1
|
Tian Z, Zhang Y, Xu J, Yang Q, Hu D, Feng J, Gai C. Primary cilia in Parkinson's disease: summative roles in signaling pathways, genes, defective mitochondrial function, and substantia nigra dopaminergic neurons. Front Aging Neurosci 2024; 16:1451655. [PMID: 39364348 PMCID: PMC11447156 DOI: 10.3389/fnagi.2024.1451655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Primary cilia (PC) are microtubules-based, independent antennal-like sensory organelles, that are seen in most vertebrate cells of different types, including astrocytes and neurons. They send signals to cells to control many physiological and cellular processes by detecting changes in the extracellular environment. Parkinson's disease (PD), a neurodegenerative disease that progresses over time, is primarily caused by a gradual degradation of the dopaminergic pathway in the striatum nigra, which results in a large loss of neurons in the substantia nigra compact (SNpc) and a depletion of dopamine (DA). PD samples have abnormalities in the structure and function of PC. The alterations contribute to the cause, development, and recovery of PD via influencing signaling pathways (SHH, Wnt, Notch-1, α-syn, and TGFβ), genes (MYH10 and LRRK2), defective mitochondrial function, and substantia nigra dopaminergic neurons. Thus, restoring the normal structure and physiological function of PC and neurons in the brain are effective treatment for PD. This review summarizes the function of PC in neurodegenerative diseases and explores the pathological mechanisms caused by PC alterations in PD, in order to provide references and ideas for future research.
Collapse
Affiliation(s)
- Zijiao Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yixin Zhang
- College of Acupuncture and Massage, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qianwen Yang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Die Hu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Feng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Caradonna E, Nemni R, Bifone A, Gandolfo P, Costantino L, Giordano L, Mormone E, Macula A, Cuomo M, Difruscolo R, Vanoli C, Vanoli E, Ferrara F. The Brain-Gut Axis, an Important Player in Alzheimer and Parkinson Disease: A Narrative Review. J Clin Med 2024; 13:4130. [PMID: 39064171 PMCID: PMC11278248 DOI: 10.3390/jcm13144130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are severe age-related disorders with complex and multifactorial causes. Recent research suggests a critical link between neurodegeneration and the gut microbiome, via the gut-brain communication pathway. This review examines the role of trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, in the development of AD and PD, and investigates its interaction with microRNAs (miRNAs) along this bidirectional pathway. TMAO, which is produced from dietary metabolites like choline and carnitine, has been linked to increased neuroinflammation, protein misfolding, and cognitive decline. In AD, elevated TMAO levels are associated with amyloid-beta and tau pathologies, blood-brain barrier disruption, and neuronal death. TMAO can cross the blood-brain barrier and promote the aggregation of amyloid and tau proteins. Similarly, TMAO affects alpha-synuclein conformation and aggregation, a hallmark of PD. TMAO also activates pro-inflammatory pathways such as NF-kB signaling, exacerbating neuroinflammation further. Moreover, TMAO modulates the expression of various miRNAs that are involved in neurodegenerative processes. Thus, the gut microbiome-miRNA-brain axis represents a newly discovered mechanistic link between gut dysbiosis and neurodegeneration. MiRNAs regulate the key pathways involved in neuroinflammation, oxidative stress, and neuronal death, contributing to disease progression. As a direct consequence, specific miRNA signatures may serve as potential biomarkers for the early detection and monitoring of AD and PD progression. This review aims to elucidate the complex interrelationships between the gut microbiota, trimethylamine-N-oxide (TMAO), microRNAs (miRNAs), and the central nervous system, and the implications of these connections in neurodegenerative diseases. In this context, an overview of the current neuroradiology techniques available for studying neuroinflammation and of the animal models used to investigate these intricate pathologies will also be provided. In summary, a bulk of evidence supports the concept that modulating the gut-brain communication pathway through dietary changes, the manipulation of the microbiome, and/or miRNA-based therapies may offer novel approaches for implementing the treatment of debilitating neurological disorders.
