1
|
Yang X, Jin J, Cheng M, Xu J, Bai Y. The role of sacubitril/valsartan in abnormal renal function patients combined with heart failure: a meta-analysis and systematic analysis. Ren Fail 2024; 46:2349135. [PMID: 38869007 PMCID: PMC11177705 DOI: 10.1080/0886022x.2024.2349135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
AIMS This study aimed to investigate the efficacy and safety of sacubitril/valsartan in abnormal renal function (eGFR < 60 ml/min/1.73m2) patients combined with heart failure based on randomized controlled trials (RCTs) and observational studies. METHODS The Embase, PubMed and the Cochrane Library were searched for relevant studies from inception to December 2023. Dichotomous variables were described as event counts with the odds ratio (OR) and 95% confidence interval (CI) values. Continuous variables were expressed as mean standard deviation (SD) with 95% CIs. RESULTS A total of 6 RCTs and 8 observational studies were included, involving 17335 eGFR below 60 ml/min/1.73m2 patients combined with heart failure. In terms of efficacy, we analyzed the incidence of cardiovascular events and found that sacubitril/valsartan significantly reduced the risk of cardiovascular death or heart failure hospitalization in chronic kidney disease (CKD) stages 3-5 patients with heart failure (OR: 0.65, 95%CI: 0.54-0.78). Moreover, sacubitril/valsartan prevented the serum creatinine elevation (OR: 0.81, 95%CI: 0.68-0.95), the eGFR decline (OR: 0.83, 95% CI: 0.73-0.95) and the development of end-stage renal disease in this population (OR:0.73, 95%CI:0.60-0.89). As for safety outcomes, we did not find that the rate of hyperkalemia (OR:1.31, 95%CI:0.79-2.17) and hypotension (OR:1.57, 95%CI:0.94-2.62) were increased in sacubitril/valsartan group among CKD stages 3-5 patients with heart failure. CONCLUSIONS Our meta-analysis proves that sacubitril/valsartan has a favorable effect on cardiac function without obvious risk of adverse events in abnormal renal function patients combined with heart failure, indicating that sacubitril/valsartan has the potential to become perspective treatment for these patients.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Nephrology, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingjing Jin
- Department of Nephrology, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meijuan Cheng
- Department of Nephrology, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinsheng Xu
- Department of Nephrology, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaling Bai
- Department of Nephrology, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Cheng M, Tao X, Wang F, Shen N, Xu Z, Hu Y, Huang P, Luo P, He Q, Zhang Y, Yan F. Underlying mechanisms and management strategies for regorafenib-induced toxicity in hepatocellular carcinoma. Expert Opin Drug Metab Toxicol 2024; 20:907-922. [PMID: 39225462 DOI: 10.1080/17425255.2024.2398628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) accounts for 85% of liver cancer cases and is the third leading cause of cancer death. Regorafenib is a multi-target inhibitor that dramatically prolongs progression-free survival in HCC patients who have failed sorafenib therapy. However, one of the primary factors limiting regorafenib's clinical utilization is toxicity. Using Clinical Trials.gov and PubMed, we gathered clinical data on regorafenib and conducted a extensive analysis of the medication's adverse reactions and mechanisms. Next, we suggested suitable management techniques to improve regorafenib's effectiveness. AREAS COVERED We have reviewed the mechanisms by which regorafenib-induced toxicity occurs and general management strategies through clinical trials of regorafenib. Furthermore, by examining the literature on regorafenib and other tyrosine kinase inhibition, we summarized the mechanics of the onset of regorafenib toxicity and mechanism-based intervention strategies by reviewing the literature related to regorafenib and other tyrosine kinase inhibition. EXPERT OPINION One of the primary factors restricting regorafenib's clinical utilization and combination therapy is its toxicity reactions. To optimize regorafenib treatment regimens, it is especially important to further understand the specific toxicity mechanisms of regorafenib as a multi-kinase inhibitor.
