1
|
Zanuzzi MG, Jeong J, DaCosta DR, Park J. Sex differences in sympathetic activity and pulse wave velocity in adults with chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F661-F668. [PMID: 38385174 PMCID: PMC11208017 DOI: 10.1152/ajprenal.00308.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by sympathetic nervous system (SNS) overactivity that contributes to increased vascular stiffness and cardiovascular risk. Although it is well established that SNS activity and vascular stiffness are substantially elevated in CKD, whether sex differences in autonomic and vascular function exist in CKD remains unknown. We tested the hypothesis that compared with females, males with CKD have higher baseline sympathetic activity that is related to increased arterial stiffness. One hundred twenty-nine participants (96 males and 33 females) with CKD stages III and IV were recruited and enrolled. During two separate study visits, vascular stiffness was assessed by measuring carotid-to-femoral pulse wave velocity (cfPWV), and resting muscle sympathetic nerve activity (MSNA) was measured by microneurography. Males with CKD had higher resting MSNA compared with females with CKD (68 ± 16 vs. 55 ± 14 bursts/100 heart beats, P = 0.005), whereas there was no difference in cfPWV between the groups (P = 0.248). Resting MSNA was not associated with cfPWV in both males and females. In conclusion, males with CKD have higher resting sympathetic activity compared with females with CKD. However, there was no difference in vascular stiffness between the sexes. There was no correlation between resting MSNA and cfPWV, suggesting that non-neural mechanisms may play a greater role in the progression of vascular stiffness in CKD, particularly in females.NEW & NOTEWORTHY Males with chronic kidney disease (CKD) have higher resting muscle sympathetic nerve activity (MSNA) compared with females. There was no correlation between MSNA and carotid-to-femoral pulse wave velocity (cfPWV), suggesting that non-neural mechanisms may play a greater role in the progression of vascular stiffness in CKD. Sex differences in SNS activity may play a mechanistic role in observations from epidemiological studies suggesting greater cardiovascular risk in males compared with females with CKD.
Collapse
Affiliation(s)
- Matias G Zanuzzi
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jinhee Jeong
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Dana R DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Veterans Affairs Health Care System, Research Service Line, Decatur, Georgia, United States
| |
Collapse
|
2
|
Takeshita Y, Nomura C, Murai H, Mukai Y, Hirai T, Hamaoka T, Tokuno S, Tanaka T, Goto H, Nakano Y, Usui S, Nakajima K, Takamura M, Takamura T. Study Protocol for the Pleiotropic Effects of Sodium-Glucose Cotransporter 2 Inhibitor on Organ-Specific Sympathetic Nerve Activity and Insulin Sensitivity in Participants with Type 2 Diabetes. Diabetes Ther 2024; 15:269-280. [PMID: 37883004 PMCID: PMC10786788 DOI: 10.1007/s13300-023-01497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Hyperinsulinemia and hyperglycemia are associated with exaggerated systemic sympathetic nerve activity (SNA) in patients with type 2 diabetes. Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower insulin levels, whereas sulfonylureas increase insulin levels. We will test whether these two classes of antidiabetic agents have different effects on SNA. METHODS The present study is an ongoing, 24-week, one-center (only Kanazawa University Hospital), open-label, randomized, parallel trial (jRCTs 041200035). Participants with type 2 diabetes with multiple atherosclerosis risk factors are randomly assigned in a 1:1 manner to receive 2.5 mg luseogliflozin or 0.5 mg glimepiride once daily. The sample size was calculated to be 14 in each group, with a significance level of 0.05 and a power of 0.80. The design required 40 evaluable study participants. Our primary endpoint will be the change in muscle SNA (MSNA). The secondary endpoints included organ-specific insulin sensitivity measured by a hyperinsulinemic-euglycemic clamp study using an artificial pancreas combined with a stable isotope-labeled glucose infusion, bioelectrical impedance analysis, and organ-specific (cardiac, renal, and hepatic) 123I-meta-iodobenzylguanidine (MIBG) innervation imaging. PLANNED OUTCOMES Study recruitment started in April 2020 and will end in June 2024, with 40 participants randomized into the two groups. The treatment follow-up of the participants is currently ongoing and is due to finish by March 2025. TRIAL REGISTRATION The study protocol has been approved by the Certified Review Board, Kanazawa University, Ishikawa, Japan, in accordance with the guidelines stipulated in the Declaration of Helsinki (CRB4180005, 2019-001). This trial is registered with the Japan Registry of Clinical Trials, jRCTs 041200035.
Collapse
Affiliation(s)
- Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Chiaki Nomura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hisayoshi Murai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yusuke Mukai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tadayuki Hirai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takuto Hamaoka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Shota Tokuno
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takeo Tanaka
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
- Department of Comprehensive Metabology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
3
|
Grassi G. Sympathetic modulation as a goal of antihypertensive treatment: from drugs to devices. J Hypertens 2023; 41:1688-1695. [PMID: 37602470 PMCID: PMC10552843 DOI: 10.1097/hjh.0000000000003538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
The present study aims to examine the effects of nonpharmacological, pharmacological and devices-based treatment on hypertension-related sympathetic overactivity. This will be done by analyzing the results of different published studies, in which sympathetic activity has been assessed via indirect or direct techniques. After examining the rationale for sympathomodulatory interventions in antihypertensive treatment, the study will discuss the methodological intrinsic limitations of the studies aimed at assessing different therapeutic interventions. The core of the study will be then focused on the effects of nonpharmacological (dietary restriction of sodium intake, physical exercise training, weight reduction), pharmacological (monotherapy, combination drug treatment, new drugs such as sodium glucose co-transport protein-2 inhibitors and angiotensin receptor neprilysin inhibitors), as well as devices-based interventions (renal sympathetic nerves ablation and carotid baroreceptor activation therapy) on the hypertension-related sympathetic overdrive. Finally, the areas worthy of future research as well as the debated issues in the field will be highlighted.
