1
|
Schmidt-Trucksäss A, Lichtenstein AH, von Känel R. Lifestyle factors as determinants of atherosclerotic cardiovascular health. Atherosclerosis 2024; 395:117577. [PMID: 38852021 DOI: 10.1016/j.atherosclerosis.2024.117577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
A sedentary lifestyle, low levels of physical activity and fitness, poor dietary patterns, and psychosocial stress are strongly associated with increased morbidity and mortality from atherosclerotic cardiovascular disease (ASCVD). Conversely, engaging in regular physical activity, maintaining optimal fitness levels, adhering to a heart-healthy dietary pattern, effectively managing body weight, ensuring adequate sleep, implementing stress-reduction strategies, and addressing psychosocial risk factors are associated with a reduced risk of ASCVD. This comprehensive review synthesizes current evidence from large observational studies and randomized controlled trials on lifestyle factors as determinants of ASCVD health. It also briefly reviews mechanistic insights into how factors such as low shear stress, increased reactive oxygen species production, chronic inflammation, platelets and coagulation activation, endothelial dysfunction, and sympathetic hyperactivity contribute to the initiation and exacerbation of ASCVD risk factors. These include obesity, hyperglycemia, type 2 diabetes, hypertension, and dyslipidemia, subsequently leading to the development and progression of atherosclerosis, ultimately resulting in chronic ASCVD or acute cardiovascular events. To bridge the translational gap between epidemiologic and trial-based evidence and clinical practice, practical recommendations are summarized to facilitate the translation of scientific knowledge into actionable interventions to promote ASCVD health. Acknowledged is the gap between the evidence-based knowledge and adoption within healthcare systems, which remains a crucial objective in advancing cardiovascular health at the population level.
Collapse
Affiliation(s)
- Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Switzerland.
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zürich, Switzerland
| |
Collapse
|
2
|
Nguyen M, Putot A, Masson D, Cottin Y, Gautier T, Tribouillard L, Rérole AL, Guinot PG, Maza M, Pais de Barros JP, Deckert V, Farnier M, Lagrost L, Zeller M. Risk factors and prognostic value of endotoxemia in patients with acute myocardial infarction. Front Cardiovasc Med 2024; 11:1419001. [PMID: 38984349 PMCID: PMC11232875 DOI: 10.3389/fcvm.2024.1419001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024] Open
Abstract
Background There is increasing evidence regarding the association between endotoxemia and the pathogenesis of atherosclerosis and myocardial infarction (MI). During the acute phase of MI, endotoxemia might increase inflammation and drive adverse cardiovascular (CV) outcomes. We aimed to explore the risk factors and prognostic value of endotoxemia in patients admitted for acute MI. Methods Patients admitted to the coronary care unit of Dijon University Hospital for type 1 acute MI between 2013 and 2015 were included. Endotoxemia, assessed by plasma lipopolysaccharide (LPS) concentration, was measured by mass spectrometry. Major adverse CV events were recorded in the year following hospital admission. Results Data from 245 consecutive MI patients were analyzed. LPS concentration at admission markedly increased with age and diabetes. High LPS concentration was correlated with metabolic biomarkers (glycemia, triglyceride, and total cholesterol) but not with CV (troponin Ic peak and N-terminal pro-brain natriuretic peptide) or inflammatory biomarkers (C-reactive protein, IL6, IL8, and TNFα). LPS concentration was not associated with in-hospital or 1-year outcomes. Conclusions In patients admitted for MI, higher levels of endotoxins were related to pre-existing conditions rather than acute clinical severity. Therefore, endotoxins measured on the day of MI could reflect metabolic chronic endotoxemia rather than MI-related acute gut translocation.
