at the time of RT-DLBCL diagnosis. Patients had CLL for a median of 49.5 months (range 0-330 months) before onset of RT-DLBCL. Most cases (97.2%) of RT-DLBCL had immunoblastic (IB) morphology, the remainder had a high grade morphology. The most commonly expressed markers included: CD19 (100%), PAX5 (100%), BCL2 (97.5%), LEF1 (94.7%), CD22 (90.2%), CD5 (88.6%), CD20 (85.7%), CD38 (83.5%), MUM1 (83.3%), CD23 (77%) and MYC (46.3%). Most (51/65, 78.4%) cases had a non-germinal centre B-cell immunophenotype. MYC rearrangement was detected in 9/47 (19.1%) cases, BCL2 rearrangement was detected in 5/22 (22.7%) cases, and BCL6 rearrangement was detected in 2/15 (13.3%) cases. In comparison to CLL, RT-DLBCL had higher numbers of alterations involving chromosomes 6, 17, 21, and 22. The most common mutations detected in RT-DLBCL involved TP53 (9/14, 64.3%), NOTCH1 (4/14, 28.6%) and ATM (3/14, 21.4%). Among RT-DLBCL cases with mutant TP53, 5/8 (62.5%) had TP53 copy number loss, and among those, such loss was detected in the CLL phase of the disease in 4/8 (50%) cases. There was no significant difference in overall survival (OS) between patients with germinal centre B-cell (GCB) and non-GCB RT-DLBCL. Only CD5 expression correlated significantly with OS (HR=2.732; 95% CI 1.397-5.345; p=0.0374). RT-DLBCL has distinctive morphological and immunophenotypic features, characterised by IB morphology and common expression of CD5, MUM1 and LEF1. Cell-of-origin does not seem to have prognostic implications in RT-DLBCL.
Collapse
MESH Headings
- Male
- Humans
- Female
- Adult
- Middle Aged
- Aged
- Aged, 80 and over
- Leukemia, Lymphocytic, Chronic, B-Cell
- Immunophenotyping
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Genomics
Collapse
Affiliation(s)
- Siba El Hussein
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA.
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kirill A Lyapichev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatima Zahra Jelloul
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiansong Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ellen Schlette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Philip A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bouthaina S Dabaja
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Pathology, The University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
15
|
Chauhan RP, Fogel R, Limson J. Overview of Diagnostic Methods, Disease Prevalence and Transmission of Mpox (Formerly Monkeypox) in Humans and Animal Reservoirs. Microorganisms 2023; 11:1186. [PMID: 37317160 DOI: 10.3390/microorganisms11051186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Mpox-formerly monkeypox-is a re-emerging zoonotic virus disease, with large numbers of human cases reported during multi-country outbreaks in 2022. The close similarities in clinical symptoms that Mpox shares with many orthopoxvirus (OPXV) diseases make its diagnosis challenging, requiring laboratory testing for confirmation. This review focuses on the diagnostic methods used for Mpox detection in naturally infected humans and animal reservoirs, disease prevalence and transmission, clinical symptoms and signs, and currently known host ranges. Using specific search terms, up to 2 September 2022, we identified 104 relevant original research articles and case reports from NCBI-PubMed and Google Scholar databases for inclusion in the study. Our analyses observed that molecular identification techniques are overwhelmingly being used in current diagnoses, especially real-time PCR (3982/7059 cases; n = 41 studies) and conventional PCR (430/1830 cases; n = 30 studies) approaches being most-frequently-used to diagnose Mpox cases in humans. Additionally, detection of Mpox genomes, using qPCR and/or conventional PCR coupled to genome sequencing methods, offered both reliable detection and epidemiological analyses of evolving Mpox strains; identified the emergence and transmission of a novel clade 'hMPXV-1A' lineage B.1 during 2022 outbreaks globally. While a few current serologic assays, such as ELISA, reported on the detection of OPXV- and Mpox-specific IgG (891/2801 cases; n = 17 studies) and IgM antibodies (241/2688 cases; n = 11 studies), hemagglutination inhibition (HI) detected Mpox antibodies in human samples (88/430 cases; n = 6 studies), most other serologic and immunographic assays used were OPXV-specific. Interestingly, virus isolation (228/1259 cases; n = 24 studies), electron microscopy (216/1226 cases; n = 18 studies), and immunohistochemistry (28/40; n = 7 studies) remain useful methods of Mpox detection in humans in select instances using clinical and tissue samples. In animals, OPXV- and Mpox-DNA and antibodies were detected in various species of nonhuman primates, rodents, shrews, opossums, a dog, and a pig. With evolving transmission dynamics of Mpox, information on reliable and rapid detection methods and clinical symptoms of disease is critical for disease management.
Collapse
Affiliation(s)
- Ravendra P Chauhan
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Ronen Fogel
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| | - Janice Limson
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, Eastern Cape, South Africa
| |
Collapse
|
16
|
Marano A, Troncone R, Discepolo V, Maglio M. Combined RNAscope and immunohistochemistry staining on duodenal paraffin sections as a new tool to reveal cytolytic potential of intraepithelial lymphocytes. J Immunol Methods 2023; 517:113470. [PMID: 37037412 DOI: 10.1016/j.jim.2023.113470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Immunohistochemistry (IHC) is a consolidated technique for the identification of surface and cytoplasmic antigens in cells or tissue sections using specific antibodies, yet simultaneous detection of two markers on the same cell may be difficult to achieve. Here we develop a protocol to perform a double staining using RNAscope, a new in-situ hybridization (ISH) technology, to visualize perforin transcripts, and classical IHC to visualize either CD8 or TcRγδ positive intraepithelial lymphocytes (IELs) in small intestinal paraffin sections of celiac disease (CD) patients. This double assay will allow to investigate the cytotoxic properties of two subsets of IELs in different stages of CD, thus contributing to understand the events leading to tissue destruction and healing.