Collapse
Affiliation(s)
- Mengting Cheng
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Yuhuai Hu
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Fangjie Yan
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Angeli F, Verdecchia P, Reboldi G. Aprocitentan, A Dual Endothelin Receptor Antagonist Under Development for the Treatment of Resistant Hypertension. Cardiol Ther 2021; 10:397-406. [PMID: 34251649 PMCID: PMC8555037 DOI: 10.1007/s40119-021-00233-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Aprocitentan (ACT-132577) is an orally active, dual endothelin-1 (ET-1) receptor antagonist that prevents the binding of ET-1 to both ETA/ETB receptors. It is an active metabolite of macitentan (obtained by oxidative depropylation), an orphan drug used for the treatment of pulmonary arterial hypertension. Aprocitentan is highly bound to plasma proteins and is eliminated in both urine and feces. It is well tolerated across all doses (up to 600 mg with single dose and 100 mg once a day at multiple doses). Its pharmacokinetic profile shows a half-life of 44 h, fitting a once-daily dosing regimen with plasma ET-1 concentrations (reflecting ET receptor antagonism), significantly increasing with doses ≥ 25 mg. Only minor differences in exposure between healthy females and males, healthy elderly and adult subjects, fed and fasted conditions, and renal function have been observed. Aprocitentan in patients with resistant hypertension is currently under investigation in the PRECISION phase III trial (ClinicalTrials identifier: NCT03541174). Nonetheless, results of pre-clinical data and studies in humans support the potential role of aprocitentan in this clinical setting. The absolute blood pressure (BP) reductions with aprocitentan are in the ranges established as a surrogate for reduction in cardiovascular morbidity in hypertension. Significant changes in BP with aprocitentan are observed within 14 days, and its BP-lowering effects have also been documented with ambulatory BP monitoring. Finally, aprocitentan enhances the BP-lowering effects of other antihypertensive drugs, including renin-angiotensin-system blockers. In conclusion, aprocitentan ameliorates the effects of ET-1 and could potentially reduce BP and provide broader cardiovascular protection in patients with resistant hypertension. Available data support the hypothesis that this new agent could expand our antihypertensive arsenal in resistant hypertension, making aprocitentan an attractive candidate for further large-scale trials.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy. .,Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institutes, IRCCS Tradate, Varese, Italy.
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS and Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| | - Gianpaolo Reboldi
- Department of Medicine and Centro di Ricerca Clinica e Traslazionale (CERICLET), University of Perugia, Perugia, Italy
| |
Collapse
|
4
|
Gohar EY, Pollock DM. Functional Interaction of Endothelin Receptors in Mediating Natriuresis Evoked by G Protein-Coupled Estrogen Receptor 1. J Pharmacol Exp Ther 2020; 376:98-105. [PMID: 33127751 PMCID: PMC7788354 DOI: 10.1124/jpet.120.000322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein–coupled estrogen receptor 1 (GPER1) mediates rapid estrogenic signaling. We recently reported that activation of GPER1 in the renal medulla evokes endothelin-1–dependent natriuresis in female, but not male, rats. However, the involvement of the ET receptors, ETA and ETB, underlying GPER1 natriuretic action remain unclear. In this study, we used genetic and pharmacologic methods to identify the contributions of ETA and ETB in mediating this female-specific natriuretic effect of renal medullary GPER1. Infusion of the GPER1-selective agonist G1 (5 pmol/kg per minute) into the renal medulla for 40 minutes increased Na+ excretion and urine flow in anesthetized female ETB-deficient (ETB def) rats and littermate controls but did not affect blood pressure or urinary K+ excretion in either group. Pretreatment with the selective ETA inhibitor ABT-627 (5 mg/kg, intravenous) abolished G1-induced natriuresis in ETB def rats. To further isolate the effects of inhibiting either receptor alone, we conducted the same experiments in anesthetized female Sprague-Dawley (SD) rats pretreated or not with ABT-627 and/or the selective ETB inhibitor A-192621 (10 mg/kg, intravenous). Neither antagonism of ETA nor antagonism of ETB receptor alone affected the G1-induced increase in Na+ excretion and urine flow in SD rats. However, simultaneous antagonism of both receptors completely abolished these effects. These data suggest that ETA and ETB receptors can mediate the natriuretic and diuretic response to renal medullary GPER1 activation in female rats.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama (E.Y.G, D.M.P); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (E.Y.G)