Collapse
Affiliation(s)
- Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Grassi G, Dell'Oro R, Quarti-Trevano F, Vanoli J, Oparil S. Sympathetic Neural Mechanisms in Hypertension: Recent Insights. Curr Hypertens Rep 2023; 25:263-270. [PMID: 37450271 PMCID: PMC10505104 DOI: 10.1007/s11906-023-01254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE OF REVIEW To examine published and unpublished data documenting the role of sympathetic neural factors in the pathogenesis of different hypertensive phenotypes. These phenotypes relate to attended or unattended blood pressure measurements, to nighttime blood pressure profile alterations, and to resistant, pseudoresistant, and refractory hypertension. Results of original clinical studies as well as of recent meta-analyses based on the behavior of different sympathetic biomarkers in various hypertensive forms will be also discussed. RECENT FINDINGS Studies performed in the past decade have shown that office blood pressure measurements, including in recent years those characterizing unattended or attended blood pressure assessment, are associated with profound changes in the behavior of different sympathetic biomarkers. This is the case for the clinical hypertensive phenotypes characterized by alterations in the nocturnal blood pressure profile and by sleep duration abnormalities. This is also the case for the clinical conditions defined as resistant, refractory, and pseudoresistant hypertension. Data reviewed in the present paper highlight the relevance of sympathetic neural factors in the development and progression of different clinical hypertensive phenotypes. This suggests that a common hallmark of the majority of the essential hypertensive states detectable in current clinical practice is represented by the alteration in the sympathetic blood pressure control.
Collapse
Affiliation(s)
- Guido Grassi
- Department of Medicine and Surgery, Clinica Medica, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Milan, Italy.
| | - Raffaella Dell'Oro
- Department of Medicine and Surgery, Clinica Medica, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Milan, Italy
| | - Fosca Quarti-Trevano
- Department of Medicine and Surgery, Clinica Medica, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Milan, Italy
| | - Jennifer Vanoli
- Department of Medicine and Surgery, Clinica Medica, University of Milano-Bicocca, Via Pergolesi 33, 20052, Monza, Milan, Italy
| | - Suzanne Oparil
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
5
|
Sheng ZF, Zhang H, Phaup JG, Zheng P, Kang X, Liu Z, Chang HM, Yeh ETH, Johnson AK, Pan HL, Li DP. Corticotropin-releasing hormone neurons in the central nucleus of amygdala are required for chronic stress-induced hypertension. Cardiovasc Res 2023; 119:1751-1762. [PMID: 37041718 PMCID: PMC10325697 DOI: 10.1093/cvr/cvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/30/2022] [Accepted: 04/08/2023] [Indexed: 04/13/2023] Open
Abstract
AIMS Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.
Collapse
Affiliation(s)
- Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Jeffery G Phaup
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - PeiRu Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, G60 Psychological and Brain Sciences Building, Iowa City, IA 52242, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
6
|
Garcia RG, Staley R, Aroner S, Stowell J, Sclocco R, Napadow V, Barbieri R, Goldstein JM. Optimization of respiratory-gated auricular vagus afferent nerve stimulation for the modulation of blood pressure in hypertension. Front Neurosci 2022; 16:1038339. [PMID: 36570845 PMCID: PMC9783922 DOI: 10.3389/fnins.2022.1038339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background The objective of this pilot study was to identify frequency-dependent effects of respiratory-gated auricular vagus afferent nerve stimulation (RAVANS) on the regulation of blood pressure and heart rate variability in hypertensive subjects and examine potential differential effects by sex/gender or race. Methods Twenty hypertensive subjects (54.55 ± 6.23 years of age; 12 females and 8 males) were included in a within-person experimental design and underwent five stimulation sessions where they received RAVANS at different frequencies (i.e., 2 Hz, 10 Hz, 25 Hz, 100 Hz, or sham stimulation) in a randomized order. EKG and continuous blood pressure signals were collected during a 10-min baseline, 30-min stimulation, and 10-min post-stimulation periods. Generalized estimating equations (GEE) adjusted for baseline measures were used to evaluate frequency-dependent effects of RAVANS on heart rate, high frequency power, and blood pressure measures, including analyses stratified by sex and race. Results Administration of RAVANS at 100 Hz had significant overall effects on the reduction of heart rate (β = -2.03, p = 0.002). It was also associated with a significant reduction of diastolic (β = -1.90, p = 0.01) and mean arterial blood pressure (β = -2.23, p = 0.002) in Black hypertensive participants and heart rate in female subjects (β = -2.83, p = 0.01) during the post-stimulation period when compared to sham. Conclusion Respiratory-gated auricular vagus afferent nerve stimulation exhibits frequency-dependent rapid effects on the modulation of heart rate and blood pressure in hypertensive patients that may further differ by race and sex. Our findings highlight the need for the development of optimized stimulation protocols that achieve the greatest effects on the modulation of physiological and clinical outcomes in this population.
Collapse
Affiliation(s)
- Ronald G. Garcia
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| | - Rachel Staley
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Aroner
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jessica Stowell
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Scott Schoen and Nancy Adams Discovery Center for Recovery from Chronic Pain, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
- Department of Gastroenterology and Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vitaly Napadow
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Scott Schoen and Nancy Adams Discovery Center for Recovery from Chronic Pain, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Riccardo Barbieri
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jill M. Goldstein
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Walther LM, von Känel R, Zuccarella-Hackl C, Wirtz PH. Hyperreactivity of Salivary Alpha-Amylase to Acute Psychosocial Stress and Norepinephrine Infusion in Essential Hypertension. Biomedicines 2022; 10:1762. [PMID: 35885066 PMCID: PMC9312828 DOI: 10.3390/biomedicines10071762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
It is unknown whether the observed general physiological hyperreactivity to acute psychosocial stress in essential hypertension also extends to salivary alpha-amylase (sAA), a surrogate sympathetic nervous system marker. Here, we investigated sAA reactivity to acute psychosocial stress in essential hypertensive males (HT) as compared to normotensive controls (NT). To shed light on underlying mechanisms, we moreover tested for sAA reactivity following a standardized norepinephrine (NE) infusion. We hypothesized that both acute psychosocial stress and an NE infusion of similar duration would lead to greater sAA reactivity in HT than in NT. In the stress study, we examined sAA reactivity to 15 min of acute psychosocial stress induced by the Trier Social Stress Test (TSST) in 19 HT and 23 NT up to 40 min after stress. In the infusion study, 20 HT and 22 NT received a standardized NE infusion (5 μg/mL/min) over 15 min mimicking NE release in reaction to acute psychosocial stress. HT exhibited greater sAA reactivity to the TSST as compared to NT (p = 0.049, ηp2 = 0.08, f = 0.29). In reaction to the standardized NE infusion, HT showed higher sAA reactivity as compared to NT (p = 0.033, ηp2 = 1.00, f = 0.33). Our findings suggest stress-induced sAA hyperreactivity in essential hypertension that seems to be at least in part mediated by a higher reactivity to a standardized amount of NE in HT. With respect to clinical implications, sAA stress reactivity may serve as a noninvasive marker indicative of early cardiovascular risk.