Collapse
Affiliation(s)
- Antonella Marano
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Via Pansini 5, 80131 Naples, Italy; Department of Translational Medical Science, Pediatrics Section University Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Valentina Discepolo
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Via Pansini 5, 80131 Naples, Italy; Department of Translational Medical Science, Pediatrics Section University Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- European Laboratory for the Investigation of Food-Induced Diseases (ELFID), University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
17
|
Chen X, Cheng L, Pan Y, Chen P, Luo Y, Li S, Zou W, Wang K. Different immunological mechanisms between AQP4 antibody-positive and MOG antibody-positive optic neuritis based on RNA sequencing analysis of whole blood. Front Immunol 2023; 14:1095966. [PMID: 36969199 PMCID: PMC10036921 DOI: 10.3389/fimmu.2023.1095966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Purpose To compare the different immunological mechanisms between aquaporin 4 antibody-associated optic neuritis (AQP4-ON) and myelin oligodendrocyte glycoprotein antibody-associated optic neuritis (MOG-ON) based on RNA sequencing (RNA-seq) of whole blood. Methods Whole blood was collected from seven healthy volunteers, 6 patients with AQP4-ON and 8 patients with MOG-ON, and used for RNA-seq analysis. An examination of immune cell infiltration was performed using the CIBERSORTx algorithm to identify infiltrated immune cells. Results RNA-seq analysis showed that the inflammatory signaling was mainly activated by TLR2, TLR5, TLR8 and TLR10 in AQP4-ON patients, while which was mainly activated by TLR1, TLR2, TLR4, TLR5 and TLR8 in MOG-ON patients. Biological function identification of differentially expressed genes (DEGs) based on Gene Ontology (GO) term and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, as well as Disease Ontology (DO) analysis, showed that the inflammation in AQP4-ON was likely mediated by damage-associated molecular pattern (DAMP), while which in MOG-ON was likely mediated by pathogen-associated molecular pattern (PAMP). Analysis of immune cell infiltration showed that the proportion of immune cell infiltration was related to patients' vision. The infiltration ratios of monocytes (rs=0.69, P=0.006) and M0 macrophages (rs=0.66, P=0.01) were positively correlated with the BCVA (LogMAR), and the infiltration ratio of neutrophils was negatively correlated with the BCVA (LogMAR) (rs=0.65, P=0.01). Conclusion This study reveals different immunological mechanisms between AQP4-ON and MOG-ON based on transcriptomics analysis of patients' whole blood, which may expand the current knowledge regarding optic neuritis.
Collapse
Affiliation(s)
- Xuelian Chen
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
| | - Libo Cheng
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
- Department of Ophthalmology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ying Pan
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
- Department of Ophthalmology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Peng Chen
- Department of Ophthalmology, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
- Department of Ophthalmology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yidan Luo
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
| | - Shiyi Li
- Department of Ophthalmology, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
- Department of Ophthalmology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wenjun Zou
- Department of Ophthalmology, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu, China
- Department of Ophthalmology, Jiangnan University Medical Center (JUMC), Wuxi, Jiangsu, China
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Wuxi, Jiangsu, China
- Department of Ophthalmology, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Galactosidase-catalyzed fluorescence amplification method (GAFAM): sensitive fluorescent immunohistochemistry using novel fluorogenic β-galactosidase substrates and its application in multiplex immunostaining. Histochem Cell Biol 2023; 159:233-246. [PMID: 36374321 DOI: 10.1007/s00418-022-02162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2022] [Indexed: 11/16/2022]
Abstract
Multiplex immunohistochemistry/multiplex immunofluorescence (mIHC/mIF) enables the simultaneous detection of multiple markers in a single tissue section by visualizing the markers in different colors. Currently, tyramide signal amplification (TSA) is the most commonly used method because it is heat resistant to multiplexing. SPiDER-βGal (6'-(diethylamino)-4'-(fluoromethyl)spiro[isobenzofuran-1(3H),9'-[9H]xanthen]-3'-yl β-D-galactopyranoside), a novel fluorogenic substrate of β-galactosidase (β-gal) was reported recently. Its properties are favorable for application in sensitive mIF based on quinone methide chemistry. Combining SPiDER-βGal with its related substrates, a novel, sensitive fluorescent IHC method for formalin-fixed paraffin-embedded (FFPE) sections was developed, named the galactosidase-catalyzed fluorescence amplification method (GAFAM). Evaluation of GAFAM indicated the following characteristics: (1) the entire GAFAM procedure was complete within a few hours; (2) the optimal working concentration of the substrates was 20 μM; (3) the fluorescent product was heat resistant; (4) the GAFAM exhibited sensitivity comparable with that of TSA, which was higher than that of conventional IF; and (5) the GAFAM was applicable to mIF and multispectral imaging. GAFAM is expected to be applicable to IF (or mIF in combination with TSA), and is a promising tool for facilitating morphological research in various fields of life science.
Collapse
|
19
|
Recent advances in diagnostic approaches for orf virus. Appl Microbiol Biotechnol 2023; 107:1515-1523. [PMID: 36723701 DOI: 10.1007/s00253-023-12412-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Orf virus (ORFV), the prototype species of the Parapoxvirus genus, is an important zoonotic virus, causing great economic losses in livestock production. At present, there are no effective drugs for orf treatment. Therefore, it is crucial to develop accurate and rapid diagnostic approaches for ORFV. Over decades, various diagnostic methods have been established, including conventional methods such as virus isolation and electron microscopy; serological methods such as virus neutralization test (VNT), immunohistochemistry (IHC) assay, immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA); and molecular methods such as polymerase chain reaction (PCR), real-time PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and recombinase-aided amplification (RAA) assay. This review provides an overview of currently available diagnostic approaches for ORFV and discusses their advantages and limitations and future perspectives, which would be significantly helpful for ORFV early diagnosis and surveillance to prevent outbreak of orf. KEY POINTS: • Orf virus emerged and reemerged in past years • Rapid and efficient diagnostic approaches are needed and critical for ORFV detection • Novel and sensitive diagnostic methods are required for ORFV detection.
