1
|
Burke Ó, Zeden MS, O'Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P O'Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Green SB, Albrecht B, Chapin R, Walters J. Toxin inhibition: Examining tetracyclines, clindamycin, and linezolid. Am J Health Syst Pharm 2024:zxae251. [PMID: 39244685 DOI: 10.1093/ajhp/zxae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
PURPOSE The purpose of this review is to discuss the role of toxin inhibition in select infections and to provide recommendations for appropriate antimicrobial selection when toxin inhibition is indicated. SUMMARY For select organisms, specifically Clostridioides difficile, Staphylococcus aureus, and Streptococcus pyogenes, toxin production plays an integral role in overall disease pathogenesis and progression. Some expert recommendations include utilization of an antimicrobial with toxin inhibition properties as primary or adjunctive therapy for certain infections due to these organisms, but evolving data have made the choice of antitoxin agent less clear. Clindamycin has been the long-standing standard of care agent for toxin inhibition in necrotizing S. aureus and S. pyogenes infections, but linezolid shows promise as an alternative either in the setting of drug shortages or simply when clindamycin is not optimal, while tetracyclines require further study for this indication. The role for adjunctive toxin inhibition in C. difficile infection (CDI) is less defined, as current first-line therapies already have antitoxin properties. CONCLUSION Toxin inhibition plays a key role in successful management of patients with infections due to toxin-producing organisms. Adjunctive therapy with a tetracycline could be considered in severe, fulminant CDI, but the associated benefit is variable. The benefit of antitoxin treatment for necrotizing S. aureus and S. pyogenes has been more consistently documented. Recent studies support linezolid as an alternative to clindamycin as an adjunctive S. aureus treatment or as monotherapy when appropriate.
Collapse
Affiliation(s)
- Sarah B Green
- Department of Pharmacy, Emory University Hospital, Atlanta, GA, USA
| | | | - Ryan Chapin
- Department of Pharmacy, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jillian Walters
- Department of Pharmacy, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| |
Collapse
|
3
|
Geofrey MA, Sauli E, Kanje LE, Beti M, Shayo MJ, Kuchaka D, van Zwetselaar M, Wadugu B, Mmbaga B, Mkumbaye SI, Kumburu H, Sonda T. Genomic characterization of methicillin-resistant Staphylococcus aureus isolated from patients attending regional referral hospitals in Tanzania. BMC Med Genomics 2024; 17:211. [PMID: 39143496 PMCID: PMC11323609 DOI: 10.1186/s12920-024-01979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) colonization increases the risk of subsequent infection by MRSA strain complex interlinking between hospital and community-acquired MRSA which increases the chance of drug resistance and severity of the disease. OBJECTIVE Genomic characterization of Staphylococcus aures strains isolated from patients attending regional referral hospitals in Tanzania. METHODOLOGY A laboratory-based cross-sectional study using short read-based sequencing technology, (Nextseq550,Illumina, Inc. San diego, California, USA). The samples used were collected from patients attending selected regional referral hospitals in Tanzania under the SeqAfrica project. Sequences were analyzed using tools available in the center for genomic and epidemiology server, and visualization of the phylogenetic tree was performed in ITOL 6.0. SPSS 28.0 was used for statistical analysis. RESULTS Among 103 sequences of S. aureus, 48.5% (50/103) carry the mecA gene for MRSA. High proportions of MRSA were observed among participants aged between 18 and 34 years (52.4%), in females (54.3%), and among outpatients (60.5%). The majority of observed MRSA carried plasmids rep5a (92.0%), rep16 (90.0%), rep7c (90.0%), rep15 (82.0%), rep19 (80.0%) and rep10 (72.0%). Among all plasmids observed rep5a, rep16, rep20, and repUS70 carried the blaZ gene, rep10 carried the erm(C) gene and rep7a carried the tet(K) gene. MLST and phylogeny analysis reveal high diversity among MRSA. Six different clones were observed circulating at selected regional hospitals and MRSA with ST8 was dominant. CONCLUSION The study reveals a significant presence of MRSA in Staphylococcus aureus strains from Tanzanian regional hospitals, with nearly half carrying the mecA gene. MRSA is notably prevalent among young adults, females, and outpatients, showing high genetic diversity and dominance of ST8. Various plasmids carrying resistance genes indicate a complex resistance profile, highlighting the need for targeted interventions to manage MRSA infections in Tanzania.
Collapse
Affiliation(s)
- Mujungu A Geofrey
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania.
- Catholic University of Health and Allied Sciences, Mwanza, Tanzania.