Collapse
Affiliation(s)
- Lisa-Marie Walther
- Biological Work and Health Psychology, Department of Psychology, University of Konstanz, 78464 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (R.v.K.); (C.Z.-H.)
| | - Claudia Zuccarella-Hackl
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (R.v.K.); (C.Z.-H.)
| | - Petra H. Wirtz
- Biological Work and Health Psychology, Department of Psychology, University of Konstanz, 78464 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
8
|
Bernak-Oliveira Â, Guizoni DM, Chiavegatto S, Davel AP, Rossoni LV. The protective role of neuronal nitric oxide synthase in endothelial vasodilation in chronic β-adrenoceptor overstimulation. Life Sci 2021; 285:119939. [PMID: 34506836 DOI: 10.1016/j.lfs.2021.119939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
AIMS Nitric oxide synthases (NOSs) are key enzymes regulating vascular function. Previously, we reported that β-adrenergic (β-AR) overstimulation, a common feature of cardiovascular diseases, did not impair endothelium-dependent vasodilation, although it resulted in endothelial NOS (eNOS) uncoupling and reduced NO bioavailability. In addition to NO, neuronal NOS (nNOS) produces H2O2, which contributes to vasodilation. However, there is limited information regarding vascular β-AR signaling and nNOS. In the present study, we assessed the possible role of nNOS-derived H2O2 and caveolins on endothelial vasodilation function following β-AR overstimulation. MAIN METHODS Male C57BL/6 wild-type and nNOS knockout mice (nNOS-/-) were treated with the β-AR agonist isoproterenol (ISO, 15 mg·kg-1·day-1, s.c.) or vehicle (VHE) for seven days. Relaxation responses of aortic rings were evaluated using wire myograph and H2O2 by Amplex Red. KEY FINDINGS Acetylcholine- or calcium ionophore A23187-induced endothelium-dependent relaxation was similar in aortic rings from VHE and ISO. However, this relaxation was significantly reduced in aortas from ISO compared to VHE when (1) caveolae were disrupted, (2) nNOS was pharmacologically inhibited or genetically suppressed and (3) H2O2 was scavenged. NOS-derived H2O2 production was higher in the aortas of ISO mice than in those of VHE mice. Aortas from ISO-treated mice showed increased expression of caveolin-1, nNOS and catalase, while caveolin-3 expression did not change. SIGNIFICANCE The results suggest a role of caveolin-1 and the nNOS/H2O2 vasodilatory pathway in endothelium-dependent relaxation following β-AR overstimulation and reinforce the protective role of nNOS in cardiovascular diseases associated with high adrenergic tone.
Collapse
Affiliation(s)
- Ângelo Bernak-Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil
| | - Daniele M Guizoni
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Silvana Chiavegatto
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil; Department of Psychiatry, Institute of Psychiatry (IPq), University of Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil.
| |
Collapse
|
9
|
Hilderman M, Bruchfeld A. The cholinergic anti-inflammatory pathway in chronic kidney disease-review and vagus nerve stimulation clinical pilot study. Nephrol Dial Transplant 2021; 35:1840-1852. [PMID: 33151338 PMCID: PMC7643692 DOI: 10.1093/ndt/gfaa200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation and autonomic dysfunction are common findings in chronic and end-stage kidney disease and contribute to a markedly increased risk of mortality in this patient population. The cholinergic anti-inflammatory pathway (CAP) is a vagal neuro-immune circuit that upholds the homoeostatic balance of inflammatory activity in response to cell injury and pathogens. CAP models have been examined in preclinical studies to investigate its significance in a range of clinical inflammatory conditions and diseases. More recently, cervical vagus nerve stimulation (VNS) implants have been shown to be of potential benefit for patients with chronic autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease. We have previously shown that dialysis patients have a functional CAP ex vivo. Here we review the field and the potential role of the CAP in acute kidney injury and chronic kidney disease (CKD) as well as in hypertension. We also present a VNS pilot study in haemodialysis patients. Controlling inflammation by neuroimmune modulation may lead to new therapeutic modalities for improved treatment, outcome, prognosis and quality of life for patients with CKD.
Collapse
Affiliation(s)
- Marie Hilderman
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Abstract
The term uraemic cardiomyopathy refers to the cardiac abnormalities that are seen in patients with chronic kidney disease (CKD). Historically, this term was used to describe a severe cardiomyopathy that was associated with end-stage renal disease and characterized by severe functional abnormalities that could be reversed following renal transplantation. In a modern context, uraemic cardiomyopathy describes the clinical phenotype of cardiac disease that accompanies CKD and is perhaps best characterized as diastolic dysfunction seen in conjunction with left ventricular hypertrophy and fibrosis. A multitude of factors may contribute to the pathogenesis of uraemic cardiomyopathy, and current treatments only modestly improve outcomes. In this Review, we focus on evolving concepts regarding the roles of fibroblast growth factor 23 (FGF23), inflammation and systemic oxidant stress and their interactions with more established mechanisms such as pressure and volume overload resulting from hypertension and anaemia, respectively, activation of the renin-angiotensin and sympathetic nervous systems, activation of the transforming growth factor-β (TGFβ) pathway, abnormal mineral metabolism and increased levels of endogenous cardiotonic steroids.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| |
Collapse
|
11
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
12
|
Li Z, Organ CL, Kang J, Polhemus DJ, Trivedi RK, Sharp TE, Jenkins JS, Tao YX, Xian M, Lefer DJ. Hydrogen Sulfide Attenuates Renin Angiotensin and Aldosterone Pathological Signaling to Preserve Kidney Function and Improve Exercise Tolerance in Heart Failure. ACTA ACUST UNITED AC 2018; 3:796-809. [PMID: 30623139 PMCID: PMC6315048 DOI: 10.1016/j.jacbts.2018.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
Cardioprotective effects of H2S have been well documented. However, the lack of evidence supporting the benefits afforded by delayed H2S therapy warrants further investigation. Using a murine model of transverse aortic constriction-induced heart failure, this study showed that delayed H2S therapy protects multiple organs including the heart, kidney, and blood-vessel; reduces oxidative stress; attenuates renal sympathetic and renin-angiotensin-aldosterone system pathological activation; and ultimately improves exercise capacity. These findings provide further insights into H2S-mediated cardiovascular protection and implicate the benefits of using H2S-based therapies clinically for the treatment of heart failure.