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama (E.Y.G, D.M.P); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (E.Y.G)
| |
Collapse
|
5
|
Pulido I, Ollosi S, Aparisi S, Becker JH, Aliena-Valero A, Benet M, Rodríguez ML, López A, Tamayo-Torres E, Chuliá-Peris L, García-Cañaveras JC, Soucheray M, Dalheim AV, Salom JB, Qiu W, Kaja S, Fernández-Coronado JA, Alandes S, Alcácer J, Al-Shahrour F, Borgia JA, Juan O, Nishimura MI, Lahoz A, Carretero J, Shimamura T. Endothelin-1-Mediated Drug Resistance in EGFR-Mutant Non-Small Cell Lung Carcinoma. Cancer Res 2020; 80:4224-4232. [PMID: 32747363 PMCID: PMC7541638 DOI: 10.1158/0008-5472.can-20-0141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
Abstract
Progression on therapy in non-small cell lung carcinoma (NSCLC) is often evaluated radiographically, however, image-based evaluation of said therapies may not distinguish disease progression due to intrinsic tumor drug resistance or inefficient tumor penetration of the drugs. Here we report that the inhibition of mutated EGFR promotes the secretion of a potent vasoconstrictor, endothelin-1 (EDN1), which continues to increase as the cells become resistant with a mesenchymal phenotype. As EDN1 and its receptor (EDNR) is linked to cancer progression, EDNR-antagonists have been evaluated in several clinical trials with disappointing results. These trials were based on a hypothesis that the EDN1-EDNR axis activates the MAPK-ERK signaling pathway that is vital to the cancer cell survival; the trials were not designed to evaluate the impact of tumor-derived EDN1 in modifying tumor microenvironment or contributing to drug resistance. Ectopic overexpression of EDN1 in cells with mutated EGFR resulted in poor drug delivery and retarded growth in vivo but not in vitro. Intratumoral injection of recombinant EDN significantly reduced blood flow and subsequent gefitinib accumulation in xenografted EGFR-mutant tumors. Furthermore, depletion of EDN1 or the use of endothelin receptor inhibitors bosentan and ambrisentan improved drug penetration into tumors and restored blood flow in tumor-associated vasculature. Correlatively, these results describe a simplistic endogenous yet previously unrealized resistance mechanism inherent to a subset of EGFR-mutant NSCLC to attenuate tyrosine kinase inhibitor delivery to the tumors by limiting drug-carrying blood flow and the drug concentration in tumors. SIGNIFICANCE: EDNR antagonists can be repurposed to improve drug delivery in VEGFA-secreting tumors, which normally respond to TKI treatment by secreting EDN1, promoting vasoconstriction, and limiting blood and drug delivery.
Collapse
Affiliation(s)
- Inés Pulido
- Department of Surgery, Division of Cardiothoracic Surgery, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, Illinois
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Stephen Ollosi
- Biochemistry and Molecular Biology Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Salvador Aparisi
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Jeffrey H Becker
- Department of Surgery, Division of Cardiothoracic Surgery, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, Illinois
| | - Alicia Aliena-Valero
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Marta Benet
- Biomarkers and Precision Medicine Unit and Analytic Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María L Rodríguez
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Adrián López
- Biomarkers and Precision Medicine Unit and Analytic Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Eva Tamayo-Torres
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Lourdes Chuliá-Peris
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Juan Carlos García-Cañaveras
- Biomarkers and Precision Medicine Unit and Analytic Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Margaret Soucheray
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Annika V Dalheim
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Juan B Salom
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Wei Qiu
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Simon Kaja
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
- Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | | | - Sandra Alandes
- Department of Pathology, Hospital Quirónsalud, Valencia, Spain
| | - Javier Alcácer
- Department of Pathology, Hospital Quirónsalud, Valencia, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jeffrey A Borgia
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois
| | - Oscar Juan
- Biomarkers and Precision Medicine Unit and Analytic Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Michael I Nishimura
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit and Analytic Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Julián Carretero
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain.
| | - Takeshi Shimamura
- Department of Surgery, Division of Cardiothoracic Surgery, University of Illinois at Chicago, Chicago, Illinois.