| | - Elingarami Sauli
- Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| | - Livin E Kanje
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Melkiory Beti
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Mariana J Shayo
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Biological and Pre-Clinical Studies, Muhimbili University, Dar es salaam, Tanzania
| | - Davis Kuchaka
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | | | - Boaz Wadugu
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Blandina Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Department of Clinical Laboratory, Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
| | - Sixbert Isdory Mkumbaye
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Department of Clinical Laboratory, Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
| | - Happiness Kumburu
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Department of Clinical Laboratory, Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
| | - Tolbert Sonda
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Department of Clinical Laboratory, Kilimanjaro Christian Medical Centre, Kilimanjaro, Tanzania
| |
Collapse
|
4
|
Rajack F, Medford S, Ramadan A, Naab T. Emerging infection: streptococcal toxic shock-like syndrome caused by group B Streptococcus (GBS), Streptococcus agalactiae. Autops Case Rep 2024; 14:e2024497. [PMID: 39021470 PMCID: PMC11253910 DOI: 10.4322/acr.2024.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/25/2024] [Indexed: 07/20/2024]
Abstract
Streptococcus agalactiae or Group B Streptococcus (GBS) infections are commonly associated with infections in neonates and pregnant women. However, there has been a rising incidence in nonpregnant adults. The risk of GBS infection in nonpregnant adults is increased for patients of advanced age and those with underlying medical conditions such as diabetes mellitus and cancer. We present a 77-year-old female with type-2 diabetes mellitus, hypertension, and bilateral foot ulcers that presented in probable septic shock with necrotic foot ulcers and necrotizing fasciitis and underwent bilateral lower limb amputations. The patient fulfilled the Streptococcal Toxic Shock Syndrome (STSS) criteria as defined by The Working Group on Severe Streptococcal Infections. These criteria were created for group A Streptococcus (Streptococcus pyogenes). Our patient fulfilled the Working Group's criteria, except that the blood culture was positive for group B Streptococcus (Streptococcus agalactiae). Numerous studies demonstrate the importance of early detection and antibiotic treatment for GBS infections in general and early surgical management for necrotizing soft tissue infections (NSTIs) such as necrotizing fasciitis.
Collapse
Affiliation(s)
- Fareed Rajack
- Howard University Hospital, Department of Pathology and Laboratory Medicine, Washington, D.C., United States of America
| | - Shawn Medford
- Howard University College of Medicine, Washington, D.C., United States of America
| | - Ali Ramadan
- Howard University Hospital, Department of Pathology and Laboratory Medicine, Washington, D.C., United States of America
| | - Tammey Naab
- Howard University Hospital, Department of Pathology and Laboratory Medicine, Washington, D.C., United States of America
| |
Collapse
|
5
|
Gonzales Y Tucker RD, Addepalli A. Fever and Rash. Emerg Med Clin North Am 2024; 42:303-334. [PMID: 38641393 DOI: 10.1016/j.emc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Infectious causes of fever and rash pose a diagnostic challenge for the emergency provider. It is often difficult to discern rashes associated with rapidly progressive and life-threatening infections from benign exanthems, which comprise the majority of rashes seen in the emergency department. Physicians must also consider serious noninfectious causes of fever and rash. A correct diagnosis depends on an exhaustive history and head-to-toe skin examination as most emergent causes of fever and rash remain clinical diagnoses. A provisional diagnosis and immediate treatment with antimicrobials and supportive care are usually required prior to the return of confirmatory laboratory testing.
Collapse
Affiliation(s)
- Richard Diego Gonzales Y Tucker
- Department of Emergency Medicine, University of California San Francisco, Box 0209, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Emergency Medicine, Alameda Health System - Wilma Chan Highland Hospital, 1411 E 31st Street, Oakland, CA 94602, USA.
| | - Aravind Addepalli
- Department of Emergency Medicine, University of California San Francisco, Box 0209, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Wei BM, Fox LP, Kaffenberger BH, Korman AM, Micheletti RG, Mostaghimi A, Noe MH, Rosenbach M, Shinkai K, Kwah JH, Phillips EJ, Bolognia JL, Damsky W, Nelson CA. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms. Part II diagnosis and management. J Am Acad Dermatol 2024; 90:911-926. [PMID: 37516356 DOI: 10.1016/j.jaad.2023.02.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 07/31/2023]
Abstract
Drug-induced hypersensitivity syndrome, also known as drug reaction with eosinophilia and systemic symptoms, is a severe cutaneous adverse reaction characterized by an exanthem, fever, and hematologic and visceral organ involvement. The differential diagnosis includes other cutaneous adverse reactions, infections, inflammatory and autoimmune diseases, and neoplastic disorders. Three sets of diagnostic criteria have been proposed; however, consensus is lacking. The cornerstone of management is immediate discontinuation of the suspected drug culprit. Systemic corticosteroids remain first-line therapy, but the literature on steroid-sparing agents is expanding. Longitudinal evaluation for sequelae is recommended. Adjunctive tests for risk stratification and drug culprit identification remain under investigation. Part II of this continuing medical education activity begins by exploring the differential diagnosis and diagnosis of drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms and concludes with an evidence-based overview of evaluation and treatment.
Collapse
Affiliation(s)
- Brian M Wei
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Lindy P Fox
- Department of Dermatology, University of California, San Francisco, California
| | | | - Abraham M Korman
- Department of Dermatology, The Ohio State University, Columbus, Ohio
| | - Robert G Micheletti
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arash Mostaghimi
- Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Megan H Noe
- Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Misha Rosenbach
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kanade Shinkai
- Department of Dermatology, University of California, San Francisco, California
| | - Jason H Kwah
- Department of Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jean L Bolognia
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - William Damsky
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Caroline A Nelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
7
|
Bashabsheh RH, AL-Fawares O, Natsheh I, Bdeir R, Al-Khreshieh RO, Bashabsheh HH. Staphylococcus aureus epidemiology, pathophysiology, clinical manifestations and application of nano-therapeutics as a promising approach to combat methicillin resistant Staphylococcus aureus. Pathog Glob Health 2024; 118:209-231. [PMID: 38006316 PMCID: PMC11221481 DOI: 10.1080/20477724.2023.2285187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium and one of the most prevalent infectious disease-related causes of morbidity and mortality in adults. This pathogen can trigger a broad spectrum of diseases, from sepsis and pneumonia to severe skin infections that can be fatal. In this review, we will provide an overview of S. aureus and discuss the extensive literature on epidemiology, transmission, genetic diversity, evolution and antibiotic resistance strains, particularly methicillin resistant S. aureus (MRSA). While many different virulence factors that S. aureus produces have been investigated as therapeutic targets, this review examines recent nanotechnology approaches, which employ materials with atomic or molecular dimensions and are being used to diagnose, treat, or eliminate the activity of S. aureus. Finally, having a deeper understanding and clearer grasp of the roles and contributions of S. aureus determinants, antibiotic resistance, and nanotechnology will aid us in developing anti-virulence strategies to combat the growing scarcity of effective antibiotics against S. aureus.