Collapse
Affiliation(s)
- Maxime Nguyen
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Alain Putot
- Geriatrics Internal Medicine Department, Dijon University Hospital, Dijon, France
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
- Infectious Diseases and Internal Medicine Department, Hôpitaux du Pays du Mont Blanc, Sallanches, France
| | - David Masson
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Yves Cottin
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thomas Gautier
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Laura Tribouillard
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
| | - Anne-Laure Rérole
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Pierre-Grégoire Guinot
- Department of Anesthesiology and Intensive Care, Dijon University Hospital, Dijon, France
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Maud Maza
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Valérie Deckert
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Michel Farnier
- Cardiology Department, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- Lipides Nutrition Cancer UMR1231 and LipSTIC LabEx, Université de Bourgogne, Dijon, France
| | - Marianne Zeller
- Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), EA7460, Université de Bourgogne Franche-Comté, Dijon, France
- Cardiology Department, Dijon University Hospital, Dijon, France
| |
Collapse
|
3
|
Abrignani V, Salvo A, Pacinella G, Tuttolomondo A. The Mediterranean Diet, Its Microbiome Connections, and Cardiovascular Health: A Narrative Review. Int J Mol Sci 2024; 25:4942. [PMID: 38732161 PMCID: PMC11084172 DOI: 10.3390/ijms25094942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
The Mediterranean diet (MD), rich in minimally processed plant foods and in monounsaturated fats but low in saturated fats, meat, and dairy products, represents one of the most studied diets for cardiovascular health. It has been shown, from both observational and randomized controlled trials, that MD reduces body weight, improves cardiovascular disease surrogates such as waist-to-hip ratios, lipids, and inflammation markers, and even prevents the development of fatal and nonfatal cardiovascular disease, diabetes, obesity, and other diseases. However, it is unclear whether it offers cardiovascular benefits from its individual components or as a whole. Furthermore, limitations in the methodology of studies and meta-analyses have raised some concerns over its potential cardiovascular benefits. MD is also associated with characteristic changes in the intestinal microbiota, mediated through its constituents. These include increased growth of species producing short-chain fatty acids, such as Clostridium leptum and Eubacterium rectale, increased growth of Bifidobacteria, Bacteroides, and Faecalibacterium prausnitzii species, and reduced growth of Firmicutes and Blautia species. Such changes are known to be favorably associated with inflammation, oxidative status, and overall metabolic health. This review will focus on the effects of MD on cardiovascular health through its action on gut microbiota.
Collapse
Affiliation(s)
- Vincenzo Abrignani
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Andrea Salvo
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Gaetano Pacinella
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, University of Palermo, 90127 Palermo, Italy; (V.A.); (A.S.); (G.P.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Mihuta MS, Paul C, Borlea A, Roi CM, Pescari D, Velea-Barta OA, Mozos I, Stoian D. Connections between serum Trimethylamine N-Oxide (TMAO), a gut-derived metabolite, and vascular biomarkers evaluating arterial stiffness and subclinical atherosclerosis in children with obesity. Front Endocrinol (Lausanne) 2023; 14:1253584. [PMID: 37850094 PMCID: PMC10577381 DOI: 10.3389/fendo.2023.1253584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Childhood obesity leads to early subclinical atherosclerosis and arterial stiffness. Studying biomarkers like trimethylamine N-oxide (TMAO), linked to cardio-metabolic disorders in adults, is crucial to prevent long-term cardiovascular issues. Methods The study involved 70 children aged 4 to 18 (50 obese, 20 normal-weight). Clinical examination included BMI, waist measurements, puberty stage, the presence of acanthosis nigricans, and irregular menstrual cycles. Subclinical atherosclerosis was assessed by measuring the carotid intima-media thickness (CIMT), and the arterial stiffness was evaluated through surrogate markers like the pulse wave velocity (PWV), augmentation index (AIx), and peripheral and central blood pressures. The blood biomarkers included determining the values of TMAO, HOMA-IR, and other usual biomarkers investigating metabolism. Results The study detected significantly elevated levels of TMAO in obese children compared to controls. TMAO presented positive correlations to BMI, waist circumference and waist-to-height ratio and was also observed as an independent predictor of all three parameters. Significant correlations were observed between TMAO and vascular markers such as CIMT, PWV, and peripheral BP levels. TMAO independently predicts CIMT, PWV, peripheral BP, and central SBP levels, even after adding BMI, waist circumference, waist-to-height ratio, puberty development and age in the regression model. Obese children with high HOMA-IR presented a greater weight excess and significantly higher vascular markers, but TMAO levels did not differ significantly from the obese with HOMA-IR Conclusion Our study provides compelling evidence supporting the link between serum TMAO, obesity, and vascular damage in children. These findings highlight the importance of further research to unravel the underlying mechanisms of this connection.