Collapse
Affiliation(s)
- Eugenio Caradonna
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| | - Raffaello Nemni
- Unit of Neurology, Centro Diagnostico Italiano S.p.A., Milan Fondazione Crespi Spano, 20011 Milan, Italy;
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Torino, Italy;
| | - Patrizia Gandolfo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
| | - Lucy Costantino
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Luca Giordano
- Laboratory of Medical Genetics, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (L.C.); (L.G.)
| | - Elisabetta Mormone
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Anna Macula
- Centro Ricerche Bracco, Bracco Imaging S.p.A., Colleretto Giacosa, 10010 Turin, Italy;
- Department of Physics, University of Torino, 10124 Torino, Italy
| | - Mariarosa Cuomo
- Nuclear Medicine Unit, Imaging Department, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (P.G.); (M.C.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | | | - Camilla Vanoli
- Department of Clinical Psychology, Antioch University Los Angeles, Culver City, CA 90230, USA
| | - Emilio Vanoli
- School of Nursing, Cardiovascular Diseases, University of Pavia, 27100 Pavia, Italy;
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano S.p.A., 20011 Milan, Italy; (E.C.); (F.F.)
| |
Collapse
|
3
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Chia R, Ray A, Shah Z, Ding J, Ruffo P, Fujita M, Menon V, Saez-Atienzar S, Reho P, Kaivola K, Walton RL, Reynolds RH, Karra R, Sait S, Akcimen F, Diez-Fairen M, Alvarez I, Fanciulli A, Stefanova N, Seppi K, Duerr S, Leys F, Krismer F, Sidoroff V, Zimprich A, Pirker W, Rascol O, Foubert-Samier A, Meissner WG, Tison F, Pavy-Le Traon A, Pellecchia MT, Barone P, Russillo MC, Marín-Lahoz J, Kulisevsky J, Torres S, Mir P, Periñán MT, Proukakis C, Chelban V, Wu L, Goh YY, Parkkinen L, Hu MT, Kobylecki C, Saxon JA, Rollinson S, Garland E, Biaggioni I, Litvan I, Rubio I, Alcalay RN, Kwei KT, Lubbe SJ, Mao Q, Flanagan ME, Castellani RJ, Khurana V, Ndayisaba A, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Moore A, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Kim C, Iba M, Masliah E, Dawson TM, Rosenthal LS, Pantelyat A, Albert MS, Pletnikova O, Troncoso JC, Infante J, Lage C, Sánchez-Juan P, Serrano GE, Beach TG, Pastor P, Morris HR, Albani D, Clarimon J, Wenning GK, Hardy JA, Ryten M, Topol E, Torkamani A, Chiò A, Bennett DA, De Jager PL, Low PA, Singer W, Cheshire WP, Wszolek ZK, Dickson DW, Traynor BJ, Gibbs JR, Dalgard CL, Ross OA, Houlden H, Scholz SW. Genome sequence analyses identify novel risk loci for multiple system atrophy. Neuron 2024; 112:2142-2156.e5. [PMID: 38701790 PMCID: PMC11223971 DOI: 10.1016/j.neuron.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.
Collapse
Affiliation(s)
- Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Regina H Reynolds
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ramita Karra
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Shaimaa Sait
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Fulya Akcimen
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Monica Diez-Fairen
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Ignacio Alvarez
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | | | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Duerr
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Leys
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Walter Pirker
- Department of Neurology, Klinik Ottakring - Wilhelminenspital, Vienna, Austria
| | - Olivier Rascol
- MSA French Reference Center and CIC-1436, Department of Clinical Pharmacology and Neurosciences, University of Toulouse, Toulouse, France
| | - Alexandra Foubert-Samier
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France
| | - Wassilios G Meissner
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France; University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France; Department of Medicine, University of Otago, and the New Zealand Brain Research Institute, Christchurch, New Zealand
| | - François Tison
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France; University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Anne Pavy-Le Traon
- French Reference Center for MSA, Department of Neurosciences, Centre d'Investigation Clinique de Toulouse CIC1436, UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University Hospital of Toulouse, INSERM, Toulouse, France
| | - Maria Teresa Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Paolo Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Maria Claudia Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain; Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soraya Torres
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Departamento de Medicina Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Maria Teresa Periñán
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain; Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University, London, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lesley Wu
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Yee Y Goh
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christopher Kobylecki
- Department of Neurology, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Jennifer A Saxon
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salfort, UK; Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emily Garland
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Italo Biaggioni
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ileana Rubio
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Kimberly T Kwei
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Pathology, UT Health San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alain Ndayisaba