Collapse
Affiliation(s)
- Raghad H.F. Bashabsheh
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | - O’la AL-Fawares
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | - Iyad Natsheh
- Department of Allied Medical Sciences, Zarqa College, Al-Balqa Applied University, Zarqa, Jordan
| | - Roba Bdeir
- Department of Allied Health Sciences, Faculty of Nursing, Al-Balqa Applied University, Al-salt, Jordan
| | - Rozan O. Al-Khreshieh
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-salt, Jordan
| | | |
Collapse
|
8
|
Jiang F, Cai C, Wang X, Han S. A dual biomarker-targeting probe enables signal-on surface labeling of Staphylococcus aureus. Bioorg Med Chem Lett 2023; 93:129428. [PMID: 37541632 DOI: 10.1016/j.bmcl.2023.129428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Imaging or killing of a specific pathogen is of significance for precise therapy. Staphylococcus aureus (S. aureus) is an infectious gram-positive bacteria relying on Sortase A (SrtA) to anchor cell surface protein on peptidoglycan. We herein report signal-on labeling of S. aureus with self-quenched optical probes featuring vancomycin-conjugated SrtA substrate that is flanked by a dabcyl moiety paired with either fluorescein or eosine photosensizer (PS). SrtA-mediated cleavage of the substrate motif releases the dabcyl quencher, leading to covalent labeling of peptidoglycan with fluorescein or PS of restored photophysical property. The dual biomarked-enabled peptidoglycan labeling enables signal-on imaging and effective photodynamic destruction of S. aureus, suggesting a protheranostic approch activatable to SrtA-positive bacteria engaged in myriad diseases.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Chengteng Cai
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, the Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
9
|
Postiglione U, Batisti Biffignandi G, Corbella M, Merla C, Olivieri E, Petazzoni G, Feil EJ, Bandi C, Cambieri P, Gaiarsa S, Brilli M, Sassera D. Combining Genome Surveillance and Metadata To Characterize the Diversity of Staphylococcus aureus Circulating in an Italian Hospital over a 9-Year Period. Microbiol Spectr 2023; 11:e0101023. [PMID: 37458594 PMCID: PMC10433831 DOI: 10.1128/spectrum.01010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/18/2023] [Indexed: 08/19/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and a leading cause of morbidity and mortality worldwide. Genomic-based surveillance has greatly improved our ability to track the emergence and spread of high-risk clones, but the full potential of genomic data is only reached when used in conjunction with detailed metadata. Here, we demonstrate the utility of an integrated approach by leveraging a curated collection of clinical and epidemiological metadata of S. aureus in the San Matteo Hospital (Italy) through a semisupervised clustering strategy. We sequenced 226 sepsis S. aureus samples, recovered over a period of 9 years. By using existing antibiotic profiling data, we selected strains that capture the full diversity of the population. Genome analysis revealed 49 sequence types, 16 of which are novel. Comparative genomic analyses of hospital- and community-acquired infection ruled out the existence of genomic features differentiating them, while evolutionary analyses of genes and traits of interest highlighted different dynamics of acquisition and loss between antibiotic resistance and virulence genes. Finally, highly resistant clones belonging to clonal complexes (CC) 8 and 22 were found to be responsible for abundant infections and deaths, while the highly virulent CC30 was responsible for rare but deadly episodes of infections. IMPORTANCE Genome sequencing is an important tool in clinical microbiology, as it allows in-depth characterization of isolates of interest and can propel genome-based surveillance studies. Such studies can benefit from ad hoc methods of sample selection to capture the genomic diversity present in a data set. Here, we present an approach based on clustering of antibiotic resistance profiles that allows optimal sample selection for bacterial genomic surveillance. We apply the method to a 9-year collection of Staphylococcus aureus from a large hospital in northern Italy. Our method allows us to sequence the genomes of a large variety of strains of this important pathogen, which we then leverage to characterize the epidemiology in the hospital and to perform evolutionary analyses on genes and traits of interest. These analyses highlight different dynamics of acquisition and loss between antibiotic resistance and virulence genes.