Collapse
|
20
|
Rao X, Zheng L, Wei K, Li M, Jiang M, Qiu J, Zhou Y, Ke R, Lin C. Novel In Situ Hybridization Assay for Chromogenic Single-Molecule Detection of Human Papillomavirus E6/E7 mRNA. Microbiol Spectr 2023; 11:e0389622. [PMID: 36809088 PMCID: PMC10101027 DOI: 10.1128/spectrum.03896-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
RNA plays a vital role in the physiological and pathological processes of cells and tissues. However, RNA in situ hybridization applications in clinical diagnostics are still limited to a few examples. In this study, we developed a novel in situ hybridization assay for human papillomavirus (HPV) E6/E7 mRNA by taking advantage of specific padlock probing and rolling circle amplification, combined with chromogenic readout. We designed padlock probes for 14 types of high-risk HPV and demonstrated that E6/E7 mRNA could be visualized in situ as discrete dot-like signals using bright-field microscopy. Overall, the results are consistent with the clinical diagnostics lab's hematoxylin and eosin (H&E) staining and p16 immunohistochemistry test results. Our work thus shows the potential applications of RNA in situ hybridization for clinical diagnostics using chromogenic single-molecule detection, offering an alternative technical option to the current commercially available kit based on branched DNA technology. IMPORTANCE In situ detection of viral mRNA expression in tissue samples is of great value for pathological diagnosis to access viral infection status. Unfortunately, conventional RNA in situ hybridization assays lack sensitivity and specificity for clinical diagnostic purposes. Currently, the commercially available branched DNA technology-based single-molecule RNA in situ detection method offers satisfactory results. Here, we present our padlock probe- and rolling circle amplification-based RNA in situ hybridization assay for detecting HPV E6/E7 mRNA expression in formalin-fixed paraffin-embedded tissue sections, providing an alternative yet robust method for viral RNA in situ visualization that is also applicable to different types of diseases.
Collapse
Affiliation(s)
- Xuelian Rao
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Liangkai Zheng
- Department of Pathology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kaipeng Wei
- Department of Pathology, The 910th Hospital, Quanzhou, Fujian, China
| | - Meiqing Li
- Department of Pathology, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Jiang
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Jianlong Qiu
- Department of Pathology, The 910th Hospital, Quanzhou, Fujian, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| | - Chen Lin
- School of Medicine, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
21
|
Zhang X, Tan X, Wang P, Qin J. Application of Polypyrrole-Based Electrochemical Biosensor for the Early Diagnosis of Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:674. [PMID: 36839042 PMCID: PMC9967576 DOI: 10.3390/nano13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Although colorectal cancer (CRC) is easy to treat surgically and can be combined with postoperative chemotherapy, its five-year survival rate is still not optimistic. Therefore, developing sensitive, efficient, and compliant detection technology is essential to diagnose CRC at an early stage, providing more opportunities for effective treatment and intervention. Currently, the widely used clinical CRC detection methods include endoscopy, stool examination, imaging modalities, and tumor biomarker detection; among them, blood biomarkers, a noninvasive strategy for CRC screening, have shown significant potential for early diagnosis, prediction, prognosis, and staging of cancer. As shown by recent studies, electrochemical biosensors have attracted extensive attention for the detection of blood biomarkers because of their advantages of being cost-effective and having sound sensitivity, good versatility, high selectivity, and a fast response. Among these, nano-conductive polymer materials, especially the conductive polymer polypyrrole (PPy), have been broadly applied to improve sensing performance due to their excellent electrical properties and the flexibility of their surface properties, as well as their easy preparation and functionalization and good biocompatibility. This review mainly discusses the characteristics of PPy-based biosensors, their synthetic methods, and their application for the detection of CRC biomarkers. Finally, the opportunities and challenges related to the use of PPy-based sensors for diagnosing CRC are also discussed.
Collapse
|
22
|
Bösherz MS, Samarska IV, Gaisa NT. Scoring Systems for Immunohistochemistry in Urothelial Carcinoma. Methods Mol Biol 2023; 2684:3-25. [PMID: 37410225 DOI: 10.1007/978-1-0716-3291-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Immunohistochemistry is widely used in diagnostic and scientific analysis of urothelial carcinoma. Objective interpretation of staining results is mandatory for accuracy and comparability in diagnostic and therapeutic patient care as well as research.Herein we summarize and explain standardized microscopic evaluation and scoring approaches for immunohistochemical stainings. We focus on commonly used and generally feasible approaches for different cellular compartments and comment on their utility in diagnostics and research practice.
Collapse
Affiliation(s)
| | - Iryna V Samarska
- Department of Pathology, GROW - School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, The Netherlands
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital, RWTH Aachen University, Aachen, Germany
- German Study Group of Bladder Cancer (DFBK e.V.), Munich, Germany
| |
Collapse
|
23
|
Muacevic A, Adler JR, Waqas O, Waseem H, Abdelrahman AS, Almansouri M, Mulla N, Katib Y, Bakhsh SI, Basheikh M, Abusikkien SA, Karami MM, Al-Hajeili M, Elbasateeny SS. Accuracy of Classifying Lung Carcinoma Using Immunohistochemical Markers on Limited Biopsy Material: A Two-Center Study. Cureus 2022; 14:e32956. [PMID: 36712764 PMCID: PMC9875635 DOI: 10.7759/cureus.32956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction Accurate classification of lung cancer into primary and metastatic carcinomas is critical for treatment approaches. Immunohistochemistry (IHC) has always been pivotal in unveiling the diverse cell differentiation lineages present in lung cancer by using specific biomarkers such as TTF1 and p63/p40, which closely reflect the relationship between genotype and phenotype.. Methods A retrospective cross-sectional study was conducted to evaluate 57 Tru-Cut biopsies over two years, from 2020-2022. Tumour morphology was evaluated, and IHC for TTF-1, Napsin A, CK-7, P-63, P-40, and CD-56 was performed in two steps. Results Of the lung cancer cases, 58.5% were adenocarcinoma (ADC), 24.5% were squamous cell carcinoma (SCC), 9.4% were small cell carcinoma, and 7.5% were poorly differentiated carcinoma. TTF1 stain had sensitivity and specificity of 78.9% and 50% in 33 cases of ADC, respectively, while CK7 and Napsin A had 100% sensitivity. P63 stain had 77% sensitivity and 50% specificity in 15 cases of SCC, while P-40 had 100% sensitivity. The CD56 stain was 100% sensitive in five cases of small cell carcinoma. Conclusion IHC staining on small lung biopsies allows accurate sub-classification of poorly differentiated lung cancers; however, there is still significant variability. Surgical resection specimens can be further classified due to architectural features that biopsies lack. Morphological findings would be beneficial in the development of an algorithm for sub-classifying lung carcinoma using a variety of markers.