Collapse
Affiliation(s)
- Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Chelsea L. Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jianming Kang
- Department of Chemistry, Washington State University, Pullman, Washington
| | - David J. Polhemus
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Rishi K. Trivedi
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Thomas E. Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jack S. Jenkins
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Ya-xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, Alabama
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington
| | - David J. Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Address for correspondence: Dr. David J. Lefer, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, 533 Bolivar Street, Room 408, New Orleans, Louisiana 70112.
| |
Collapse
|
13
|
Bellinger DL, Lorton D. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs)? Int J Mol Sci 2018; 19:ijms19041188. [PMID: 29652832 PMCID: PMC5979464 DOI: 10.3390/ijms19041188] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University, Kent, OH 44304, USA.
| |
Collapse
|
14
|
Association between exposure to noise and risk of hypertension: a meta-analysis of observational epidemiological studies. J Hypertens 2018; 35:2358-2366. [PMID: 28806352 DOI: 10.1097/hjh.0000000000001504] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE An increasing amount of original studies suggested that exposure to noise could be associated with the risk of hypertension, but the results remain inconsistent and inconclusive. We aimed to synthesize available epidemiological evidence about the relationship between various types of noise and hypertension, and to explore the potential dose-response relationship between them in an up-to-date meta-analysis. METHODS We conducted a literature search of PubMed and Embase from these databases' inception through December 2016 to identify observational epidemiological studies examining the association between noise and risk of hypertension. A random effects model was used to combine the results of included studies. Dose-response meta-analysis was conducted to examine the potential dose-response relationship. RESULTS In total, 32 studies (five cohort studies, one case-control study, and 26 cross-section studies) involving 264 678 participants were eligible for inclusion. Pooled result showed that living or working in environment with noise exposure was significantly associated with increased risk of hypertension (odds ratio 1.62; 95% confidence interval: 1.40-1.88). We found no evidence of a curve linear association between noise and risk of hypertension. A dose-response analysis suggested that, for an increment of per 10 dB(A) of noise, the combined odds ratio of hypertension was 1.06 (95% confidence interval: 1.04-1.08). CONCLUSION Integrated epidemiological evidence supports the hypothesis that exposure to noise may be a risk factor of hypertension, and there is a positive dose-response association between them.
Collapse
|
15
|
Yang T, Zubcevic J. Gut-Brain Axis in Regulation of Blood Pressure. Front Physiol 2017; 8:845. [PMID: 29118721 PMCID: PMC5661004 DOI: 10.3389/fphys.2017.00845] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/10/2017] [Indexed: 01/04/2023] Open
Abstract
Hypertension (HTN) is an escalating health issue worldwide. It is estimated that 1.56 billion people will suffer from high blood pressure (BP) by 2025. Recent studies reported an association between gut dysbiosis and HTN, thus proposing interesting avenues for novel treatments of this condition. The sympathetic nervous system (SNS) and the immune system (IS) play a recognized role in the onset and progression of HTN, while reciprocal communication between gut microbiota and the brain can regulate BP by modulating the interplay between the IS and SNS. This review presents the current state of the science implicating brain-gut connection in HTN, highlighting potential pathways of their interaction in control of BP.
Collapse
Affiliation(s)
| | - Jasenka Zubcevic
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Kaur J, Young BE, Fadel PJ. Sympathetic Overactivity in Chronic Kidney Disease: Consequences and Mechanisms. Int J Mol Sci 2017; 18:ijms18081682. [PMID: 28767097 PMCID: PMC5578072 DOI: 10.3390/ijms18081682] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
The incidence of chronic kidney disease (CKD) is increasing worldwide, with more than 26 million people suffering from CKD in the United States alone. More patients with CKD die of cardiovascular complications than progress to dialysis. Over 80% of CKD patients have hypertension, which is associated with increased risk of cardiovascular morbidity and mortality. Another common, perhaps underappreciated, feature of CKD is an overactive sympathetic nervous system. This elevation in sympathetic nerve activity (SNA) not only contributes to hypertension but also plays a detrimental role in the progression of CKD independent of any increase in blood pressure. Indeed, high SNA is associated with poor prognosis and increased cardiovascular morbidity and mortality independent of its effect on blood pressure. This brief review will discuss some of the consequences of sympathetic overactivity and highlight some of the potential pathways contributing to chronically elevated SNA in CKD. Mechanisms leading to chronic sympathoexcitation in CKD are complex, multifactorial and to date, not completely understood. Identification of the mechanisms and/or signals leading to sympathetic overactivity in CKD are crucial for development of effective therapeutic targets to reduce the increased cardiovascular risk in this patient group.