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Neves KB, Montezano AC, Lang NN, Touyz RM. Vascular toxicity associated with anti-angiogenic drugs. Clin Sci (Lond) 2020; 134:2503-2520. [PMID: 32990313 DOI: 10.1042/cs20200308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Over the past two decades, the treatment of cancer has been revolutionised by the highly successful introduction of novel molecular targeted therapies and immunotherapies, including small-molecule kinase inhibitors and monoclonal antibodies that target angiogenesis by inhibiting vascular endothelial growth factor (VEGF) signaling pathways. Despite their anti-angiogenic and anti-cancer benefits, the use of VEGF inhibitors (VEGFi) and other tyrosine kinase inhibitors (TKIs) has been hampered by potent vascular toxicities especially hypertension and thromboembolism. Molecular processes underlying VEGFi-induced vascular toxicities still remain unclear but inhibition of endothelial NO synthase (eNOS), reduced nitric oxide (NO) production, oxidative stress, activation of the endothelin system, and rarefaction have been implicated. However, the pathophysiological mechanisms still remain elusive and there is an urgent need to better understand exactly how anti-angiogenic drugs cause hypertension and other cardiovascular diseases (CVDs). This is especially important because VEGFi are increasingly being used in combination with other anti-cancer dugs, such as immunotherapies (immune checkpoint inhibitors (ICIs)), other TKIs, drugs that inhibit epigenetic processes (histone deacetylase (HDAC) inhibitor) and poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, which may themselves induce cardiovascular injury. Here, we discuss vascular toxicities associated with TKIs, especially VEGFi, and provide an up-to-date overview on molecular mechanisms underlying VEGFi-induced vascular toxicity and cardiovascular sequelae. We also review the vascular effects of VEGFi when used in combination with other modern anti-cancer drugs.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| |
Collapse
|
7
|
Su E, Zhao L, Yang X, Zhu B, Liu Y, Zhao W, Wang X, Qi D, Zhu L, Gao C. Aggravated endothelial endocrine dysfunction and intimal thickening of renal artery in high-fat diet-induced obese pigs following renal denervation. BMC Cardiovasc Disord 2020; 20:176. [PMID: 32295540 PMCID: PMC7161153 DOI: 10.1186/s12872-020-01472-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background Renal denervation (RDN) targeting the sympathetic nerves in the renal arterial adventitia as a treatment of resistant hypertension can cause endothelial injury and vascular wall injury. This study aims to evaluate the risk of atherosclerosis induced by RDN in renal arteries. Methods A total of 15 minipigs were randomly assigned to 3 groups: (1) control group, (2) sham group, and (3) RDN group (n = 5 per group). All pigs were fed a high-fat diet (HFD) for 6 months after appropriate treatment. The degree of intimal thickening of renal artery and the conversion of endothelin 1 (ET-1) receptors were evaluated by histological staining. Western blot was used to assess the expression of nitric oxide (NO) synthesis signaling pathway, ET-1 and its receptors, NADPH oxidase 2 (NOX2) and 4-hydroxynonenal (4-HNE) proteins, and the activation of NF-kappa B (NF-κB). Results The histological staining results suggested that compared to the sham treatment, RDN led to significant intimal thickening and significantly promoted the production of endothelin B receptor (ETBR) in vascular smooth muscle cells (VSMCs). Western blotting analysis indicated that RDN significantly suppressed the expression of AMPK/Akt/eNOS signaling pathway proteins, and decreased the production of NO, and increased the expression of endothelin system proteins including endothelin-1 (ET-1), endothelin converting enzyme 1 (ECE1), endothelin A receptor (ETAR) and ETBR; and upregulated the expression of NOX2 and 4-HNE proteins and enhanced the activation of NF-kappa B (NF-κB) when compared with the sham treatment (all p < 0.05). There were no significant differences between the control and sham groups (all p > 0.05). Conclusions RDN aggravated endothelial endocrine dysfunction and intimal thickening, and increased the risk of atherosclerosis in renal arteries of HFD-fed pigs.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Linwei Zhao
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Xiaohang Yang
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Binbin Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Yahui Liu
- Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Wen Zhao
- Zhengzhou University School of Pharmaceutical Sciences, Zhengzhou, 450001, Henan, China
| | - Xianpei Wang
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Datun Qi
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Lijie Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China.,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, Henan, China. .,Department of Cardiology, Huazhong Fuwai Hospital, Zhengzhou, 451464, Henan, China.