Collapse
|
24
|
In focus in HCB. Histochem Cell Biol 2022; 158:513-516. [PMID: 36441251 DOI: 10.1007/s00418-022-02167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Ponzetti M, Chinna Rao Devarapu G, Rucci N, Carlone A, Saggiomo V. HistoEnder: A 3D printer-based histological slide autostainer that retains 3D printer functions. HARDWAREX 2022; 12:e00370. [PMID: 36345434 PMCID: PMC9636191 DOI: 10.1016/j.ohx.2022.e00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Automated microscope slide stainers are usually very expensive and unless the laboratory performs heavy histological work it is difficult to justify buying a 2000-10000€ machine. As a result, histology and pathology labs around the world lose thousands of working hours for following procedures that could be easily automated. Herein, we propose a simple modification of an open-source 3D printer, the Creality Ender-3, into an automated microscope slide autostainer, the HistoEnder. The HistoEnder is cheap (less than 200€), modular, and easy to set up, with only two 3D-printed parts needed. Additionally, the 3D printer retains its full functionality, and it can be reverted back into 3D printing in less than 1 min. The g-code associated with the procedure is extremely simple, and can be written by anyone. The HistoEnder can also be used in chemistry and material science laboratories for automating surface modifications and dip coating.
Collapse
Affiliation(s)
- Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, L’Aquila 67100, Italy
| | - Ganga Chinna Rao Devarapu
- Centre for Advanced Photonics & Process Analysis, Munster Technological University, Rossa Avenue, Bishopstown, Cork T12 P928, Ireland
- Tyndall National Institute, Lee Maltings, Prospect Row, Cork T12R5CP, Ireland
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, L’Aquila 67100, Italy
| | - Armando Carlone
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, Via Vetoio, L’Aquila 67100, Italy
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University and Research, Bornse Weilanden 9, Wageningen, The Netherlands
| |
Collapse
|
26
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
27
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
28
|
Microsatellite Instability Assessment by Immunohistochemistry in Acute Myeloid Leukemia: A Reappraisal and Review of the Literature. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e386-e391. [PMID: 34980577 DOI: 10.1016/j.clml.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Microsatellite instability (MSI) is caused by defects in DNA mismatch repair (MMR) components. Inactivation of any MMR gene(s), including hMLH1, hMSH2, hMSH6, and hPMS2, can result in MSI. Immunohistochemistry (IHC) is a sensitive and specific screening tool for MSI that can detect loss of expression of one or more MMR components. Of the four MMR markers, hMLH1 and hMSH2 are considered most informative of MSI status. There has been renewed interest in MSI status in view of its favorable association with response to immune checkpoint inhibitors in some cancers. MMR expression patterns in acute myeloid leukemia (AML) have not been evaluated systematically. METHODS We used clinically-validated IHC assays to assess the expression of hMLH1, hMSH2, hMSH6, and/or hPMS2 in formalin-fixed paraffin-embedded tissue sections of bone marrow core biopsies from patients diagnosed with AML. Mutation profiling was performed using next-generation sequencing to assess for mutations in MMR genes. RESULTS The study group included 236 patients with AML, including a cohort treated on a clinical trial of azacitidine and nivolumab (NCT02397720). In addition, hMSH6, and/or hPMS2 expression was assessed in 99 AML patients with diploid karyotype. All patients, except two, had retained expression of all MMR markers assessed: One patient from the azacytidine+nivolumab group had zonal patchy loss of staining of hMLH1 and, to a lesser extent, a similar staining pattern of hMSH2; and one patient from the AML with diploid karyotype group had loss of hMSH2 but retained expression of hMLH1, hMSH6 and hPMS2. In addition, a retrospective analysis on a separate cohort of 139 patients with primary AML, on which next generation sequencing profiling was performed, identified 14 cases with alterations in MMR genes. CONCLUSION AND REMARKS MMR loss is a rare event in AML, thus does not appear to underlie response patterns to anti-PD1 therapy.
Collapse
|
29
|
Obiorah IE, Wang HW, Ma D, Martin E, Wilson WH, Braylan R. The Effectiveness of Dual-Staining Immunohistochemistry in the Detection of Mantle Cell Lymphoma in the Bone Marrow. Am J Clin Pathol 2022; 157:709-717. [PMID: 35512254 DOI: 10.1093/ajcp/aqab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/12/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Immunohistochemistry (IHC) is a useful method for mantle cell lymphoma (MCL) detection in the bone marrow (BM). However, recognition of the neoplastic B cells can be challenging, especially when there is low-level disease. METHODS We examined BM from 105 patients with MCL. IHC was performed using cyclin D1/CD79a and PAX5/CD5 dual stains, which were compared with single stains that included CD20, CD79a, cyclin D1, and CD5 and with multiparameter flow cytometry (FC). RESULTS Based on the FC data, the overall sensitivity of the dual IHC stains was 95.6%. Both dual IHC stains showed better efficacy for detecting MCL cells compared with the aggregated single stains (P = .012). While three cases were positive by FC analysis but negative for dual staining, four cases showed cells positive for cyclin D1/CD79a and PAX5/CD5 dual staining that were not detected by FC. Two of these latter cases were in patients with minimal or focal disease involvement. CONCLUSIONS Cyclin D1/CD79a and PAX5/CD5 dual IHC staining is an efficient procedure for the detection of MCL in the marrow and is particularly helpful in low-level or focal involvement by MCL. This approach can be particularly useful when marrow aspirates are inadequate or unavailable.