Collapse
Affiliation(s)
- Jasdeep Kaur
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
17
|
Badrov MB, Lalande S, Olver TD, Suskin N, Shoemaker JK. Effects of aging and coronary artery disease on sympathetic neural recruitment strategies during end-inspiratory and end-expiratory apnea. Am J Physiol Heart Circ Physiol 2016; 311:H1040-H1050. [PMID: 27542408 DOI: 10.1152/ajpheart.00334.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022]
Abstract
In response to acute physiological stress, the sympathetic nervous system modifies neural outflow through increased firing frequency of lower-threshold axons, recruitment of latent subpopulations of higher-threshold axons, and/or acute modifications of synaptic delays. Aging and coronary artery disease (CAD) often modify efferent muscle sympathetic nerve activity (MSNA). Therefore, we investigated whether CAD (n = 14; 61 ± 10 yr) and/or healthy aging without CAD (OH; n = 14; 59 ± 9 yr) modified these recruitment strategies that normally are observed in young healthy (YH; n = 14; 25 ± 3 yr) individuals. MSNA (microneurography) was measured at baseline and during maximal voluntary end-inspiratory (EI) and end-expiratory (EE) apneas. Action potential (AP) patterns were studied using a novel AP analysis technique. AP frequency increased in all groups during both EI- and EE-apnea (all P < 0.05). The mean AP content per integrated burst increased during EI- and EE-apnea in YH (EI: Δ6 ± 4 APs/burst; EE: Δ10 ± 6 APs/burst; both P < 0.01) and OH (EI: Δ3 ± 3 APs/burst; EE: Δ4 ± 5 APs/burst; both P < 0.01), but not in CAD (EI: Δ1 ± 3 APs/burst; EE: Δ2 ± 3 APs/burst; both P = NS). When APs were binned into "clusters" according to peak-to-peak amplitude, total clusters increased during EI- and EE-apnea in YH (EI: Δ5 ± 2; EE: Δ6 ± 4; both P < 0.01), during EI-apnea only in OH (EI: Δ1 ± 2; P < 0.01; EE: Δ1 ± 2; P = NS), and neither apnea in CAD (EI: Δ -2 ± 2; EE: Δ -1 ± 2; both P = NS). In all groups, the AP cluster size-latency profile was shifted downwards for every corresponding cluster during EI- and EE-apnea (all P < 0.01). As such, inherent dysregulation exists within the central features of apnea-related sympathetic outflow in aging and CAD.
Collapse
Affiliation(s)
- Mark B Badrov
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Sophie Lalande
- School of Kinesiology, Western University, London, Ontario, Canada; Department of Kinesiology, University of Toledo, Toledo, Ohio
| | - T Dylan Olver
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Neville Suskin
- Cardiac Rehabilitation and Secondary Prevention Program of St. Joseph's Health Care London, London, Ontario, Canada; Department of Medicine (Cardiology) and Program of Experimental Medicine, Western University, London, Ontario, Canada; and
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada; Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Hao J, McAvoy J, Wickberg L, Kerrigan C, Kreiger L, Sikavi C, Swift D, Frenette C, Carney J, Fung MK. Is blood donation an opportunity for hypertension awareness? Transfus Med 2016; 26:89-98. [DOI: 10.1111/tme.12286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/14/2015] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Affiliation(s)
- J. Hao
- College of Medicine; University of Vermont
| | - J. McAvoy
- College of Medicine; University of Vermont
| | | | | | - L. Kreiger
- College of Medicine; University of Vermont
| | - C. Sikavi
- College of Medicine; University of Vermont
| | - D. Swift
- College of Medicine; University of Vermont
| | - C. Frenette
- Northern New England Region; American Red Cross Blood Services
| | - J. Carney
- College of Medicine; University of Vermont
| | - M. K. Fung
- College of Medicine; University of Vermont
| |
Collapse
|
19
|
Lataro RM, Silva CAA, Tefé-Silva C, Prado CM, Salgado HC. Acetylcholinesterase Inhibition Attenuates the Development of Hypertension and Inflammation in Spontaneously Hypertensive Rats. Am J Hypertens 2015; 28:1201-8. [PMID: 25758777 DOI: 10.1093/ajh/hpv017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/22/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It is hypothesized that chronic increase of availability of acetylcholine, resulting from the effect of antiacetylcholinesterases, may prevent autonomic imbalance and reduce inflammation yielding benefic effects for cardiovascular disorders in hypertension. The effect of long-term administration of antiacetylcholinesterase agents with central and/or peripheral action, i.e., donepezil and pyridostigmine, were investigated on arterial pressure (AP), sympathovagal balance, plasma cytokine levels, and cardiac remodeling in spontaneously hypertensive rats (SHR). METHODS Chronic treatment with donepezil or pyridostigmine started before the onset of hypertension. AP was measured by plethysmography every 4 weeks. At the end of 16 weeks of treatment, methylatropine was used to evaluate the cardiac vagal tone; AP and pulse interval (PI) variability were also evaluated followed by plasma and heart collection for analysis. RESULTS Pyridostigmine, which does not cross the blood-brain barrier, increased cardiac vagal tone, and reduced cardiomyocyte diameter and collagen density, but did not affect the AP and plasma cytokine levels. Donepezil, which crosses the blood-brain barrier, attenuated the development of hypertension, increased cardiac vagal tone, and improved AP and PI variability. Likewise, donepezil reduced the plasma levels of tumor necrosis factor-α, interleukin 6, and interferon γ, besides reducing cardiomyocyte diameter and collagen density. CONCLUSIONS Donepezil attenuated the development of hypertension in SHR probably involving antiinflammatory effects, indicating that acetylcholinesterase inhibition yields benefic effects for antihypertensive therapy.
Collapse
Affiliation(s)
- Renata M Lataro
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A A Silva
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiane Tefé-Silva
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cibele M Prado
- Department of Pathology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helio C Salgado
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil;
| |
Collapse
|
20
|
Persistent Outpatient Hypertension Is Independently Associated with Spinal Cord Dysfunction and Imaging Characteristics of Spinal Cord Damage among Patients with Cervical Spondylosis. World Neurosurg 2015; 84:351-7. [DOI: 10.1016/j.wneu.2015.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 01/08/2023]
|
21
|
The role of the kidney and the sympathetic nervous system in hypertension. Pediatr Nephrol 2015; 30:549-60. [PMID: 24609827 DOI: 10.1007/s00467-014-2789-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 12/17/2022]
Abstract
Nearly one-third of the world's population has hypertension. The human and societal impact of hypertension is enormous. Primary hypertension accounts for 95 % of cases of hypertension in adults. The pathogenesis of primary hypertension is complex. The kidney and the sympathetic nervous system play important roles in the development and maintenance of hypertension. This review discusses their respective roles, the interaction between the two, implications of sympathetic overactivity in kidney disease and therapeutic interventions that have been developed on the basis of this knowledge, especially modulation of the sympathetic nervous system.