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Gianluca Floris
- Department of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Ryan C Bohannan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anni Moore
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | - Jose-Alberto Palma
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA; Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Carmen Lage
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Pascual Sánchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain; Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Pau Pastor
- Genomics and Transcriptomics of Synucleinopathies, Neurosciences, The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jordi Clarimon
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; The Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gregor K Wenning
- Autonomic Unit - Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - John A Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute of UCL, UCL Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; UCL Movement Disorders Centre, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Eric Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Philip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
5
|
Afsheen S, Rehman AS, Jamal A, Khan N, Parvez S. Understanding role of pesticides in development of Parkinson's disease: Insights from Drosophila and rodent models. Ageing Res Rev 2024; 98:102340. [PMID: 38759892 DOI: 10.1016/j.arr.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Parkinson's disease is a neurodegenerative illness linked to ageing, marked by the gradual decline of dopaminergic neurons in the midbrain. The exact aetiology of Parkinson's disease (PD) remains uncertain, with genetic predisposition and environmental variables playing significant roles in the disease's frequency. Epidemiological data indicates a possible connection between pesticide exposure and brain degeneration. Specific pesticides have been associated with important characteristics of Parkinson's disease, such as mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation, which are crucial for the advancement of the disease. Recently, many animal models have been developed for Parkinson's disease study. Although these models do not perfectly replicate the disease's pathology, they provide valuable insights that improve our understanding of the condition and the limitations of current treatment methods. Drosophila, in particular, has been useful in studying Parkinson's disease induced by toxins or genetic factors. The review thoroughly analyses many animal models utilised in Parkinson's research, with an emphasis on issues including pesticides, genetic and epigenetic changes, proteasome failure, oxidative damage, α-synuclein inoculation, and mitochondrial dysfunction. The text highlights the important impact of pesticides on the onset of Parkinson's disease (PD) and stresses the need for more research on genetic and mechanistic alterations linked to the condition.
Collapse
Affiliation(s)
- Saba Afsheen
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Shaney Rehman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Wetzel A, Lei SH, Liu T, Hughes MP, Peng Y, McKay T, Waddington SN, Grannò S, Rahim AA, Harvey K. Dysregulated Wnt and NFAT signaling in a Parkinson's disease LRRK2 G2019S knock-in model. Sci Rep 2024; 14:12393. [PMID: 38811759 PMCID: PMC11137013 DOI: 10.1038/s41598-024-63130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Parkinson's disease (PD) is a progressive late-onset neurodegenerative disease leading to physical and cognitive decline. Mutations of leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of PD. LRRK2 is a complex scaffolding protein with known regulatory roles in multiple molecular pathways. Two prominent examples of LRRK2-modulated pathways are Wingless/Int (Wnt) and nuclear factor of activated T-cells (NFAT) signaling. Both are well described key regulators of immune and nervous system development as well as maturation. The aim of this study was to establish the physiological and pathogenic role of LRRK2 in Wnt and NFAT signaling in the brain, as well as the potential contribution of the non-canonical Wnt/Calcium pathway. In vivo cerebral Wnt and NFATc1 signaling activity was quantified in LRRK2 G2019S mutant knock-in (KI) and LRRK2 knockout (KO) male and female mice with repeated measures over 28 weeks, employing lentiviral luciferase biosensors, and analyzed using a mixed-effect model. To establish spatial resolution, we investigated tissues, and primary neuronal cell cultures from different brain regions combining luciferase signaling activity, immunohistochemistry, qPCR and western blot assays. Results were analyzed by unpaired t-test with Welch's correction or 2-way ANOVA with post hoc corrections. In vivo Wnt signaling activity in LRRK2 KO and LRRK2 G2019S KI mice was increased significantly ~ threefold, with a more pronounced effect in males (~ fourfold) than females (~ twofold). NFATc1 signaling was reduced ~ 0.5-fold in LRRK2 G2019S KI mice. Brain tissue analysis showed region-specific expression changes in Wnt and NFAT signaling components. These effects were predominantly observed at the protein level in the striatum and cerebral cortex of LRRK2 KI mice. Primary neuronal cell culture analysis showed significant genotype-dependent alterations in Wnt and NFATc1 signaling under basal and stimulated conditions. Wnt and NFATc1 signaling was primarily dysregulated in cortical and hippocampal neurons respectively. Our study further built on knowledge of LRRK2 as a Wnt and NFAT signaling protein. We identified complex changes in neuronal models of LRRK2 PD, suggesting a role for mutant LRRK2 in the dysregulation of NFAT, and canonical and non-canonical Wnt signaling.