Collapse
Affiliation(s)
- U. Postiglione
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - M. Corbella
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - C. Merla
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - E. Olivieri
- Istituto Zooproflattico Sperimentale della Lombardia e dell’Emilia Romagna, Pavia, Italy
| | - G. Petazzoni
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - E. J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - C. Bandi
- Department of Bioscience, University of Milan, Milan, Italy
| | - P. Cambieri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - S. Gaiarsa
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - M. Brilli
- Department of Bioscience, University of Milan, Milan, Italy
| | - D. Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
10
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
11
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
12
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
13
|
Sohail MU, Mashood F, Oberbach A, Chennakkandathil S, Schmidt F. The role of pathogens in diabetes pathogenesis and the potential of immunoproteomics as a diagnostic and prognostic tool. Front Microbiol 2022; 13:1042362. [PMID: 36483212 PMCID: PMC9724628 DOI: 10.3389/fmicb.2022.1042362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 09/11/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases marked by hyperglycemia, which increases the risk of systemic infections. DM patients are at greater risk of hospitalization and mortality from bacterial, viral, and fungal infections. Poor glycemic control can result in skin, blood, bone, urinary, gastrointestinal, and respiratory tract infections and recurrent infections. Therefore, the evidence that infections play a critical role in DM progression and the hazard ratio for a person with DM dying from any infection is higher. Early diagnosis and better glycemic control can help prevent infections and improve treatment outcomes. Perhaps, half (49.7%) of the people living with DM are undiagnosed, resulting in a higher frequency of infections induced by the hyperglycemic milieu that favors immune dysfunction. Novel diagnostic and therapeutic markers for glycemic control and infection prevention are desirable. High-throughput blood-based immunoassays that screen infections and hyperglycemia are required to guide timely interventions and efficiently monitor treatment responses. The present review aims to collect information on the most common infections associated with DM, their origin, pathogenesis, and the potential of immunoproteomics assays in the early diagnosis of the infections. While infections are common in DM, their role in glycemic control and disease pathogenesis is poorly described. Nevertheless, more research is required to identify novel diagnostic and prognostic markers to understand DM pathogenesis and management of infections. Precise monitoring of diabetic infections by immunoproteomics may provide novel insights into disease pathogenesis and healthy prognosis.
Collapse
Affiliation(s)
| | | | - Andreas Oberbach
- Experimental Cardiac Surgery LMU Munich, Department of Cardiac Surgery, Ludwig Maximillian University of Munich, Munich, Germany
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine, Doha, Qatar
| |
Collapse
|
14
|
Moriarty TF, Metsemakers WJ, Morgenstern M, Hofstee MI, Vallejo Diaz A, Cassat JE, Wildemann B, Depypere M, Schwarz EM, Richards RG. Fracture-related infection. Nat Rev Dis Primers 2022; 8:67. [PMID: 36266296 DOI: 10.1038/s41572-022-00396-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
Musculoskeletal trauma leading to broken and damaged bones and soft tissues can be a life-threating event. Modern orthopaedic trauma surgery, combined with innovation in medical devices, allows many severe injuries to be rapidly repaired and to eventually heal. Unfortunately, one of the persisting complications is fracture-related infection (FRI). In these cases, pathogenic bacteria enter the wound and divert the host responses from a bone-healing course to an inflammatory and antibacterial course that can prevent the bone from healing. FRI can lead to permanent disability, or long courses of therapy lasting from months to years. In the past 5 years, international consensus on a definition of these infections has focused greater attention on FRI, and new guidelines are available for prevention, diagnosis and treatment. Further improvements in understanding the role of perioperative antibiotic prophylaxis and the optimal treatment approach would be transformative for the field. Basic science and engineering innovations will be required to reduce infection rates, with interventions such as more efficient delivery of antibiotics, new antimicrobials, and optimizing host defences among the most likely to improve the care of patients with FRI.
Collapse
Affiliation(s)
- T Fintan Moriarty
- AO Research Institute Davos, Davos, Switzerland.,Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mario Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Alejandro Vallejo Diaz
- Department of Orthopedics and Traumatology, Hospital Alma Mater de Antioquia, Medellín, Colombia.,Department of Orthopedics and Traumatology, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - James E Cassat
- Department of Paediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Melissa Depypere
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland. .,School of Veterinary Science, Aberystwyth University, Aberystwyth, UK.
| |
Collapse
|
15
|
Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflamm Regen 2022; 42:26. [PMID: 36045395 PMCID: PMC9434865 DOI: 10.1186/s41232-022-00212-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