| |
Collapse
|
8
|
Li J, Wang H, Li J, Liu Y, Ding H. LC-MS analysis of Myrica rubra extract and its hypotensive effects via the inhibition of GLUT 1 and activation of the NO/Akt/eNOS signaling pathway. RSC Adv 2020; 10:5371-5384. [PMID: 35498305 PMCID: PMC9049140 DOI: 10.1039/c9ra05895h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
In the area of medicine food homology, Myrica rubra ((Lour.) Siebold & Zucc.) has been used in medicine as an astringent and anti-diarrheal. However, there are few in-depth studies evaluating the antihypertensive chemical components and antihypertensive mechanisms of Myrica rubra. Thus, the aim in this study was to assess the protective effects of an ethanol extract of bayberry (BE) on spontaneous hypertension in rats. In this study, liquid chromatography-mass spectroscopy (LC-MS) coupled with biochemical assays and western blot have been employed to study the protective effects of BE against hypertension. A total of 28 compounds were identified in BE. According to this study, treatment with BE (2 g kg-1) resulted in the potent and persistent reduction of high blood pressure, even after drug withdrawal. The results indicate that the mechanisms of action might involve protection against damage to the vascular structure. Bayberry extract could enhance the endothelium-independent vascular function, inhibiting the abnormal proliferation of smooth muscle by inhibition of glucose transporter-1 (GLUT 1) and regulation of nitric oxide (NO)/serine/threonine kinases (Akt)/endothelial nitric oxide synthase (eNOS). The results of molecular docking and in vitro research indicated six compounds in BE that might be responsible for the antihypertensive effect attributed to GLUT 1, eNOS and Akt, and further in vivo studies are needed to verify this.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| | - Huiling Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| | - Yonggang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China+8613007162084
| |
Collapse
|
9
|
Su E, Zhao L, Gao C, Zhao W, Wang X, Qi D, Zhu L, Yang X, Zhu B, Liu Y. Acute changes in morphology and renal vascular relaxation function after renal denervation using temperature-controlled radiofrequency catheter. BMC Cardiovasc Disord 2019; 19:67. [PMID: 30902047 PMCID: PMC6431051 DOI: 10.1186/s12872-019-1053-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistant hypertension and renal sympathetic hyperactivity are closely linked, and catheter-based renal denervation (RDN) is regarded as a new treatment strategy. However, the acute changes in vascular morphology and relaxation function have yet to be evaluated, and these may be important for the efficacy and safety of the procedure. In this study, we explored these questions by conventional temperature-controlled cardiac radiofrequency catheter-based RDN in a pig model. METHODS Six mini-pigs were randomly divided into the renal denervation (RDN) group (n = 3) and the Sham-RDN group (n = 3). Animals in the RDN group underwent unilateral radiofrequency ablation, and those in the Sham-RDN group underwent the same procedure except for the ablation. The pigs were examined by angiography pre- and post-RDN and were euthanized immediately thereafter. Renal arteries were processed for histological and molecular biology analyses as well as for in vitro vascular tension testing. RESULTS Compared with the Sham-RDN group, the RDN caused vascular intima and media injury, renal nerve vacuolization, mild collagen fiber hyperplasia and elastic fiber cleavage (all p < 0.05). The RDN group also significantly exhibited nitric oxide synthase pathway inhibition and decreased endothelium-independent vascular relaxation function Compared to the Sham-RDN group (all p < 0.05). CONCLUSIONS In this porcine model, renal artery denervation led to vascular wall injury and endothelial dysfunction in the acute phase, which negatively affected vascular relaxation function. Thus, this process may be detrimental to the prognosis and progress of hypertension patients.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Linwei Zhao
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China.