Collapse
Affiliation(s)
- Ifeyinwa E Obiorah
- Hematopathology Section, Laboratory of Pathology, Bethesda, MD, USA
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Hao-Wei Wang
- Hematopathology Section, Laboratory of Pathology, Bethesda, MD, USA
- Flow Cytometry Unit, Laboratory of Pathology, Bethesda, MD, USA
| | - David Ma
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Eddie Martin
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Wyndham H Wilson
- Lymphoid Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raul Braylan
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Winter K, Dzieniecka M, Strzelczyk J, Wągrowska-Danilewicz M, Danilewicz M, Małecka-Wojciesko E. Alpha Smooth Muscle Actin (αSMA) Immunohistochemistry Use in the Differentiation of Pancreatic Cancer from Chronic Pancreatitis. J Clin Med 2021; 10:jcm10245804. [PMID: 34945100 PMCID: PMC8707555 DOI: 10.3390/jcm10245804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Aim: Fibrosis is observed both in pancreatic cancer (PDAC) and chronic pancreatitis (CP). The main cells involved in fibrosis are pancreatic stellate cells (PSCs), which activate alpha smooth muscle actin (αSMA), which is considered to be the best-known fibrosis marker. The aim of the study was to evaluate the expression of the αSMA in patients with PDAC and CP as the possible differentiation marker. Methods: We enrolled 114 patients undergoing pancreatic resection: 83 with PDAC and 31 with CP. Normal fragments of resected specimen from 21 patients represented the control tissue. The immunoexpressions of αSMA were detected in tissue specimens with immunohistochemistry (Abcam antibodies, GB). Results: Mean cytoplasmatic expression of αSMA protein in PDAC stromal cells was significantly higher compared to CP: 2.42 ± 0.37 vs 1.95 ± 0.45 (p < 0.01) and control group 0.61 ± 0.45 (p < 0.01). Strong immunoexpression of the αSMA protein was found in the vast majority (80.7%) of patients with PDAC, in about half (58%) of patients with CP, and not at all in healthy tissue. The expression of αSMA of different intensity was found in all patients with PDAC and CP, while in healthy tissue was minimal or absent. In PDAC patients, αSMA expression was significantly higher in tumors of diameter higher than 3 cm compared to smaller ones (p = 0.017). Conclusions: Presented findings confirm the significant role of fibrosis in both PDAC and CP; however, they do not confirm the role of αSMA as a marker of differentiation.
Collapse
Affiliation(s)
- Katarzyna Winter
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Correspondence: ; Tel.: +48-500-275-615; +48-4267-76-664; Fax: +48-678-6480
| | | | - Janusz Strzelczyk
- Department of General and Transplant Surgery, Medical University of Lodz, 90-153 Lodz, Poland;
| | | | - Marian Danilewicz
- Department of Nephropathology, Division of Morphometry, Medical University of Lodz, 90-153 Lodz, Poland; (M.W.-D.); (M.D.)
| | - Ewa Małecka-Wojciesko
- Clinical Department of General and Oncological Gastroenterology, University Clinical Hospital No. 1, 90-153 Lodz, Poland;
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
31
|
Alwash Y, Khoury JD, Tashakori M, Kanagal-Shamanna R, Daver N, Ravandi F, Kadia TM, Konopleva M, Dinardo CD, Issa GC, Loghavi S, Takahashi K, Jabbour E, Guerra V, Kornblau S, Kantarjian H, Short NJ. Development of TP53 mutations over the course of therapy for acute myeloid leukemia. Am J Hematol 2021; 96:1420-1428. [PMID: 34351647 PMCID: PMC9167467 DOI: 10.1002/ajh.26314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022]
Abstract
TP53 mutations in acute myeloid leukemia (AML) are associated with resistance to standard treatments and dismal outcomes. The incidence and prognostic impact of the emergence of newly detectable TP53 mutations over the course of AML therapy has not been well described. We retrospectively analyzed 200 patients with newly diagnosed TP53 wild type AML who relapsed after or were refractory to frontline therapy. Twenty-nine patients (15%) developed a newly detectable TP53 mutation in the context of relapsed/refractory disease. The median variant allelic frequency (VAF) was 15% (range, 1.1%-95.6%). TP53 mutations were more common after intensive therapy versus lower-intensity therapy (23% vs. 10%, respectively; p = 0.02) and in patients who had undergone hematopoietic stem cell transplant versus those who had not (36% vs. 12%, respectively; p = 0.005). Lower TP53 VAF was associated with an increased likelihood of complete remission (CR) or CR with incomplete hematologic recovery (CRi) compared to higher TP53 VAF (CR/CRi rate of 41% for VAF < 20% vs. 13% for VAF ≥ 20%, respectively). The median overall survival (OS) after acquisition of TP53 mutation was 4.6 months, with a 1-year OS rate of 19%. TP53 VAF at relapse was significantly associated with OS; the median OS of patients with TP53 VAF ≥ 20% was 3.5 months versus 6.1 months for those with TP53 VAF < 20% (p < 0.05). In summary, new TP53 mutations may be acquired throughout the course of AML therapy. Sequential monitoring for TP53 mutations is likely to be increasingly relevant in the era of emerging TP53-targeting therapies for AML.