Collapse
Affiliation(s)
- Andrea Wetzel
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Si Hang Lei
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tiansheng Liu
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Michael P Hughes
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Yunan Peng
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tristan McKay
- Department of Life Sciences, Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, University College London, 86-96 Chenies Mews, London, WC1E 6HXZ, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone Grannò
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospitals, Rue Gabrielle-Perret Gentil 4, 1205, Geneva, Switzerland
| | - Ahad A Rahim
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
7
|
Manoutcharian K, Gevorkian G. Recombinant Antibody Fragments for Immunotherapy of Parkinson's Disease. BioDrugs 2024; 38:249-257. [PMID: 38280078 PMCID: PMC10912140 DOI: 10.1007/s40259-024-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder. Multiple genetic and environmental factors leading to progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SN) and consequent depletion of dopamine were described. Current clinical approaches, such as dopamine replacement or deep brain stimulation using surgically implanted probes, provide symptomatic relief but cannot modify disease progression. Therefore, disease-modifying therapeutic tools are urgently needed. Immunotherapy approaches, including passive transfer of protective antibodies and their fragments, have shown therapeutic efficacy in several animal models of neurodegenerative diseases, including PD. Recombinant antibody fragments are promising alternatives to conventional full-length antibodies. Modern computational approaches and molecular biology tools, directed evolution methodology, and the design of tissue-penetrating fusion peptides allowed for the development of recombinant antibody fragments with superior specificity and affinity, reduced immunogenicity, the capacity to target hidden epitopes and cross the blood-brain barrier (BBB), higher solubility and stability, the ability to refold after heat denaturation, and inexpensive large-scale production. In addition, antibody fragments do not induce microglia Fcγ receptor (FcγR)-mediated proinflammatory response and tissue damage in the central nervous system (CNS), because they lack the Fc portion of the immunoglobulin molecule. In the present review, we summarized data on recombinant antibody fragments evaluated as immunotherapeutics in preclinical models of PD and discussed their potential for developing therapeutic and preventive protocols for patients with PD.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, CP 04510, Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, CP 04510, Mexico, DF, Mexico.
| |
Collapse
|
8
|
Sun X, Dou K, Xue L, Xie Y, Yang Y, Xie A. Comprehensive analysis of clinical and biological features in Parkinson's disease associated with the LRRK2 G2019S mutation: Data from the PPMI study. Clin Transl Sci 2024; 17:e13720. [PMID: 38266062 PMCID: PMC10804919 DOI: 10.1111/cts.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
The Parkinson's Progression Marker Initiative (PPMI) aims to identify biomarkers for Parkinson's disease (PD) risk, onset, and progression. This study focuses on the G2019S missense mutation in the LRRK2 gene, which is associated with hereditary and sporadic PD. Utilizing data from the PPMI database, we conducted an analysis of baseline clinical characteristics, as well as serum and cerebrospinal fluid levels in two groups: patients with PD with the G2019S mutation (PD + G2019S) and patients with PD without the mutation (PD-G2019S). Multiple linear regression and longitudinal analysis were performed, controlling for confounding factors. Compared to the PD-G2019S group, the PD + G2019S group showed more obvious initial motor dysfunction-higher baseline Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) scores (false discovery rate [FDR]-adjusted p < 0.001), but progressed more slowly. Mechanism of Coordinated Access and activities of daily living (ADL) scores were lower at baseline (FDR-adjusted p < 0.001), whereas Scales for Outcomes of Parkinson's Disease (SCOPA)-Thermoregulatory (FDR-adjusted p = 0.015) scores were higher, emphasizing the increase of non-motor symptoms associated with LRRK2-G2019S mutation. During the follow-up period, the motor and non-motor symptoms changed dynamically with time, and there were longitudinal differences in the scores of MDS-UPDRS (FDR-adjusted PI = 0.013, PII = 0.008, PIV < 0.001), Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (FDR-adjusted p = 0.027), SCOPA-Thermoregulatory (FDR-adjusted p = 0.021), and ADL (FDR-adjusted p = 0.027) scale scores. PD associated with the LRRK2 G2019S mutation demonstrated more severe symptoms at baseline but slower progression. Motor complications and thermoregulatory disorders were more pronounced.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Kaixin Dou
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Li Xue
- Recording RoomThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yijie Xie
- Clinical Laboratory, Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital)QingdaoChina
| | - Yong Yang
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Anmu Xie
- Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
- Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
9
|