The skin serves as the interface between the human body and the environment and interacts with the microbial community. The skin microbiota consists of microorganisms, such as bacteria, fungi, mites, and viruses, and they fluctuate depending on the microenvironment defined by anatomical location and physiological function. The balance of interactions between the host and microbiota plays a pivotal role in the orchestration of skin homeostasis; however, the disturbance of the balance due to an alteration in the microbial communities, namely, dysbiosis, leads to various skin disorders. Recent developments in sequencing technology have provided new insights into the structure and function of skin microbial communities. Based on high-throughput sequencing analysis, a growing body of evidence indicates that a new treatment using live bacteria, termed bacteriotherapy, is a feasible therapeutic option for cutaneous diseases caused by dysbiosis. In particular, the administration of specific bacterial strains has been investigated as an exclusionary treatment strategy against pathogens associated with chronic skin disorders, whereas the safety, efficacy, and sustainability of this therapeutic approach using isolated live bacteria need to be further explored. In this review, we summarize our current understanding of the skin microbiota, as well as therapeutic strategies using characterized strains of live bacteria for skin inflammatory diseases. The ecosystem formed by interactions between the host and skin microbial consortium is still largely unexplored; however, advances in our understanding of the function of the skin microbiota at the strain level will lead to the development of new therapeutic methods.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
16
|
Schwarz EM. What Are the Immune Responses That Allow Us to Live With Incurable Bone Infection, and How Can They Be Augmented to Improve Outcomes After Prosthetic Joint Infection? J Bone Miner Res 2022; 37:824-825. [PMID: 35435268 PMCID: PMC9098684 DOI: 10.1002/jbmr.4555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Edward M Schwarz
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Abuzneid YS, Rabee A, Alzeerelhouseini HIA, Ghattass DWS, Shiebat N, Abukarsh R. Post-surgical staphylococcal toxic shock syndrome in pediatrics: A case report. Int J Surg Case Rep 2021; 89:106587. [PMID: 34775320 PMCID: PMC8594769 DOI: 10.1016/j.ijscr.2021.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction Toxic shock syndrome (TSS) is a rare but serious, life-threatening medical condition and potentially lethal if not detected and treated early. It is mainly caused by a toxin called toxin-1 produced by Staphylococcus aureus, and characterized by fever, hypotension, rash, skin desquamation and multisystem involvement. Case presentation Herein, we describe a nine-month-old male patient who presented to the hospital complaining of fever, vomiting and hypoactivity on day one post-orchidopexy. During hospitalization, his condition began to deteriorate with signs and symptoms of multisystemic failure. Laboratory tests and radiological images were done, leading to the decision to reopen and drain the surgical wound. Wound and nasal swabs were cultured and showed S. aureus infection, and the diagnosis of toxic shock syndrome was confirmed. Discussion TSS is a systemic illness resulting from overwhelming host response to bacterial exotoxins, that cause T cells activation and the release of pro-inflammatory cytokines (IL-1 and TNF-α causing fever, hypotension, and tissue injury). Also, it can present with CNS signs that may be misdiagnosed with meningitis in pediatrics. It requires early identification and treatment despite its rarity with mortality rate of 81% even with treatment. The patient's presentation, examination and laboratories tests with the blood and wound cultures were highly suggestive for this condition. Conclusion Physicians must maintain a high index of suspicion for TSS, as early diagnosis and treatment make a difference. This condition shouldn't be excluded even in young age patients or after simple procedure as in our case in which TSS occurred after orchidopexy. Toxic shock syndrome is a life-threatening condition that can be highly mortal even with treatment. Post-surgical TSS is very rare and according to the literature this is the first reported case post-orchidopexy. Broad spectrum antibiotics with debridement of the necrotic tissue as management are the best option to treat this condition.
Collapse
Affiliation(s)
- Yousef S Abuzneid
- Al-Quds University, Faculty of Medicine, Jerusalem, State of Palestine.
| | - Abdelrahman Rabee
- Al-Quds University, Faculty of Medicine, Jerusalem, State of Palestine
| | | | | | - Nermeen Shiebat
- Al-Quds University, Faculty of Medicine, Jerusalem, State of Palestine
| | - Radwan Abukarsh
- Palestine Red Crescent Society Hospital, Hebron, State of Palestine
| |
Collapse
|
18
|
Patel T, Quow K, Cardones AR. Management of Infectious Emergencies for the Inpatient Dermatologist. CURRENT DERMATOLOGY REPORTS 2021; 10:232-242. [PMID: 34642610 PMCID: PMC8493951 DOI: 10.1007/s13671-021-00334-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Purpose of Review There are various dermatologic emergencies stemming from bacterial, viral, and fungal etiologies that can present in the inpatient setting. This review summarizes the pathogenesis and diagnosis of infections with cutaneous involvement and highlights new therapies. Recent Findings Clindamycin inhibits toxin formation and can be used as an adjunct therapy for the staphylococcal scalded syndrome. Isavuconazole therapy for mucormycosis infection is a less toxic alternative to amphotericin B. Summary Diagnosis of these infections is primarily guided by high clinical suspicion and early recognition can prevent dangerous sequelae. Treatment mainstays have been well-established, but there are adjunctive therapies that may potentially benefit the patient.
Collapse
Affiliation(s)
- Tulsi Patel
- Duke University School of Medicine, Durham, NC 27710 USA
| | - Krystina Quow
- Department of Dermatology, Duke University, Durham, NC 27710 USA
| | - Adela R Cardones
- Department of Dermatology, Duke University, Durham, NC 27710 USA
- Durham VA Medical Center, Durham, NC 27705 USA
- Durham, USA
| |
Collapse
|
19
|
Silverberg B. A Structured Approach to Skin and Soft Tissue Infections (SSTIs) in an Ambulatory Setting. Clin Pract 2021; 11:65-74. [PMID: 33535501 PMCID: PMC7931029 DOI: 10.3390/clinpract11010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/29/2022] Open
Abstract
The skin is the largest, and arguably, the most vulnerable organ in the human body. Scratches and scrapes, bites and puncture wounds, impetigo and erysipelas-all these disruptions can lead to pain, swelling, and/or systemic symptoms. In this article, which is based on the Infectious Diseases Society of America's 2014 guidelines and the World Society of Emergency Surgery and Surgical Infection Society of Europe's 2018 consensus statement, a structured approach to skin and soft tissue infections (SSTIs) is reviewed, comparing treatment for suppurative and non-suppurative infections, and then discussing specific conditions commonly seen in Primary Care and Urgent Care facilities.