Collapse
Affiliation(s)
- Yasmin Alwash
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehrnoosh Tashakori
- The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rashmi Kanagal-Shamanna
- The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan M. Kadia
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney D. Dinardo
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ghayas C. Issa
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanam Loghavi
- The Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koichi Takahashi
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veronica Guerra
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven Kornblau
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop Kantarjian
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nicholas J. Short
- The Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Novel Prognostic Immunohistochemical Markers in Uveal Melanoma-Literature Review. Cancers (Basel) 2021; 13:cancers13164031. [PMID: 34439182 PMCID: PMC8391629 DOI: 10.3390/cancers13164031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The following study provides an overview of the English-language literature on the search for new prognostic factors for uveal melanoma. Uveal melanoma is the most common primary intraocular tumor in adults, and although it is a relatively rare disease, it poses a significant health problem. About half of the patients develop distant metastases, and unfortunately there are currently no effective treatments for the disease at such an advanced stage. The search for new prognostic factors is important to understand the biology of the disease and to be able to monitor patients more effectively. At the same time, it creates an opportunity to find new therapeutic targets. We focused our attention on immunohistochemical research because it is a widely used method, relatively cheap, technically simple, and gives reproducible results. The analysis of this study will enable other researchers to verify their research plans and may also be a source of inspiration for creating new ones. Abstract Uveal melanoma is the most common primary intraocular neoplasm in adults. As there are currently no effective methods of treating the disease in the metastatic stage, there is a need to search for new prognostic factors that would enable a reliable assessment of the patient’s condition and constitute a possible therapeutic target. In this review, we have prepared the results of English-language studies on new prognostic factors determined with immunohistochemical methods. We found 64 articles in which the expression of various proteins was associated in a statistically significant manner with the histopathological and clinical prognostic factors identified by AJCC. The results of our work clearly show that the biology of uveal melanoma is extraordinarily complex. Numerous studies have shed new light on the complexity of the processes involved in the development of this cancer. Moreover, a careful analysis of the expression of individual proteins may allow the identification of homogeneous groups of patients requiring different treatment regimens.
Collapse
|
33
|
Multiplexed Plasmonic Nano-Labeling for Bioimaging of Cytological Stained Samples. Cancers (Basel) 2021; 13:cancers13143509. [PMID: 34298724 PMCID: PMC8307244 DOI: 10.3390/cancers13143509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The improvement in the reliability and precision of traditional cytopathological examination protocols (semi-quantitative cancer diagnostics) is a persisting challenge. Many developed high-tech diagnostic approaches have also been declined due to their complexity, non-complementary, and problematic integration with standard pathology laboratory equipment and protocols. In this study, a complementary bioimaging approach based on plasmonic nanoparticles (NPs), due to their stable, strong scattering feature, is therefore developed. This type of approach resists against a strong background of the cytological counterstaining while simultaneously delivering ancillary diagnostic information by using the same cytological stained samples. The direct observation and analyses of four types of plasmonic NPs with different scattering colors on hematoxylin and eosin (H&E) paraffin-embedded specimens are demonstrated. This is performed while using a well-designed adapter for side-illuminated (SI) dark-field conventional microscopy without interfering with traditional cytopathology strategies. This state-of-the-art integrated bioimaging approach (observation of plasmonic NPs on H&E-stained cytology samples) constitutes an indispensable tool that improves not only cancer diagnosis but also daily care. Abstract Reliable cytopathological diagnosis requires new methods and approaches for the rapid and accurate determination of all cell types. This is especially important when the number of cells is limited, such as in the cytological samples of fine-needle biopsy. Immunoplasmonic-multiplexed- labeling may be one of the emerging solutions to such problems. However, to be accepted and used by the practicing pathologists, new methods must be compatible and complementary with existing cytopathology approaches where counterstaining is central to the correct interpretation of immunolabeling. In addition, the optical detection and imaging setup for immunoplasmonic-multiplexed-labeling must be implemented on the same cytopathological microscope, not interfere with standard H&E imaging, and operate as a second easy-to-use imaging method. In this article, we present multiplex imaging of four types of nanoplasmonic markers on two types of H&E-stained cytological specimens (formalin-fixed paraffin embedded and non-embedded adherent cancer cells) using a specially designed adapter for SI dark-field microscopy. The obtained results confirm the effectiveness of the proposed optical method for quantitative and multiplex identification of various plasmonic NPs, and the possibility of using immunoplasmonic-multiplexed-labeling for cytopathological diagnostics.
Collapse
|
34
|
Patnaik MM, Mughal TI, Brooks C, Lindsay R, Pemmaraju N. Targeting CD123 in hematologic malignancies: identifying suitable patients for targeted therapy. Leuk Lymphoma 2021; 62:2568-2586. [PMID: 33999767 DOI: 10.1080/10428194.2021.1927021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following the observation of interleukin 3 receptor α chain (IL-3Rα; CD123) upregulation on leukemia stem cells (LSCs) almost two decades ago, targeted treatment via CD123-diptheria toxin conjugates has now been tested in patients with diverse myeloid malignancies. Targeted eradication of LSCs could result in effective treatments for many challenging diseases initiated by these cells. Consequently, considerable effort has been directed toward targeting CD123 as a potential strategy for treating patients with hematologic malignancies in which CD123 is overexpressed. However, these therapies have had limited success so far, highlighting the need for suitable criteria to identify patients who could benefit from them. Given the diversity in CD123 expression across different hematologic malignancies, understanding CD123 expression patterns and the functional pathogenetic significance is crucial. Here, we review the methodologies available for CD123 assessment and discuss the biological and clinical characteristics of patients for whom CD123-targeting therapies may have a clinical impact.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tariq I Mughal
- Division of Hematology-Oncology, Tufts University School of Medicine, Boston, MA, USA.,Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Christopher Brooks
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Ross Lindsay
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Naveen Pemmaraju
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Saliba M, Katabi N, Dogan S, Xu B, Ghossein RA. NRAS Q61R immunohistochemical staining in thyroid pathology: sensitivity, specificity and utility. Histopathology 2021; 79:650-660. [PMID: 33960437 DOI: 10.1111/his.14396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
AIMS The diagnosis of thyroid neoplasms relies upon the demonstration of histological parameters that can be focal and prone to subjective interpretation. We evaluated the utility of NRAS Q61R immunohistochemistry (IHC) in the diagnosis of thyroid lesions after determining its specificity and sensitivity as a surrogate marker for RAS Q61R mutation. METHOD AND RESULTS NRAS Q61R IHC was performed on 282 primary or metastatic thyroid lesions from 256 patients. RAS mutation status was collected from patients' charts. Sensitivity and specificity of NRAS Q61R IHC for detecting a RAS Q61R mutation was calculated. IHC-positive cases were reviewed to determine the diagnostic utility of NRAS Q61R IHC. NRAS Q61R immunopositivity was seen in non-neoplastic, benign and malignant thyroid lesions. NRAS Q61R antibody cross-reactivity led to the detection of NRAS Q61R, KRAS Q61R and HRAS Q61R proteins. Among primary thyroid carcinomas, immunopositivity was most frequent in papillary thyroid carcinomas, follicular variant (48.0%). The sensitivity and specificity of NRAS Q61R IHC in detecting RAS Q61R mutation was 90.6% and 92.3%, respectively. When positive, the NRAS Q61R stain was determined to be helpful in demonstrating infiltration, tumour size, capsular and/or vascular invasion and multifocality. CONCLUSION NRAS Q61R IHC is highly sensitive and specific for the detection of RAS Q61R mutations in thyroid pathology and is particularly relevant in follicular-patterned neoplasms. When evaluated alongside histological features, NRAS Q61R immunoreactivity can be instrumental in the diagnosis and classification of thyroid nodules.