Manoutcharian K, Gevorkian G. Recombinant Antibody Fragments for Neurological Disorders: An Update. Curr Neuropharmacol 2024; 22:2157-2167. [PMID: 37646225 PMCID: PMC11337690 DOI: 10.2174/1570159x21666230830142554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
Recombinant antibody fragments are promising alternatives to full-length immunoglobulins, creating big opportunities for the pharmaceutical industry. Nowadays, antibody fragments such as antigen-binding fragments (Fab), single-chain fragment variable (scFv), single-domain antibodies (sdAbs), and bispecific antibodies (bsAbs) are being evaluated as diagnostics or therapeutics in preclinical models and in clinical trials. Immunotherapy approaches, including passive transfer of protective antibodies, have shown therapeutic efficacy in several animal models of Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), Huntington's disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS). There are various antibodies approved by the Food and Drug Administration (FDA) for treating multiple sclerosis and two amyloid beta-specific humanized antibodies, Aducanumab and Lecanemab, for AD. Our previous review summarized data on recombinant antibodies evaluated in pre-clinical models for immunotherapy of neurodegenerative diseases. Here, we explore recent studies in this fascinating research field, give an update on new preventive and therapeutic applications of recombinant antibody fragments for neurological disorders and discuss the potential of antibody fragments for developing novel approaches for crossing the blood-brain barrier (BBB) and targeting cells and molecules of interest in the brain.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Mexico
| |
Collapse
|
10
|
Donison N, Hintermayer M, Subramaniam M, Santandrea E, Volkening K, Strong MJ. Upregulation of LRRK2 following traumatic brain injury does not directly phosphorylate Thr 175 tau. Front Cell Neurosci 2023; 17:1272899. [PMID: 38026695 PMCID: PMC10663351 DOI: 10.3389/fncel.2023.1272899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Phosphorylated microtubule-associated protein tau (tau) aggregates are a pathological hallmark of various neurodegenerative diseases, including chronic traumatic encephalopathy and amyotrophic lateral sclerosis with cognitive impairment. While there are many residues phosphorylated on tau, phosphorylation of threonine 175 (pThr175 tau) has been shown to initiate fibril formation in vitro and is present in pathological tau aggregates in vivo. Given this, preventing Thr175 tau phosphorylation presents a potential approach to reduce fibril formation; however, the kinase(s) acting on Thr175 are not yet fully defined. Using a single controlled cortical impact rodent model of traumatic brain injury (TBI), which rapidly induces Thr175 tau phosphorylation, we observed an upregulation and alteration in subcellular localization of leucine-rich repeat kinase 2 (LRRK2), a kinase that has been implicated in tau phosphorylation. LRRK2 upregulation was evident by one-day post-injury and persisted to day 10. The most notable changes were observed in microglia at the site of injury in the cortex. To determine if the appearance of pThr175 tau was causally related to the upregulation of LRRK2 expression, we examined the ability of LRRK2 to phosphorylate Thr175in vitro by co-transfecting 2N4R human WT-tau with either LRRK2-WT, constitutively-active LRRK2-G2019S or inactive LRRK2-3XKD. We found no significant difference in the level of pThr175 tau between the overexpression of LRRK2-WT, -G2019S or -3XKD, suggesting LRRK2 does not phosphorylate tau at Thr175. Further, downstream events known to follow Thr175 phosphorylation and known to be associated with pathological tau fibril formation (pSer9-GSK3β and pThr231 tau induction) also remained unchanged. We conclude that while LRRK2 expression is altered in TBI, it does not contribute directly to pThr175 tau generation.
Collapse
Affiliation(s)
- Neil Donison
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew Hintermayer
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Maegha Subramaniam
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Erin Santandrea
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J. Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
11
|
Zhu C, Herbst S, Lewis PA. Leucine-rich repeat kinase 2 at a glance. J Cell Sci 2023; 136:jcs259724. [PMID: 37698513 PMCID: PMC10508695 DOI: 10.1242/jcs.259724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multidomain scaffolding protein with dual guanosine triphosphatase (GTPase) and kinase enzymatic activities, providing this protein with the capacity to regulate a multitude of signalling pathways and act as a key mediator of diverse cellular processes. Much of the interest in LRRK2 derives from mutations in the LRRK2 gene being the most common genetic cause of Parkinson's disease, and from the association of the LRRK2 locus with a number of other human diseases, including inflammatory bowel disease. Therefore, the LRRK2 research field has focused on the link between LRRK2 and pathology, with the aim of uncovering the underlying mechanisms and, ultimately, finding novel therapies and treatments to combat them. From the biochemical and cellular functions of LRRK2, to its relevance to distinct disease mechanisms, this Cell Science at a Glance article and the accompanying poster deliver a snapshot of our current understanding of LRRK2 function, dysfunction and links to disease.