| | - Wen Zhao
- Zhengzhou University School of Pharmaceutical Sciences, Zhengzhou, 450003, Henan, China
| | - Xianpei Wang
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Datun Qi
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Lijie Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Xiaohang Yang
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Binbin Zhu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| | - Yahui Liu
- Department of Cardiology, Zhengzhou University People's Hospital, No.7 Weiwu road, Jinshui District, Zhengzhou, 450003, China
| |
Collapse
|
10
|
Xiong W, He FF, You RY, Xiong J, Wang YM, Zhang C, Meng XF, Su H. Acupuncture Application in Chronic Kidney Disease and its Potential Mechanisms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1169-1185. [PMID: 30286626 DOI: 10.1142/s0192415x18500611] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) is an increasing major public health problem worldwide. The number of CKD patients on hemodialysis is growing rapidly as well. Acupuncture technique is one of the traditional Chinese medicine methods and has been used in a variety of diseases. Nowadays, the clinical application of acupuncture technique for CKD patients has become the focus for its effectiveness and security. In this paper, we will review the therapeutic effects and mechanisms of different acupuncture techniques for CKD patients. In patients with CKD, acupuncture improves renal function, reduces proteinuria, controls hypertension, corrects anemia, relieves pain, and controls many hemodialysis-related complications such as uremic pruritus, insomnia and fatigue. The mechanisms are related to the regulation of sympathetic nerve and the activation of bioactive chemicals. In conclusion, acupuncture is proved to be beneficial for CKD patients. More research, however, is needed to verify the potential mechanisms.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Fang-Fang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Ren-Yu You
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Xian-Fang Meng
- Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| |
Collapse
|
11
|
Zhu FQ, Hu J, Lv FH, Cheng P, Gao S. Effects of oligomeric grape seed proanthocyanidins on L-NAME-induced hypertension in pregnant mice: Role of oxidative stress and endothelial dysfunction. Phytother Res 2018; 32:1836-1847. [PMID: 29851183 DOI: 10.1002/ptr.6119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/26/2023]
Abstract
The aim of this study was to investigate the effects of Grape Seed Proanthocyanidins (GSP) on Nω-Nitro-L-arginine methyl ester-induced hypertension in pregnant mice. Fifty Kunming mice were randomized into control, control + GSP, model, and model + GSP. Three weeks later, the artery systolic blood pressure was examined and the related pathological changes were detected. Aorta relaxation function was assessed by aorta ring apparatus. Blood urea nitrogen and serum creatinine were measured by an automatic biochemistry analyzer. Colorimetric analysis, enzyme-linked immunosorbent assay, immunofluorescence, and western blot were applied to detect related indicator in serum, cardiac, and kidney tissues. The results showed that GSP treatment for 3 weeks could improve cardiovascular and kidney remodeling indexes and decrease blood urea nitrogen and serum creatinine content in serum, as well as could ameliorate oxidative stress status and endothelial dysfunction. Therefore, it is for the first time found that GSP exerts protective effect against Nω-Nitro-L-arginine methyl ester-induced hypertension in pregnant mice, which provided a theoretical basis for potential application in the clinic.
Collapse
Affiliation(s)
- Feng-Qin Zhu
- Dept of Obstetrics and Gynecology, the Second Peoples Hospital of Hefei, Affiliated Hefei Hospital of Anhui Medical University, Hefei, 230011, China
| | - Juan Hu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Fa-Hui Lv
- Dept of Obstetrics and Gynecology, the Second Peoples Hospital of Hefei, Affiliated Hefei Hospital of Anhui Medical University, Hefei, 230011, China
| | - Pan Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
12
|
Abstract
Hypertension, the most common preventable risk factor for cardiovascular disease and death, is a growing health burden. Serious cardiovascular complications result from target organ damage including cerebrovascular disease, heart failure, ischaemic heart disease and renal failure. While many systems contribute to blood pressure (BP) elevation, the vascular system is particularly important because vascular dysfunction is a cause and consequence of hypertension. Hypertension is characterised by a vascular phenotype of endothelial dysfunction, arterial remodelling, vascular inflammation and increased stiffness. Antihypertensive drugs that influence vascular changes associated with high BP have greater efficacy for reducing cardiovascular risk than drugs that reduce BP, but have little or no effect on the adverse vascular phenotype. Angiotensin converting enzyme ACE inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) improve endothelial function and prevent vascular remodelling. Calcium channel blockers also improve endothelial function, although to a lesser extent than ACEIs and ARBs. Mineralocorticoid receptor blockers improve endothelial function and reduce arterial stiffness, and have recently become more established as antihypertensive drugs. Lifestyle factors are essential in preventing the adverse vascular changes associated with high BP and reducing associated cardiovascular risk. Clinicians and scientists should incorporate these factors into treatment decisions for patients with high BP, as well as in the development of new antihypertensive drugs that promote vascular health.