Collapse
Affiliation(s)
- Monica Simina Mihuta
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Corina Paul
- Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Borlea
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Mihaela Roi
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Denisa Pescari
- Department of Doctoral Studies, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Oana-Alexandra Velea-Barta
- 3rd Department of Odontotherapy and Endodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ioana Mozos
- Department of Functional Sciences—Pathophysiology, Center for Translational Research and Systems Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Dana Stoian
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- 2nd Department of Internal Medicine, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
5
|
Kasarello K, Cudnoch-Jedrzejewska A, Czarzasta K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front Microbiol 2023; 14:1118529. [PMID: 36760508 PMCID: PMC9907780 DOI: 10.3389/fmicb.2023.1118529] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The gastrointestinal tract of the human is inhabited by about 5 × 1013 bacteria (of about 1,000 species) as well as archaea, fungi, and viruses. Gut microbiota is known to influence the host organism, but the host may also affect the functioning of the microbiota. This bidirectional cooperation occurs in three main inter-organ signaling: immune, neural, and endocrine. Immune communication relies mostly on the cytokines released by the immune cells into circulation. Also, pathogen-associated or damage-associated molecular patterns (PAMPs or DAMPs) may enter circulation and affect the functioning of the internal organs and gut microbiota. Neural communication relies mostly on the direct anatomical connections made by the vagus nerve, or indirect connections via the enteric nervous system. The third pathway, endocrine communication, is the broadest one and includes the hypothalamic-pituitary-adrenal axis. This review focuses on presenting the latest data on the role of the gut microbiota in inter-organ communication with particular emphasis on the role of neurotransmitters (catecholamines, serotonin, gamma-aminobutyric acid), intestinal peptides (cholecystokinin, peptide YY, and glucagon-like peptide 1), and bacterial metabolites (short-chain fatty acids).
Collapse
|
6
|
Requena P, Pérez-Díaz C, Mustieles V, Peinado FM, León J, Pérez-Carrascosa FM, Frederiksen H, Salcedo-Bellido I, Barrios-Rodríguez R, Arrebola JP. Associations of circulating levels of phthalate metabolites with cytokines and acute phase reactants in a Spanish human cohort. ENVIRONMENTAL RESEARCH 2023; 216:114470. [PMID: 36241073 DOI: 10.1016/j.envres.2022.114470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The associations between human phthalate exposure and the onset of chronic diseases with an immunological component (e.g., metabolic syndrome, cancer) remain unclear, partly due to the uncertainties in the underlying mechanisms. This study investigates cross-sectional associations of the concentrations of 10 phthalate metabolites with 19 cytokines and acute phase proteins in 213 serum samples of Spanish adults. The associations were explored by Spearman's correlation, multivariable linear regression, and weighted quantile sum regression analyses. In the multivariable analyses, levels of plasminogen activator inhibitor (PAI)-1 were positively associated with mono-n-butyl phthalate (fold-change per one IQR increase in phthalate levels, 95% Confidence Interval: 1.65, 1.45-1.88) and mono-iso-butyl phthalate (3.07, 2.39-3.95), mono-ethyl phthalate (2.05, 1.62-2.61), as well as categorized mono-iso-decyl and mono-benzyl phthalates. The same phthalates also were significantly associated with leptin, interleukin (IL)-18 and monocyte chemoattractant protein-1. Moreover, the proinflammatory markers IL-1β, IL-17, IL-8, IL-6, IL-12, tumor necrosis factor, and lipopolysaccharide-binding protein showed positive and negative associations with, respectively, mono-(2-ethyl-hexyl) and mono-methyl phthalates. Finally, phthalate mixtures were positively associated with PAI-1, leptin, IL-18, IL-12, IL-8 and IL-1β. Despite the cross-sectional design limitation, these associations point to relevant subclinical immuno-inflammatory actions of these pollutants, warranting confirmation in future studies.
Collapse
Affiliation(s)
- Pilar Requena
- Universidad de Granada, Department of Preventive Medicine and Public Health, Campus de Cartuja s/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2a Planta, 18012, Granada, Spain.
| | - Celia Pérez-Díaz
- Universidad de Granada, Department of Preventive Medicine and Public Health, Campus de Cartuja s/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2a Planta, 18012, Granada, Spain.
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2a Planta, 18012, Granada, Spain; Universidad de Granada, Department of Radiology and Physical Medicine, Avda. del Conocimiento 11, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - Francisco M Peinado
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2a Planta, 18012, Granada, Spain; Universidad de Granada, Department of Radiology and Physical Medicine, Avda. del Conocimiento 11, 18016, Granada, Spain.
| | - Josefa León
- Hospital Universitario San Cecilio, Digestive System Clinical Management Unit, Av. del Conocimiento, s/n, 18016, Granada, Spain.
| | - Francisco M Pérez-Carrascosa
- Universidad de Granada, Department of Preventive Medicine and Public Health, Campus de Cartuja s/n, 18071, Granada, Spain.