Collapse
Affiliation(s)
- Maelle Saliba
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
36
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
37
|
Wang J, Xu W, Zhang N, Yang C, Xu H, Wang Z, Li B, Ding J, Chen X. X-ray-responsive polypeptide nanogel for concurrent chemoradiotherapy. J Control Release 2021; 332:1-9. [PMID: 33561483 DOI: 10.1016/j.jconrel.2021.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Concurrent chemoradiotherapy (CCRT) is a standard treatment regimen for medically inoperable stage III non-small-cell lung carcinoma (NSCLC) owing to its superior prognostics compared with the sequential modality. Nevertheless, the current pattern of CCRT still fails to provide satisfactory survival outcome. Furthermore, CCRT is always accompanied by a higher risk of severe side effects, limiting the dose escalation. Herein, an X-ray-responsive polypeptide nanogel (PNG) was developed for on-demand delivery of chemotherapeutic agent triggered by radiotherapy to synergistically improve the efficacy of CCRT with reduced side effects. The smart PNG was formed by crosslinking methoxy poly(ethylene glycol)-block-poly(L-glutamic acid-co-γ-2-chloroethyl-L-glutamate) (mPEG-b-P(LG-co-CELG)) with a diselenide (Se-Se) bond. The doxorubicin (DOX)-loaded polypeptide nanogel (PNG/DOX) exhibited accelerated drug release when exposed to X-ray irradiation as a result of Se-Se bond degradation. With prolonged circulation and enhanced intratumoral accumulation in vivo, PNG/DOX combined with X-ray irradiation exhibited better synergistic antitumor efficacy and fewer side effects toward human A549 lung carcinoma-bearing nude mice. The smart X-ray-responsive nanogel provides a promising bridge between chemotherapy and radiotherapy and enhances the potential application of CCRT in clinic.
Collapse
Affiliation(s)
- Juan Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Ji'nan 250117, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Ning Zhang
- Department of Foot and Ankle Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Ji'nan 250033, PR China
| | - Changsheng Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Ji'nan 250117, PR China
| | - Hengwei Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Ji'nan 250117, PR China
| | - Zhongtang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Ji'nan 250117, PR China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Ji'nan 250117, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| |
Collapse
|
38
|
Cintrón RV, Jusino JA, Conte-Miller M, Martínez AJ, Mendoza A. Automated Immunohistochemistry Assay for the Detection of Napsin-A in Formalin-Fixed Paraffin-Embedded Tissues from Lung Tumors. Methods Mol Biol 2021; 2279:23-33. [PMID: 33683683 DOI: 10.1007/978-1-0716-1278-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immunohistochemistry (IHC) enables the selective detection of proteins in cells of formalin-fixed-paraffin-embedded (FFPE) tissue sections. This technique plays a key role in the identification and classification of primary lung cancer tumors through the evaluation of the expression of the aspartic proteinase Napsin-A. However, immunohistochemistry is a complex process involving many critical steps and the lack of standardization as well as inappropriate analytical conditions may contribute to inconsistent results between laboratories. Automated immunohistochemistry addresses this issue by ensuring the quality and the reproducibility of the results among different laboratories. Here we describe an automated IHC protocol used in our laboratory for the detection of Napsin-A in FFPE lung tissue sections.
Collapse
Affiliation(s)
- Rosa Vélez Cintrón
- Southern Pathology Services Inc., Ponce, Puerto Rico.
- Pathology Division, Ponce Health Sciences University, Ponce, Puerto Rico.