Collapse
Affiliation(s)
- Alan C Cameron
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
13
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 599] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
14
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 523] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
15
|
Gu X, Li H, Zhu X, Gu H, Chen J, Wang L, Harding P, Xu W. Inverse Correlation Between Plasma Adropin and ET-1 Levels in Essential Hypertension: A Cross-Sectional Study. Medicine (Baltimore) 2015; 94:e1712. [PMID: 26448026 PMCID: PMC4616732 DOI: 10.1097/md.0000000000001712] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Adropin is a recently identified bioactive protein that promotes energy homeostasis by affecting glucose and lipid metabolism. Recently, adropin has also been reported to be associated with endothelial dysfunction. Also, ET-1, as a biomarker for endothelial dysfunction, is a key regulator in hypertension. Accordingly, the aim of the present study was to detect the relationship between plasma adropin and ET-1 levels in hypertension. A total of 123 participants, diagnosed with primary hypertension on the basis of World Health Organization criteria (systolic blood pressure [SBP] ≥ 140 mmHg and/or diastolic blood pressure (DBP) ≥ 90 mmHg), and 58 normotensive subjects were enrolled in the cross-sectional study from October 2011 to December 2013. All study participants were older than 18 years of age. Adropin and ET-1 levels were measured by enzyme-linked immunosorbent assay (ELISA). We found that plasma adropin levels were significantly lower in hypertensives compared with controls (3.18 ± 1.00 vs 4.21 ± 1.14 ng/mL, P < 0.001). Plasma ET-1 levels were higher in hypertensives than controls (2.60 ± 1.14 vs 1.54 ± 0.66 pg/mL, P < 0.001). Adropin had a negative correlation with DBP (r = -0.40, P < 0.001), SBP (r = -0.49, P < 0.001), and adjusted for age, body mass index, SBP, DBP, glucose, TC, TG, LDL, and Cr, there was a negative correlation between ET-1 and adropin (r = -0.20, P = 0.04). In multivariate logistic regression analysis of the variables, ET-1 (odds ratio [OR], 3.84; 95% CI, 2.16-6.81; P < 0.001) and adropin (OR, 0.99; 95% CI, 0.99 -1.0; P < .001) were found to be independent predictors for hypertension.In conclusion, decreased plasma adropin levels are associated with increased blood pressure in hypertension. Adropin is an independent predictor for hypertension, and may influence blood pressure by protecting endothelial function.
Collapse
Affiliation(s)
- Xiaosong Gu
- From the department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (XSG, HL, XYZ, HBG, JCC, WTX); School of Medicine, Wayne State University (LCW); and Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (PH)
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Raghu G, Rochwerg B, Zhang Y, Garcia CAC, Azuma A, Behr J, Brozek JL, Collard HR, Cunningham W, Homma S, Johkoh T, Martinez FJ, Myers J, Protzko SL, Richeldi L, Rind D, Selman M, Theodore A, Wells AU, Hoogsteden H, Schünemann HJ. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med 2015; 192:e3-19. [DOI: 10.1164/rccm.201506-1063st] [Citation(s) in RCA: 1242] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Cre recombinase-regulated Endothelin1 transgenic mouse lines: novel tools for analysis of embryonic and adult disorders. Dev Biol 2015; 400:191-201. [PMID: 25725491 DOI: 10.1016/j.ydbio.2015.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/31/2014] [Accepted: 01/25/2015] [Indexed: 01/06/2023]
Abstract
Endothelin-1 (EDN1) influences both craniofacial and cardiovascular development and a number of adult physiological conditions by binding to one or both of the known endothelin receptors, thus initiating multiple signaling cascades. Animal models containing both conventional and conditional loss of the Edn1 gene have been used to dissect EDN1 function in both embryos and adults. However, while transgenic Edn1 over-expression or targeted genomic insertion of Edn1 has been performed to understand how elevated levels of Edn1 result in or exacerbate disease states, an animal model in which Edn1 over-expression can be achieved in a spatiotemporal-specific manner has not been reported. Here we describe the creation of Edn1 conditional over-expression transgenic mouse lines in which the chicken β-actin promoter and an Edn1 cDNA are separated by a strong stop sequence flanked by loxP sites. In the presence of Cre, the stop cassette is removed, leading to Edn1 expression. Using the Wnt1-Cre strain, in which Cre expression is targeted to the Wnt1-expressing domain of the central nervous system (CNS) from which neural crest cells (NCCs) arise, we show that stable chicken β-actin-Edn1 (CBA-Edn1) transgenic lines with varying EDN1 protein levels develop defects in NCC-derived tissues of the face, though the severity differs between lines. We also show that Edn1 expression can be achieved in other embryonic tissues utilizing other Cre strains, with this expression also resulting in developmental defects. CBA-Edn1 transgenic mice will be useful in investigating diverse aspects of EDN1-mediated-development and disease, including understanding how NCCs achieve and maintain a positional and functional identity and how aberrant EDN1 levels can lead to multiple physiological changes and diseases.