Collapse
Affiliation(s)
- Benjamin Silverberg
- Department of Emergency Medicine, West Virginia University, 1 Medical Center Drive, Box 9149, Morgantown, WV 26506, USA
| |
Collapse
|
20
|
Staphylococcal toxic shock syndrome in a lactating mother with breast abscess: A case report. Ann Med Surg (Lond) 2020; 57:133-136. [PMID: 32760582 PMCID: PMC7390825 DOI: 10.1016/j.amsu.2020.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction The highest risk for Staphylococcal Toxic Shock Syndrome are female patients with pre-existing Staphylococcal vaginal colonization who frequently use contraceptive sponges, diaphragms or tampons. In addition patients with burns, soft tissue injures, retained nasal packing, post-abortion, post-surgical, post intrauterine device placement and abscess formation are also at high risk. Case presentation A 19 years old female complaint of high fever with altered level of consciousness. She also had history of nausea, vomiting, diarrhea and pain on her left breast for 5 days. She developed desquamation on her palms and soles on the day three of her admission to ICU. Ultrasonography of her left breast showed 2*2*1 cm abscess collection and the culture report from breast abscess showed Staphylococcus aureus, sensitive to clindamycin, vancomycin and resistant to methicillin. She showed clinical improvement after commencing vancomycin and clindamycin as per culture sensitivity report of breast abscess. Discussion Toxic shock syndrome secondary to breast abscess in adult is infrequently reported. The diagnosis of Toxic shock syndrome is made by the Centers for Disease Control and Prevention (CDC) definition. Antibiotics for treatment of this condition should include a penicillinase-resistant penicillin, cephalosporin, or vancomycin (in methicillin-resistant S. aureus prevalent areas) in combination with either clindamycin or linezolid. Conclusion Treatment for breast abscess warrants incision and drainage as important as antibiotics with anti-toxin. Focused history, physical examination, and laboratory investigations are crucial for the diagnosis and management of this condition. The average annual incidence of TSS among adults is low and MRSA isolation among those cases is even more rare. TSS secondary to breast abscess in adult is infrequently reported. Treatment for breast abscess warrants I &D as important as antibiotics with anti-toxin. TSS is a potentially deadly condition and it requires prompt recognition and management.
Collapse
|
21
|
Jordan TJM, Affolter VK, Outerbridge CA, Hoehne SN, Siniard WC, White SD. Pathology in Practice. J Am Vet Med Assoc 2020; 255:427-430. [PMID: 31355729 DOI: 10.2460/javma.255.4.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Celie KB, Colen DL, Kovach SJ. Toxic Shock Syndrome after Surgery: Case Presentation and Systematic Review of the Literature. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2499. [PMID: 33133879 PMCID: PMC7572075 DOI: 10.1097/gox.0000000000002499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2019] [Indexed: 02/03/2023]
Abstract
Toxic shock syndrome (TSS) is an underrecognized but highly fatal cause of septic shock in postoperative patients. Although it may present with no overt source of infection, its course is devastating and rapidly progressive. Surgeon awareness is needed to recognize and treat this condition appropriately. In this paper, we aim to describe a case of postoperative TSS, present a systematic review of the literature, and provide an overview of the disease for the surgeon. METHODS A systematic review of the literature between 1978 and 2018 was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines using the keywords "toxic shock syndrome" and "surgery." Variables of interest were collected in each report. RESULTS A total of 298 reports were screened, and 67 reports describing 96 individual patients met inclusion criteria. Six reports described a streptococcal cause, although the vast majority attributed TSS to Staphylococcus aureus (SA). The mortality in our review was 9.4%, although 24% of patients suffered some manner of permanent complication. TSS presented at a median of 4 days postoperatively, with most cases occurring within 10 days. CONCLUSIONS Surgeons must maintain a high index of suspicion for postoperative TSS. Our review demonstrates that TSS should not be excluded despite young patient age, patient health, or relative simplicity of a procedure. Symptoms such as fever, rash, pain out of proportion to examination, and diarrhea or emesis should raise concern for TSS and prompt exploration and cultures even of benign-appearing postoperative wounds.
Collapse
Affiliation(s)
- Karel-Bart Celie
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - David L. Colen
- Hospital of the University of Pennsylvania, Division of Plastic Surgery, Philadelphia, Pa
| | - Stephen J. Kovach
- Hospital of the University of Pennsylvania, Division of Plastic Surgery, Philadelphia, Pa
| |
Collapse
|
23
|
Abstract
BACKGROUND Toxic shock syndrome (TSS) is an acute, severe, toxin-mediated disease, characterized by fever, hypotension, and multiorgan system involvement. Toxic shock syndrome has made headlines because of its high associated morbidity and mortality rate in previously healthy young females. Incidence peaked in the early 1980s owing to increased usage of ultra-absorbent tampons. After improved patient education and tampon labeling, the incidence of menstrual TSS has declined. CASE A previously healthy 14-year-old girl presented to an urgent care center with a 2-day history of fever, erythematous maculopapular rash, vomiting, diarrhea, and malaise. She was found to be tachycardic and hypotensive. Investigations revealed thrombocytopenia, an elevated white count and lactate, and acute kidney injury, consistent with septic shock. Recent tampon usage with menstruation was reported, and a pelvic examination revealed purulent vaginal discharge. The patient was transferred to a pediatric intensive care unit for antibiotic and vasopressor therapy. Vaginal swabs later tested positive for Staphylococcus aureus and TSS toxin-1. CONCLUSIONS Although the incidence of TSS has decreased in recent years, it is crucial that clinicians rapidly recognize and treat this life-threatening condition. Emergency physicians should always have a high index of suspicion for TSS in young females presenting without another obvious cause of shock. A pelvic examination should always be completed in these cases.