| | - Jo Ann Jusino
- Southern Pathology Services Inc., Ponce, Puerto Rico
| | - María Conte-Miller
- Southern Pathology Services Inc., Ponce, Puerto Rico
- Pathology Division, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Andrés J Martínez
- School of Public Health, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Adalberto Mendoza
- Southern Pathology Services Inc., Ponce, Puerto Rico
- Pathology Division, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
39
|
Broggi G, Salvatorelli L. Bio-Pathological Markers in the Diagnosis and Therapy of Cancer. Cancers (Basel) 2020; 12:cancers12113113. [PMID: 33113754 PMCID: PMC7693495 DOI: 10.3390/cancers12113113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
|
40
|
El Achi H, Dupont E, Paul S, Khoury JD. CD123 as a Biomarker in Hematolymphoid Malignancies: Principles of Detection and Targeted Therapies. Cancers (Basel) 2020; 12:cancers12113087. [PMID: 33113953 PMCID: PMC7690688 DOI: 10.3390/cancers12113087] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary CD123 is overexpressed in multiple hematologic malignancies. Advances in CD123-targeted therapies over the past decade have positioned this molecule as an integral biomarker in current practice. This review provides an overview of CD123 biology and in-depth discussion of clinical laboratory techniques used to determine CD123 expression in various hematolymphoid neoplasms. In addition, we describe various pharmacologic strategies and agents that are available or under evaluation for targeting CD123. Abstract CD123, the α chain of the interleukin 3 receptor, is a cytokine receptor that is overexpressed in multiple hematolymphoid neoplasms, including acute myeloid leukemia, blastic plasmacytoid dendritic cell neoplasm, acute lymphoblastic leukemia, hairy cell leukemia, and systemic mastocytosis. Importantly, CD123 expression is upregulated in leukemic stem cells relative to non-neoplastic hematopoietic stem cells, which makes it a useful diagnostic and therapeutic biomarker in hematologic malignancies. Varying levels of evidence have shown that CD123-targeted therapy represents a promising therapeutic approach in several cancers. Tagraxofusp, an anti-CD123 antibody conjugated to a diphtheria toxin, has been approved for use in patients with blastic plasmacytoid dendritic cell neoplasm. Multiple clinical trials are investigating the use of various CD123-targeting agents, including chimeric antigen receptor-modified T cells (expressing CD123, monoclonal antibodies, combined CD3-CD123 dual-affinity retargeting antibody therapy, recombinant fusion proteins, and CD123-engager T cells. In this review, we provide an overview of laboratory techniques used to evaluate and monitor CD123 expression, describe the strengths and limitations of detecting this biomarker in guiding therapy decisions, and provide an overview of the pharmacologic principles and strategies used in CD123-targeted therapies.
Collapse
Affiliation(s)
- Hanadi El Achi
- Department of Pathology and Laboratory Medicine, The University of Texas at Houston, Houston, TX 77030, USA;
| | - Edouard Dupont
- Faculty of Pharmacy of Paris, Paris Descartes University, 75270 Paris, France;
| | - Shilpa Paul
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
41
|
Shuai W, Lin P, Strati P, Patel KP, Routbort MJ, Hu S, Wei P, Khoury JD, You MJ, Loghavi S, Tang Z, Fang H, Thakral B, Medeiros LJ, Wang W. Clinicopathological characterization of chronic lymphocytic leukemia with MYD88 mutations: L265P and non-L265P mutations are associated with different features. Blood Cancer J 2020; 10:86. [PMID: 32848129 PMCID: PMC7450076 DOI: 10.1038/s41408-020-00351-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
MYD88 mutations in chronic lymphocytic leukemia (CLL) are not well characterized. Earlier reports yielded conflicting results in terms of clinicopathologic presentation and prognostic impact of MYD88 mutations in CLL patients. In addition, the morphological and immunophenotypic features of CLL cases carrying MYD88 mutations have not been explored. Finally, the clinical or biologic implications of the canonical L265P MYD88 mutation vs. mutations in other sites of MYD88 within the context of CLL are also unknown. In this study, a cohort of 1779 CLL patients underwent mutational analysis, and 56 (3.1%) cases were found to have MYD88 mutations, including 38 with L265P mutations (designated here as group A) and 18 with non-L265P mutations (group B). Cases with wild type MYD88 were included as controls. There was no morphological difference in cases with and without MYD88 mutations. Immunophenotypically, cases with mutated MYD88 (both groups A and B) more frequently had an atypical immunophenotype when compared to wild type cases. Group A patients were younger and were associated with variable favorable prognostic factors, including less elevated β2-microglobulin level, negative CD38 and ZAP70, higher frequency of mutated IGHV and isolated del(13q14.3), and lower frequency of del(11q22.3) and mutations of NOTCH1 and SF3B1. In contrast, group B patients were more similar to CLL patients with wild type MYD88. There was no difference in time to first treatment when comparing MYD88-mutated vs. wild type CLL patients before and after stratification according to IGHV mutation status. In summary, MYD88 mutations are uncommon in CLL and cases with L265P mutation have distinctive clinical, immunophenotypic, cytogenetic, and molecular features. There is no significant impact of MYD88 mutations on time to first treatment in CLL.
Collapse
Affiliation(s)
- Wen Shuai
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei Lin
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paolo Strati
- Departments of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keyur P Patel
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark J Routbort
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shimin Hu
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peng Wei
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - M James You
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanam Loghavi
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhenya Tang
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Fang
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Beenu Thakral
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - L Jeffrey Medeiros
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wang
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Variable Expression of Notch1 and Pax5 in Classical Hodgkin Lymphoma and Infection with Epstein-Barr in Pediatric Patients. Microorganisms 2020; 8:microorganisms8060958. [PMID: 32604737 PMCID: PMC7356576 DOI: 10.3390/microorganisms8060958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022] Open
Abstract
NOTCH1 and PAX5 participate in the proliferation and differentiation of B and T lymphocytes. Their expression can be modified by activation of NOTCH1, induced by the Epstein–Barr (EBV) viral proteins identified as LMP1 and LMP2. To identify whether PAX5, NOTCH1, and EBV latency genes participate in the oncogenic process of pediatric patients with classical Hodgkin lymphoma (cHL), the present study aimed to identify the variable expression of NOTCH1 among disease subtypes and to assess its effect on PAX5 expression. A total of 41 paraffin-embedded tissues from Mexican pediatric patients with cHL were analyzed. The expression of CD30, CD20, NOTCH1, PAX5, and LMP1 was evaluated by immunohistochemistry and immunofluorescence. EBV detection was performed by in situ hybridization. Out of all cases, 78% (32/41) of the cHL cases were EBV positive. NOTCH1 expression was detected in 78.1% (25/32) of EBV-positive cases, nodular sclerosis being the most frequent subtype (11/25, 44%). In cases where the expression of both genes was identified, double immunofluorescence assays were conducted, finding no colocalization. We found that Reed–Sternberg cells had aberrant expression compared to their cells of origin (B lymphocytes) due to the molecular mechanisms involved in the loss of expression of PAX5 and that the identification of NOTCH1 could be considered as a candidate diagnostic/prognostic marker and a therapeutic target in pediatric cHL.
Collapse
|