Collapse
|
19
|
Rosenberger C, Fähling M. Selective endothelin inhibition in diabetic nephropathy: is it the icing on the cake? Acta Physiol (Oxf) 2014; 212:1-4. [PMID: 24947550 DOI: 10.1111/apha.12332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- C. Rosenberger
- Institute of Nephrology and Renal Transplantation; Charité-Universitaetsmedizin Berlin; Berlin Germany
| | - M. Fähling
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
20
|
Machino T, Murakoshi N, Sato A, Xu D, Hoshi T, Kimura T, Aonuma K. Anti-hypertensive effect of radiofrequency renal denervation in spontaneously hypertensive rats. Life Sci 2014; 110:86-92. [DOI: 10.1016/j.lfs.2014.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 06/06/2014] [Accepted: 06/14/2014] [Indexed: 11/15/2022]
|
21
|
Maliha G, Townsend RR. An Update on Treatment Options for Drug Resistant Hypertension. CURRENT CARDIOVASCULAR RISK REPORTS 2014. [DOI: 10.1007/s12170-014-0394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Nasser SA, El-Mas MM. Endothelin ETA receptor antagonism in cardiovascular disease. Eur J Pharmacol 2014; 737:210-3. [PMID: 24952955 DOI: 10.1016/j.ejphar.2014.05.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/27/2022]
Abstract
Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.
Collapse
Affiliation(s)
- Suzanne A Nasser
- Department of Pharmacology, Faculty of Pharmacy, Beirut Arab University, Lebanon
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
23
|
Diabetes and obesity are significant risk factors for morning hypertension: From Ibaraki Hypertension Assessment Trial (I-HAT). Life Sci 2014; 104:32-7. [DOI: 10.1016/j.lfs.2014.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/11/2014] [Accepted: 03/27/2014] [Indexed: 11/16/2022]
|
24
|
Abstract
BACKGROUND Chagas disease is a parasite infection caused by the protozoan Trypanosoma cruzi. Its most common complications is chronic Chagas heart disease but impairments of the systemic vasculature also has been observed. Although the different mechanisms that regulate blood pressure are disrupted, to our knowledge data on the association of hypertension and chronic Chagas disease are scarce. In this regard we evaluate whether Chagas disease constitutes a high blood pressure risk factor. MATERIALS AND METHODS We recruited 200 individuals, half of them with positive serology for T. cruzi. They were subjected to a complete clinical examination. RESULTS The mean age of sampled individuals was 46.7 ± 12.3, and the mean of systolic and diastolic blood pressure were 124 ± 12 mmHg and 82 ± 10 mmHg, respectively. There were no between-group differences regarding age, sex distribution or body mass index. Chagas disease contributed significantly to high blood pressure (OR = 4, 95% CI 1.8323-7.0864, p = 0.0002). CONCLUSION Our results reveal an important association between Chagas disease and high blood pressure, which should be contemplated by physicians in order to promote preventive cardiovascular actions in patients with Chagas disease.
Collapse
Affiliation(s)
- Miguel Hernán Vicco
- Área de Clínica Médica, Facultad de Ciencias Médicas, Universidad Nacional del Litoral , Santa Fe , Argentina
| | | | | | | |
Collapse
|