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Inmaculada Salcedo-Bellido
- Universidad de Granada, Department of Preventive Medicine and Public Health, Campus de Cartuja s/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2a Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - Rocío Barrios-Rodríguez
- Universidad de Granada, Department of Preventive Medicine and Public Health, Campus de Cartuja s/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2a Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - Juan Pedro Arrebola
- Universidad de Granada, Department of Preventive Medicine and Public Health, Campus de Cartuja s/n, 18071, Granada, Spain; Instituto de Investigación Biosanitaria (ibs.GRANADA), Avda. de Madrid, 15. Pabellón de Consultas Externas 2, 2a Planta, 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
8
|
Muacevic A, Adler JR, Rizwan S, Mohamed AE, Elshafey AE, Khadka A, Mosuka EM, Thilakarathne KN, Mohammed L. Role of Gut Microbiome in Cardiovascular Events: A Systematic Review. Cureus 2022; 14:e32465. [PMID: 36644080 PMCID: PMC9835843 DOI: 10.7759/cureus.32465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome helps maintain homeostasis in the body, but what if the gut experiences imbalance? It would lead to dysbiosis - which is involved in multiple diseases, including but not limited to cardiovascular diseases, the most common cause of mortality around the globe. This research paper aims to explain all the possible mechanisms known linking the gut microbiome to the contribution of worsening cardiovascular events. PubMed and Google Scholar were thoroughly explored to learn the role of the gut microbiome in cardiovascular events. A systematic review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to analyze the possible pathways and the metabolites included in the study. Thirteen review articles were selected based on the assessment of multiple systematic reviews (AMSTAR) and the scale for the assessment of non-systematic review articles (SANRA) checklist scores. In this article, we have discussed the role of the gut microbiome in atherosclerosis, hypertension, metabolic disorders such as diabetes and obesity, coronary artery disease, etc. Various pathways to modify the gut microbiome are also discussed, along with the use of probiotics. Finally, we discussed the role of trimethylamine N-oxide (TMAO), a gut microbiome metabolite, as a biomarker for the prognosis of various diseases. This study concluded that the gut microbiome does play a crucial role in the worsening of cardiovascular diseases and the metabolites of which can be used as biomarkers in the prognosis of cardiovascular events.
Collapse
|
9
|
Toll-like receptor 4-mediated endoplasmic reticulum stress induces intestinal paneth cell damage in mice following CLP-induced sepsis. Sci Rep 2022; 12:15256. [PMID: 36088483 PMCID: PMC9464222 DOI: 10.1038/s41598-022-19614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/31/2022] [Indexed: 11/14/2022] Open
Abstract
A marked elevation of TLR4 was observed in various organs of septic mice. The mechanism of TLR4 in intestinal epithelial cell damage in sepsis remains unclear. CLP mice models were used to assess the role of TLR4 in intestinal Paneth cell damage by histological, polymerase chain reaction, western-blot analyses. The ileal expression of TLR4 was increased by more than five-fold after CLP. CLP significantly increased 7-day mortality and was associated with a higher murine sepsis score (MSS), closely related with increased TLR4 expression. Histological staining revealed that a reduced number of Paneth cells, accompanied by reduced lysozyme and defensin alpha 5(DEF-5) expression as detected by PCR. Of note, the expression levels of ATF6, XBP1 and CHOP increased in the ileal of the sepsis group. Meanwhile, the uncleaved p90 ATF6 was markedly reduced and cleaved p50 ATF6 was increased in the sepsis group. Intriguingly, The TAK-242 had improved intestinal mucosal injury, reduced the expression of ATF6, XBP1 and CHOP and relieved the cleavage of ATF6. We found that increased the expression level of TLR4 in the ileal of CLP mice promoted the depletion of Paneth cell and reduced LYZ and DEF-5 expression. Furthermore, our findings suggested that TLR4-mediated the hyperactivation of ER stress, via activating the ATF6/CHOP pathway, might be one of the mechanisms associated with Paneth cells loss and dysfunction during intestinal barrier impairment of sepsis.