Collapse
|
22
|
Feber J, Ruzicka M, Geier P, Litwin M. Autonomic nervous system dysregulation in pediatric hypertension. Curr Hypertens Rep 2014; 16:426. [PMID: 24633841 DOI: 10.1007/s11906-014-0426-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Historically, primary hypertension (HTN) has been prevalent typically in adults. Recent data however, suggests an increasing number of children diagnosed with primary HTN, mainly in the setting of obesity. One of the factors considered in the etiology of HTN is the autonomous nervous system, namely its dysregulation. In the past, the sympathetic nervous system (SNS) was regarded as a system engaged mostly in buffering major acute changes in blood pressure (BP), in response to physical and emotional stressors. Recent evidence suggests that the SNS plays a much broader role in the regulation of BP, including the development and maintenance of sustained HTN by a chronically elevated central sympathetic tone in adults and children with central/visceral obesity. Consequently, attempts have been made to reduce the SNS hyperactivity, in order to intervene early in the course of the disease and prevent HTN-related complications later in life.
Collapse
Affiliation(s)
- Janusz Feber
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, 401 Smyth Road, Ottawa, Ontario, K1H 8 L1, Canada,
| | | | | | | |
Collapse
|
23
|
Wallbach M, Lehnig LY, Schroer C, Hasenfuss G, Müller GA, Wachter R, Koziolek MJ. Impact of baroreflex activation therapy on renal function--a pilot study. Am J Nephrol 2014; 40:371-80. [PMID: 25358549 DOI: 10.1159/000368723] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/27/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Resistant hypertension and chronic kidney disease (CKD) are interlinked via sympathetic overdrive. Baroreflex activation therapy (BAT) has been shown to chronically reduce blood pressure (BP) in patients with resistant hypertension. The effect of BAT on renal function in CKD patients with resistant hypertension has not been reported. The aim of this study was to investigate the effect of sympathetic inhibition on renal function in CKD patients. METHODS 23 CKD patients with resistant hypertension were prospectively treated with BAT. Analyses were performed before and 6 months after the start of BAT. The renal function was analyzed by creatinine, cystatin C, glomerular filtration rate (GFR), renin, aldosterone, fractioned and 24-hour sodium excretion and analyses of urine marker proteins. The purpose of the control group was to investigate the influence of treating patients in a center for hypertension and regression to the mean on investigated variables. RESULTS The office mean BP decreased from 116.9 ± 20.9 mm Hg to 104.2 ± 22.2 mm Hg (p < 0.01), while the number of prescribed antihypertensive classes decreased from 6.6 ± 1.6 to 6.1 ± 1.7 (p = 0.02). Proteinuria and albuminuria decreased from a median of 283.9 and 47.7 to 136.5 (p = 0.01) and 45.0 mg/g creatinine (p = 0.01) with pronounced effects in higher CKD stage III + IV compared to I + II (p < 0.01). CKD-EPI cystatin C equation improved from 53.6 ± 22.7 to 60.4 ± 26.1 ml/min (p = 0.02). While creatinine and GFR were impaired after a period of 6 months, no changes of proteinuria, albuminuria, or BP were obtained in control patients. CONCLUSION The data of this prospective trial demonstrate potential nephroprotective effects of BAT in therapy-resistant hypertension in CKD patients by a reduction of BP, proteinuria and moreover, a stabilization of estimated GFR.
Collapse
Affiliation(s)
- Manuel Wallbach
- Department of Nephrology and Rheumatology, Georg-August-University Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Verloop WL, Vink EE, Spiering W, Blankestijn PJ, Doevendans PA, Bots ML, Vonken EJ, Voskuil M, Leiner T. Effects of renal denervation on end organ damage in hypertensive patients. Eur J Prev Cardiol 2014; 22:558-67. [PMID: 25326543 DOI: 10.1177/2047487314556003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/27/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Renal denervation (RDN) is believed to reduce sympathetic nerve activity and is a potential treatment for resistant hypertension. The present study investigated the effects of RDN on end organ damage (EOD). DESIGN The present study was a prospective cohort study (registered as NCT01427049). METHODS Uncontrolled hypertensive patients underwent a work-up prior to and one year after RDN. Cardiac magnetic resonance (CMR) imaging was used to determine left ventricular (LV)-mass; pulse wave analysis and pulse wave velocity (PWV) were used for evaluation of central blood pressure (BP) and arterial stiffness and 24-hour urine was collected for assessment of urinary albumin excretion. The 24-hour ambulatory BP measurement (ABPM) was used to evaluate the effect of RDN on BP. RESULTS Fifty-four patients gave informed consent for study participation. Mean age was 58 ± 10 years, 50% were male. One year after RDN, mean ABPM decreased by 7 ± 18/5 ± 11 mm Hg (p = 0.01/p < 0.01). In the patients followed-up in a standardised fashion ABPM decreased by 5 ± 18/4 ± 12 mm Hg (n = 34; p = 0.11/p = 0.09). Mean body surface area indexed LV-mass decreased by 3.3 ± 11.5 g/m(2) (corresponding to a 3 ± 11% reduction; p = 0.09). PWV increased by 2.9 (-2.2 to +6.1) m/s (p = 0.04). Augmentation index corrected for 75 beats per min did not change (median increase 3.0 (-7 to +17) mm Hg; p = 0.89). Urinary albumin excretion did not change during follow-up (mean decrease 10 ± 117 mg/24 hour; p = 0.61). CONCLUSION In the current study, we observed a modest effect from renal denervation. Moreover, RDN did not result in a statistical significant effect on end organ damage 12 months after treatment.