Collapse
|
24
|
Abstract
Staphylococci have been isolated from various sites of the body of healthy sheep, as well as from many infections of those animals, the main one being mastitis. The objective of this review is to appraise the importance and significance of staphylococci in causing mastitis in ewes. The review includes a brief classification and taxonomy of staphylococci and describes the procedures for their isolation and identification, as well as their virulence determinants and the mechanisms of resistance to antibacterial agents. Various staphylococcal species have been implicated in staphylococcal mastitis and the characteristics of isolates are discussed with regards to potential virulence factors. Staphylococcal mastitis is explicitly described, with reference to sources of infection, the course of the disease and the relevant control measures. Finally, the potential significance of staphylococci present in ewes' milk for public health is discussed briefly.
Collapse
|
25
|
The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2019; 8:antibiotics8020052. [PMID: 31052511 PMCID: PMC6627156 DOI: 10.3390/antibiotics8020052] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus has been an exceptionally successful pathogen, which is still relevant in modern age-medicine due to its adaptability and tenacity. This bacterium may be a causative agent in a plethora of infections, owing to its abundance (in the environment and in the normal flora) and the variety of virulence factors that it possesses. Methicillin-resistant S. aureus (MRSA) strains—first described in 1961—are characterized by an altered penicillin-binding protein (PBP2a/c) and resistance to all penicillins, cephalosporins, and carbapenems, which makes the β-lactam armamentarium clinically ineffective. The acquisition of additional resistance determinants further complicates their eradication; therefore, MRSA can be considered as the first representative of multidrug-resistant bacteria. Based on 230 references, the aim of this review is to recap the history, the emergence, and clinical features of various MRSA infections (hospital-, community-, and livestock-associated), and to summarize the current advances regarding MRSA screening, typing, and therapeutic options (including lipoglycopeptides, oxazolidinones, anti-MRSA cephalosporins, novel pleuromutilin-, tetracycline- and quinolone-derivatives, daptomycin, fusidic acid, in addition to drug candidates in the development phase), both for an audience of clinical microbiologists and infectious disease specialists.
Collapse
|
26
|
Gottlieb M, Long B, Koyfman A. The Evaluation and Management of Toxic Shock Syndrome in the Emergency Department: A Review of the Literature. J Emerg Med 2018; 54:807-814. [PMID: 29366615 DOI: 10.1016/j.jemermed.2017.12.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/17/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Toxic shock syndrome (TSS) is a severe, toxin-mediated illness that can mimic several other diseases and is lethal if not recognized and treated appropriately. OBJECTIVE This review provides an emergency medicine evidence-based summary of the current evaluation and treatment of TSS. DISCUSSION The most common etiologic agents are Staphylococcus aureus and Streptococcus pyogenes. Sources of TSS include postsurgical wounds, postpartum, postabortion, burns, soft tissue injuries, pharyngitis, and focal infections. Symptoms are due to toxin production and infection focus. Early symptoms include fever, chills, malaise, rash, vomiting, diarrhea, and hypotension. Diffuse erythema and desquamation may occur later in the disease course. Laboratory assessment may demonstrate anemia, thrombocytopenia, elevated liver enzymes, and abnormal coagulation studies. Diagnostic criteria are available to facilitate the diagnosis, but they should not be relied on for definitive diagnosis. Rather, specific situations should trigger consideration of this disease process. Treatment involves intravenous fluids, source control, and antibiotics. Antibiotics should include a penicillinase-resistant penicillin, cephalosporin, or vancomycin (in methicillin-resistant S. aureus prevalent areas) along with either clindamycin or linezolid. CONCLUSION TSS is a potentially deadly disease requiring prompt recognition and treatment. Focused history, physical examination, and laboratory testing are important for the diagnosis and management of this disease. Understanding the evaluation and treatment of TSS can assist providers with effectively managing these patients.
Collapse
Affiliation(s)
- Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, Illinois
| | - Brit Long
- Department of Emergency Medicine, San Antonio Military Medical Center, Fort Sam Houston, Texas
| | - Alex Koyfman
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
27
|
|
28
|
Bîrluțiu V, Criștiu O, Baicu M, Bîrluțiu RM. The Management of Staphylococcal Toxic Shock Syndrome. A Case Report. ACTA ACUST UNITED AC 2016; 2:85-88. [PMID: 29967843 DOI: 10.1515/jccm-2016-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/05/2016] [Indexed: 11/15/2022]
Abstract
Staphylococcal toxic shock syndrome (TSS) is most frequently produced by TSS toxin-1 (TSST-1) and Staphylococcal enterotoxin B (SEB), and only rarely by enterotoxins A, C, D, E, and H. Various clinical pictures can occur depending on severity, patient age and immune status of the host. Severe forms, complicated by sepsis, are associated with a death rate of 50-60%. The case of a Caucasian female infant, aged seven weeks, hospitalized with a diffuse skin rash, characterized as allergodermia, who initially developed TSS with axillary intertrigo, is reported. TSS was confirmed according to 2011 CDC criteria, and blood cultures positive for Methicillin-sensitive Staphylococcus aureus (MSSA). Severe development occurred initial, including acidosis, consumption coagulopathy, multiple organ failures (MOF), including impaired liver and kidney function. Central nervous system damage was manifest by seizures. Clinical management included medical supervision by a multidisciplinary team of infectious diseases specialist and intensive care specialist, as well as the initiation of a complex treatment plan to correct hydro electrolytic imbalances and acidosis. This treatment included antibiotic and antifungal therapy, diuretic therapy, immunoglobulins, and local treatment similar to a patient with burns to prevent superinfection of skin and mucous membranes lesions. There was a favourable response to the treatment with resolution of the illness.