Collapse
|
10
|
Jin J, Wang J, Cheng R, Ren Y, Miao Z, Luo Y, Zhou Q, Xue Y, Shen X, He F, Tian H. Orlistat and ezetimibe could differently alleviate the high-fat diet-induced obesity phenotype by modulating the gut microbiota. Front Microbiol 2022; 13:908327. [PMID: 36046024 PMCID: PMC9421266 DOI: 10.3389/fmicb.2022.908327] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the possible anti-obesity effects of orlistat and ezetimibe and determine the mechanism by which they alter the composition of gut microbiota and short-chain fatty acids (SCFAs) in mice with a high-fat diet (HFD)-induced obesity. Eighty male, specific pathogen-free C57BL/6J mice aged 3 weeks were divided into four groups (n = 20). The NCD group was fed with a normal diet, and the HFD, HFD+ORL, and HFD+EZE groups were fed with HFD for 20 weeks. From the 13th week onward, the HFD+ORL and HFD+EZE groups were administered with orlistat and ezetimibe, respectively. The glucose and lipid metabolism of the tested mice were evaluated by analyzing blood biochemical indicators during the intervention. Furthermore, the changes in the structure of the fecal microbiota and the fecal SCFA content were analyzed by 16S rRNA sequencing and gas chromatography-mass spectrometry, respectively. HFD induced the obesity phenotype in mice. Compared to the HFD group, the body weight, visceral fat-to-body weight ratio, serum total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), and oral glucose tolerance test (OGTT) of the HFD+ORL group significantly decreased, whereas fecal butyric acid levels significantly increased. Ezetimibe intervention significantly reduced the OGTT, serum TC, and HDL-C levels only. The α-diversity of the gut microbiota significantly decreased after intervention with orlistat and ezetimibe. Orlistat altered the relative abundance of some bacteria in the fecal microbiota. The populations of Firmicutes, Alistipes, and Desulfovibrio decreased, whereas those of Verrucomicrobia and Akkermansia significantly increased. Ezetimibe caused changes only in some low-abundance bacteria, as manifested by a decrease in Proteobacteria and Desulfovibrio, and an increase in Bacteroides. The administration of orlistat and ezetimibe can characteristically influence the body weight and serum lipid metabolism, and glucolipid levels in diet-induced obese mice and is accompanied by significant changes in the gut microbiota and SCFAs. These results suggest that the two drugs might exert their own specific anti-obesity effects by modulating the gut microbiota in a different manner. The enhanced health-promoting effect of orlistat might result from its stronger ability to alter the gut microbiota and SCFAs, at least partly.
Collapse
Affiliation(s)
- Jin Jin
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiani Wang
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhonghua Miao
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yating Luo
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingqing Zhou
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yigui Xue
- Frontier Medical Service Training Battalion of Army Military Medical University, Changji Hui Autonomous Prefecture, Xinjiang, China
| | - Xi Shen
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Fang He
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Haoming Tian
| |
Collapse
|
11
|
Qu L, Dong Z, Ma S, Liu Y, Zhou W, Wang Z, Wu C, Ma R, Jiang X, Zu T, Cheng M, Wu Y. Gut Microbiome Signatures Are Predictive of Cognitive Impairment in Hypertension Patients—A Cohort Study. Front Microbiol 2022; 13:841614. [PMID: 35464979 PMCID: PMC9024414 DOI: 10.3389/fmicb.2022.841614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Growing evidence has demonstrated that hypertension was associated with dysbiosis of intestinal flora. Since intestinal microbes could critically regulate neurofunction via the intestinal–brain axis, the study aimed to reveal the role and prediction value of intestinal flora alteration in hypertension-associated cognitive impairment. A cohort of 97 participants included 63 hypertension patients and 34 healthy controls. The structure of intestinal flora was analyzed by V3–V4 16S rRNA amplicon sequencing. The cognitive function was assessed using the Montreal Cognitive Assessment (MoCA) scale, and 31 patients were considered to have cognitive impairment (MoCA < 26). Patients with cognitive impairment had considerable alterations in intestinal flora structure, composition, and function compared with normal-cognitive patients. In particular, the abundance of LPS-containing taxa (Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, and Escherichia–Shigella) and SCFA-producing taxon (Prevotella) significantly changed in cognition-impaired patients. Tax4Fun predication results showed downregulation of glycan biosynthesis and metabolism in hypertension patients with cognitive impairment. Additionally, the pathway was demonstrated to be significantly correlated with LPS-containing taxa (Proteobacteria, Gammaproteobacteria, Enterobacterales, Enterobacteriaceae, and Escherichia–Shigella) and SCFA-producing taxon Prevotella. Furthermore, the taxa-based multiple joint prediction model (9×) was demonstrated to have excellent diagnostic potential for cognitive impairment of hypertension patients (AUC = 0.944). The current study revealed the involvement of intestinal microbiota dysbiosis in cognition-impaired hypertension patients and provided an objective predictive index for this cognition disorder.