Collapse
Affiliation(s)
- Willemien L Verloop
- Department of Cardiology, University Medical Center, Utrecht, the Netherlands
| | - Eva E Vink
- Department of Nephrology, University Medical Center, Utrecht, the Netherlands
| | - Wilko Spiering
- Department of Vascular Medicine, University Medical Center, Utrecht, the Netherlands
| | - Peter J Blankestijn
- Department of Nephrology, University Medical Center, Utrecht, the Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center, Utrecht, the Netherlands
| | - Michiel L Bots
- The Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, the Netherlands
| | - Evert-jan Vonken
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Center, Utrecht, the Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| |
Collapse
|
25
|
Guedes-Martins L, Graça H, Saraiva JP, Guedes L, Gaio R, Cerdeira AS, Macedo F, Almeida H. The effects of spinal anaesthesia for elective caesarean section on uterine and umbilical arterial pulsatility indexes in normotensive and chronic hypertensive pregnant women: a prospective, longitudinal study. BMC Pregnancy Childbirth 2014; 14:291. [PMID: 25169212 PMCID: PMC4158071 DOI: 10.1186/1471-2393-14-291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/24/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite the known effects of neuraxial blockade on major vessel function and the rapid decrease in uterine vascular impedance, it is unclear how the blockade affects the utero-placental circulation in the near-term. We hypothesize that among women with chronic hypertension, a loss of sympathetic tonus consequent to spinal block may cause significant changes in the utero-placental haemodynamics than the changes typical in normal pregnant women. Therefore, the main study objective was to analyse the effect of spinal anaesthesia for caesarean section on uterine and umbilical arterial impedance in pregnant women at term diagnosed with stage-1 chronic hypertension. METHODS A prospective, longitudinal study was performed in singleton pregnant women (203 low-risk and 33 with hypertension) scheduled to undergo elective caesarean section. The mean arterial blood pressure and pulsatility indexes for the uterine and umbilical arteries were recorded before and after spinal anaesthesia was performed using 8-9 mg hyperbaric bupivacaine (5 mg/mL) and 2-2.5 μg sufentanil (5 μg/mL). Multiple linear regression models with errors capable of correlation or with unequal variances were fitted using the generalized least squares. RESULTS In normotensive women, the mean arterial blood pressure decreased after administering spinal anaesthesia (p < 0.05). The pulsatility index of the uterine and umbilical arteries did not change after spinal anaesthesia. In the hypertensive women, the mean arterial blood pressure (p < 0.05) and uterine artery pulsatility index (p < 0.05) decreased. In both groups, the umbilical artery pulsatility index did not change after spinal anaesthesia. CONCLUSIONS In stage-1 chronic hypertensive pregnant women at term, spinal anaesthesia for caesarean section reduces uterine artery impedance but not umbilical artery impedance.
Collapse
Affiliation(s)
- Luís Guedes-Martins
- Departamento da Mulher e da Medicina Reprodutiva, Centro Hospitalar do Porto EPE, Largo Prof, Abel Salazar, 4099-001 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Ariyanon W, Mao H, Adýbelli Z, Romano S, Rodighiero M, Reimers B, La Vecchia L, Ronco C. Renal denervation: intractable hypertension and beyond. Cardiorenal Med 2014; 4:22-33. [PMID: 24847331 DOI: 10.1159/000357597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/22/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hypertension continues to be a major burden of public health concern despite the recent advances and proven benefit of pharmacological therapy. A certain subset of patients has hypertension resistant to maximal medical therapy and appropriate lifestyle measures. A novel catheter-based technique for renal denervation (RDN) as a new therapeutic avenue has great promise for the treatment of refractory hypertension. SUMMARY This review included the physiology of the renal sympathetic nervous system and the renal nerve anatomy. Furthermore, the RDN procedure, technology systems, and RDN clinical trials as well as findings besides antihypertensive effects were discussed. Findings on safety and efficacy seem to suggest that renal sympathetic denervation could be of therapeutic benefit in refractory hypertensive patients. Despite the fast pace of development in RDN therapies, only initial and very limited clinical data are available. Large gaps in knowledge concerning the long-term effects and consequences of RDN still exist, and solid, randomized data are warranted.
Collapse
Affiliation(s)
- Wassawon Ariyanon
- Department of Nephrology, San Bortolo Hospital, Italy ; International Renal Research Institute Vicenza (IRRIV), Italy ; Cardio-Metabolic Center, BNH Hospital, Bangkok, Thailand
| | - Huijuan Mao
- Department of Nephrology, San Bortolo Hospital, Italy ; International Renal Research Institute Vicenza (IRRIV), Italy ; Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zelal Adýbelli
- Department of Nephrology, San Bortolo Hospital, Italy ; International Renal Research Institute Vicenza (IRRIV), Italy
| | - Silvia Romano
- Department of Cardiology, City Hospital, Milan, Italy
| | - Mariapia Rodighiero
- Department of Nephrology, San Bortolo Hospital, Italy ; International Renal Research Institute Vicenza (IRRIV), Italy
| | | | | | - Claudio Ronco
- Department of Nephrology, San Bortolo Hospital, Italy ; International Renal Research Institute Vicenza (IRRIV), Italy
| |
Collapse
|
28
|
Teixeira FB, Pereira Fernandes LDM, Noronha PAT, dos Santos MAR, Gomes-Leal W, Ferraz Maia CDS, Lima RR. Masticatory deficiency as a risk factor for cognitive dysfunction. Int J Med Sci 2014; 11:209-14. [PMID: 24465167 PMCID: PMC3894406 DOI: 10.7150/ijms.6801] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/25/2013] [Indexed: 11/13/2022] Open
Abstract
Several studies have demonstrated that chewing helps to maintain cognitive functions in brain regions including the hippocampus, a central nervous system (CNS) region vital for memory and learning. Epidemiological studies suggest that masticatory deficiency is associated with development of dementia, which is related to spatial memory deficits especially in older animals. The purpose of this paper is to review recent work on the effects of masticatory impairment on cognitive functions both in experimental animals and humans. We show that several mechanisms may be involved in the cognitive deficits associated with masticatory deficiency. The epidemiological data suggest a positive correlation between masticatory deficit and Alzheimer's disease. It may be concluded that chewing has important implications for the mechanisms underlying certain cognitive abilities.