Collapse
Affiliation(s)
- Victoria Bîrluțiu
- Lucian Blaga University of Sibiu, Faculty of Medicine, Sibiu, Romania.,Sibiu County Clinical Emergency Hospital, Infectious Diseases Department, Sibiu, Romania
| | - Ofelia Criștiu
- Pediatric Clinical Hospital Sibiu, Infectious Diseases Department, Sibiu, Romania
| | - Marius Baicu
- Pediatric Clinical Hospital Sibiu, Intensive Care Department, Sibiu, Romania
| | - Rareș Mircea Bîrluțiu
- Lucian Blaga University of Sibiu, Faculty of Medicine, Sibiu, Romania.,Foişor Clinical Hospital of Orthopedics, Traumatology and Osteoarticular Tuberculosis, Bucharest, Romania
| |
Collapse
|
29
|
Waito M, Walsh SR, Rasiuk A, Bridle BW, Willms AR. A Mathematical Model of Cytokine Dynamics During a Cytokine Storm. MATHEMATICAL AND COMPUTATIONAL APPROACHES IN ADVANCING MODERN SCIENCE AND ENGINEERING 2016. [PMCID: PMC7123790 DOI: 10.1007/978-3-319-30379-6_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytokine storms are a potentially fatal exaggerated immune response consisting of an uncontrolled positive feedback loop between immune cells and cytokines. The dynamics of cytokines are highly complex and little is known about specific interactions. Researchers at the Ontario Veterinary College have encountered cytokine storms during virotherapy. Multiple mouse trials were conducted where a virus was injected into mice whose leukocytes lacked expression of the type I interferon receptor. In each case a rapid, fatal cytokine storm occurred. A nonlinear differential equation model of the recorded cytokine amounts was produced to obtain some information on their mutual interactions. Results provide insight into the complex mechanism that drives the storm and possible ways to prevent such immune responses.
Collapse
|
30
|
|
31
|
Staphylococcus aureus, Toll-like receptors, superantigens, and their derivatives. J Mol Med (Berl) 2012; 90:1091-3. [DOI: 10.1007/s00109-012-0939-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Chimeric anti-staphylococcal enterotoxin B antibodies and lovastatin act synergistically to provide in vivo protection against lethal doses of SEB. PLoS One 2011; 6:e27203. [PMID: 22102880 PMCID: PMC3216929 DOI: 10.1371/journal.pone.0027203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) is one of a family of toxins secreted by Staphylococcus aureus that act as superantigens, activating a large fraction of the T-cell population and inducing production of high levels of inflammatory cytokines that can cause toxic shock syndrome (TSS) and death. Extracellular engagement of the TCR of T-cells and class II MHC of antigen presenting cells by SEB triggers the activation of many intracellular signaling processes. We engineered chimeric antibodies to block the extracellular engagement of cellular receptors by SEB and used a statin to inhibit intracellular signaling. Chimeric human-mouse antibodies directed against different neutralizing epitopes of SEB synergistically inhibited its activation of human T-cells in vitro. In the in vivo model of lethal toxic shock syndrome (TSS) in HLA-DR3 transgenic mice, two of these antibodies conferred significant partial protection when administered individually, but offered complete protection in a synergistic manner when given together. Similarly, in vivo, lovastatin alone conferred only partial protection from TSS similar to single anti-SEB antibodies. However, used in combination with one chimeric neutralizing anti-SEB antibody, lovastatin provided complete protection against lethal TSS in HLA-DR3 transgenic mice. These experiments demonstrate that in vivo protection against lethal doses of SEB can be achieved by a statin of proven clinical safety and chimeric human-mouse antibodies, agents now widely used and known to be of low immunogenicity in human hosts.
Collapse
|
33
|
Stenz L, Francois P, Whiteson K, Wolz C, Linder P, Schrenzel J. The CodY pleiotropic repressor controls virulence in gram-positive pathogens. ACTA ACUST UNITED AC 2011; 62:123-39. [PMID: 21539625 DOI: 10.1111/j.1574-695x.2011.00812.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CodY is involved in the adaptive response to starvation in at least 30 different low G+C gram-positive bacteria. After dimerization and activation by cofactor binding, CodY binds to a consensus palindromic DNA sequence, leading to the repression of approximately 5% of the genome. CodY represses the transcription of target genes when bound to DNA by competition with the RNA polymerase for promoter binding, or by interference with transcriptional elongation as a roadblock. CodY displays enhanced affinity for its DNA target when bound to GTP and/or branched chain amino acids (BCAA). When nutrients become limiting in the postexponential growth phase, a decrease of intracellular levels of GTP and BCAA causes a deactivation of CodY and decreases its affinity for DNA, leading to the induction of its regulon. CodY-regulated genes trigger adaptation of the bacteria to starvation by highly diverse mechanisms, such as secretion of proteases coupled to expression of amino acid transporters, and promotion of survival strategies like sporulation or biofilm formation. Additionally, in pathogenic bacteria, several virulence factors are regulated by CodY. As a function of their access to nutrients, pathogenic gram-positive bacteria express virulence factors in a codY-dependant manner. This is true for the anthrax toxins of Bacillus anthracis and the haemolysins of Staphylococcus aureus. The purpose of this review is to illustrate CodY-regulated mechanisms on virulence in major gram-positive pathogens.
Collapse
Affiliation(s)
- Ludwig Stenz
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Prevalence of toxin genes in consecutive clinical isolates of Staphylococcus aureus and clinical impact. Eur J Clin Microbiol Infect Dis 2011; 30:719-25. [DOI: 10.1007/s10096-010-1143-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|