Collapse
Affiliation(s)
- Lei Qu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Zhouyan Dong
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Songcui Ma
- Yantai Yuhuangding Hospital, Yantai, China
| | - Yaping Liu
- Institute of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Wei Zhou
- Institute of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Zitong Wang
- Institute of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Chen Wu
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Rui Ma
- Institute of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Xinze Jiang
- Institute of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Tingting Zu
- Clinical Medicine School, Binzhou Medical University, Yantai, China
| | - Mei Cheng
- Institute of Health and Disease Management, Binzhou Medical University, Yantai, China
- *Correspondence: Mei Cheng,
| | - Yulong Wu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
- Yulong Wu,
| |
Collapse
|
12
|
Scorza FA, de Almeida ACG, Fiorini AC, Finsterer J. THE MICROBIOTA IN PARKINSON'S DISEASE: RANKING THE RISK OF HEART DISEASE. ANNALS OF NUTRITION AND METABOLISM 2022; 78:117-118. [PMID: 35042212 DOI: 10.1159/000521992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
This letter is a commenting on the article recently published in Annals of Nutrition and Metabolism entitled "Parkinson's Disease and Gut Microbiota" by Hirayama and Ohno published in your esteemed journal. In brief, the authors properly discussed the recent research on possible mechanisms of how gut dysbiosis is causally associated with the development and progression of Parkinson's Disease. However, we would like to add some thoughts that may open the debate about the relationship between gut microbiome dysbiosis and cardiac disorders, highlighting the possible role of this association with the occurrence of some cases of sudden death in Parkinson's Disease.
Collapse
Affiliation(s)
- Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima," Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Antonio-Carlos G de Almeida
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima," Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Laboratório de Neurociência Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del-Rei, Brazil
| | - Ana C Fiorini
- Centro de Neurociências e Saúde da Mulher "Professor Geraldo Rodrigues de Lima," Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Departamento de Fonoaudiologia, Escola Paulista de Medicina/Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Programa de Estudos Pós-Graduado em Fonoaudiologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), São Paulo, Brazil
| | | |
Collapse
|
13
|
Geng S, Zhang Y, Yi Z, Lu R, Li L. Resolving monocytes generated through TRAM deletion attenuate atherosclerosis. JCI Insight 2021; 6:e149651. [PMID: 34499622 PMCID: PMC8564896 DOI: 10.1172/jci.insight.149651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Polarization of low-grade inflammatory monocytes facilitates the pathogenesis of atherosclerosis. However, underlying mechanisms as well as approaches for resolving monocyte polarization conducive to the regression of atherosclerosis are not well established. In this report, we demonstrate that TRIF-related adaptor molecule (TRAM) mediated monocyte polarization in vivo and in vitro. TRAM controlled monocyte polarization through activating Src family kinase c-SRC, which not only induces STAT1/STAT5-regulated inflammatory mediators CCR2 and SIRP-α but also suppresses PPARγ-regulated resolving mediator CD200R. Enhanced PPARγ and Pex5 due to TRAM deficiency facilitated peroxisome homeostasis and reduction of cellular reactive oxygen species, further contributing to the establishment of a resolving monocyte phenotype. TRAM-deficient monocytes propagated the resolving phenotype to neighboring monocytes through CD200R-mediated intercellular communication. At the translational level, we show that TRAM-deficient mice were resistant to high-fat diet-induced pathogenesis of atherosclerosis. We further document that intravenous transfusion of TRAM-deficient resolving monocytes into atherosclerotic mice potently reduced the progression of atherosclerosis. Together, our data reveal that targeting TRAM may facilitate the effective generation of resolving monocytes conducive for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences and
| | - Yao Zhang
- Department of Biological Sciences and
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Ran Lu
- Department of Biological Sciences and
| | - Liwu Li
- Department of Biological Sciences and
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|