Collapse
Affiliation(s)
- Francisco Bruno Teixeira
- 1. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Luanna de Melo Pereira Fernandes
- 1. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil; ; 2. Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Patrycy Assis Tavares Noronha
- 3. Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Marcio Antonio Raiol dos Santos
- 1. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Walace Gomes-Leal
- 3. Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Cristiane do Socorro Ferraz Maia
- 2. Laboratory Pharmacology of Inflammation and Behavior, Institute of Health Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| | - Rafael Rodrigues Lima
- 1. Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 66075-900, Belém-Pará, Brazil
| |
Collapse
|
29
|
Mueller PJ, Mischel NA. Selective enhancement of glutamate-mediated pressor responses after GABA(A) receptor blockade in the RVLM of sedentary versus spontaneous wheel running rats. Front Physiol 2012; 3:447. [PMID: 23189062 PMCID: PMC3505845 DOI: 10.3389/fphys.2012.00447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/07/2012] [Indexed: 11/26/2022] Open
Abstract
Overactivity of the sympathetic nervous system (SNS) is a hallmark of many cardiovascular diseases. It is also well-known that physical inactivity independently contributes to cardiovascular diseases, likely in part via increased SNS activity. Recent work from our laboratory has demonstrated increased SNS responses in sedentary animals following either direct activation or disinhibition of the rostral ventrolateral medulla (RVLM), an integral cardiovascular brainstem region. These data led us to hypothesize that the interaction between excitation and inhibition of the RVLM is altered in sedentary versus physically active animals. To test this hypothesis, we recorded mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA) in Inactin anesthetized rats that were housed for 8-12 weeks with or without access to a running wheel. Pressor responses to direct activation of the RVLM with glutamate were similar between groups under intact conditions. However, blockade of γ-aminobutyric acid (GABA)(A) receptors with bicuculline selectively enhanced pressor responses to glutamate in sedentary animals. Interestingly, LSNA responses to glutamate were not enhanced in sedentary versus active animals in the presence or absence of tonic GABAergic tone. These results suggest that sedentary compared to active conditions enhance GABAergic inhibition of glutamate-sensitive neurons in the RVLM that are involved in blood pressure regulation, and by mechanisms that do not involve LSNA. We also speculate that regular physical activity has differential effects on SNS activity to specific vascular beds and may reduce the risk of developing cardiovascular diseases via changes occurring in the RVLM.
Collapse
Affiliation(s)
- Patrick J. Mueller
- Department of Physiology, Wayne State University School of MedicineDetroit, MI, USA
| | | |
Collapse
|
30
|
Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens 2012; 30:2230-9. [DOI: 10.1097/hjh.0b013e32835821e5] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Cardiovascular risk in chronic kidney disease: role of the sympathetic nervous system. Cardiol Res Pract 2012; 2012:319432. [PMID: 22919537 PMCID: PMC3420153 DOI: 10.1155/2012/319432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/24/2012] [Indexed: 02/07/2023] Open
Abstract
Patients with chronic kidney disease are at significantly increased risk for cardiovascular disease and sudden cardiac death. One mechanism underlying increased cardiovascular risk in patients with renal failure includes overactivation of the sympathetic nervous system (SNS). Multiple human and animal studies have shown that central sympathetic outflow is chronically elevated in patients with both end-stage renal disease (ESRD) and chronic kidney disease (CKD). SNS overactivation, in turn, increases the risk of cardiovascular disease and sudden death by increasing arterial blood pressure, arrythmogenicity, left ventricular hypertrophy, and coronary vasoconstriction and contributes to the progression renal disease. This paper will examine the evidence for SNS overactivation in renal failure from both human and experimental studies and discuss mechanisms of SNS overactivity in CKD and therapeutic implications.
Collapse
|
32
|
Chan SHH, Chan JYH. Brain stem oxidative stress and its associated signaling in the regulation of sympathetic vasomotor tone. J Appl Physiol (1985) 2012; 113:1921-8. [PMID: 22837172 DOI: 10.1152/japplphysiol.00610.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
There is now compelling evidence from studies in humans and animals that overexcitation of the sympathetic nervous system plays an important role in the pathogenesis of cardiovascular diseases. An excellent example is neurogenic hypertension, in which central sympathetic overactivation is involved in the development, staging, and progression of the disease, and one of the underlying mechanisms involves oxidative stress in key brain stem sites that are engaged in the regulation of sympathetic vasomotor tone. Using the rostral ventrolateral medulla (RVLM) and nucleus tractus solitarii (NTS) as two illustrative brain stem neural substrates, this article provides an overview of the impact of reactive oxygen species and antioxidants on RVLM and NTS in the pathogenesis of neurogenic hypertension. This is followed by a discussion of the redox-sensitive signaling pathways, including several kinases, ion channels, and transcription factors that underpin the augmentation in sympathetic vasomotor tone. In addition, the emerging view that brain stem oxidative stress is also causally related to a reduction in sympathetic vasomotor tone and hypotension during brain stem death, methamphetamine intoxication, and temporal lobe status epilepticus will be presented, along with the causal contribution of the oxidant peroxynitrite formed by a reaction between nitric oxide synthase II (NOS II)-derived nitric oxide and superoxide. Also discussed as a reasonable future research direction is dissection of the cellular mechanisms and signaling cascades that may underlie the contributory role of nitric oxide generated by different NOS isoforms in the differential effects of oxidative stress in the RVLM or NTS on sympathetic vasomotor tone.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
33
|
Jordan J, Grassi G. Sometimes you simply have to wait: sympathetic activity in women with hypertensive pregnancies. J Hypertens 2012; 30:1111-3. [PMID: 22573079 DOI: 10.1097/hjh.0b013e328353e104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Kishi T, Hirooka Y, Sunagawa K. Sympathoinhibition caused by orally administered telmisartan through inhibition of the AT1 receptor in the rostral ventrolateral medulla of hypertensive rats. Hypertens Res 2012; 35:940-6. [DOI: 10.1038/hr.2012.63] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Effects of autonomic modulation: more than just blood pressure. J Am Coll Cardiol 2012; 59:910-2. [PMID: 22381426 DOI: 10.1016/j.jacc.2011.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 11/20/2022]
|
36
|
Diagnóstico bioquímico del remodelado estructural del ventrículo izquierdo en la hipertensión arterial refractaria. Med Clin (Barc) 2012; 138:155-6. [DOI: 10.1016/j.medcli.2011.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 11/24/2022]
|