Collapse
Affiliation(s)
- Christiane Zhu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Susanne Herbst
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Patrick A. Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
- Department of Neurodegenerative diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
12
|
Vissers MFJM, Troyer MD, Thijssen E, Pereira DR, Heuberger |JAAC, Groeneveld GJ, Huntwork‐Rodriguez S. A leucine-rich repeat kinase 2 (LRRK2) pathway biomarker characterization study in patients with Parkinson's disease with and without LRRK2 mutations and healthy controls. Clin Transl Sci 2023; 16:1408-1420. [PMID: 37177855 PMCID: PMC10432885 DOI: 10.1111/cts.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Increased leucine-rich repeat kinase 2 (LRRK2) kinase activity is an established risk factor for Parkinson's disease (PD), and several LRRK2 kinase inhibitors are in clinical development as potential novel disease-modifying therapeutics. This biomarker characterization study explored within- and between-subject variability of multiple LRRK2 pathway biomarkers (total LRRK2 [tLRRK2], phosphorylation of the serine 935 (Ser935) residue on LRRK2 [pS935], phosphorylation of Rab10 [pRab10], and total Rab10 [tRab10]) in different biological sources (whole blood, peripheral blood mononuclear cells [PBMCs], neutrophils) as candidate human target engagement and pharmacodynamic biomarkers for implementation in phase I/II pharmacological studies of LRRK2 inhibitors. PD patients with a LRRK2 mutation (n = 6), idiopathic PD patients (n = 6), and healthy matched control subjects (n = 10) were recruited for repeated blood and cerebrospinal fluid (CSF) sampling split over 2 days. Within-subject variability (geometric coefficient of variation [CV], %) of these biomarkers was lowest in whole blood and neutrophils (range: 12.64%-51.32%) and considerably higher in PBMCs (range: 34.81%-273.88%). Between-subject variability displayed a similar pattern, with relatively lower variability in neutrophils (range: 61.30%-66.26%) and whole blood (range: 44.94%-123.11%), and considerably higher variability in PBMCs (range: 189.60%-415.19%). Group-level differences were observed with elevated mean pRab10 levels in neutrophils and a reduced mean pS935/tLRRK2 ratio in PBMCs in PD LRRK2-mutation carriers compared to healthy controls. These findings suggest that the evaluated biomarkers and assays could be used to verify pharmacological mechanisms of action and help explore the dose-response of LRRK2 inhibitors in early-phase clinical studies. In addition, comparable α-synuclein aggregation in CSF was observed in LRRK2-mutation carriers compared to idiopathic PD patients.
Collapse
Affiliation(s)
- Maurits F. J. M. Vissers
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | | - Eva Thijssen
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | | | | - Geert Jan Groeneveld
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | |
Collapse
|
13
|
Liu Q, Zhu D, Li N, Chen S, Hu L, Yu J, Xiong Y. Regulation of LRRK2 mRNA stability by ATIC and its substrate AICAR through ARE-mediated mRNA decay in Parkinson's disease. EMBO J 2023; 42:e113410. [PMID: 37366237 PMCID: PMC10390876 DOI: 10.15252/embj.2022113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Mutations in LRRK2 are the most common genetic causes of Parkinson's disease (PD). While the enzymatic activity of LRRK2 has been linked to PD, previous work has also provided support for an important role of elevated LRRK2 protein levels, independent of enzymatic activity, in PD pathogenesis. However, the mechanisms underlying the regulation of LRRK2 protein levels remain unclear. Here, we identify a role for the purine biosynthesis pathway enzyme ATIC in the regulation of LRRK2 levels and toxicity. AICAr, the precursor of ATIC substrate, regulates LRRK2 levels in a cell-type-specific manner in vitro and in mouse tissue. AICAr regulates LRRK2 levels through AUF1-mediated mRNA decay. Upon AICAr treatment, the RNA binding protein AUF1 is recruited to the AU-rich elements (ARE) of LRRK2 mRNA leading to the recruitment of the decapping enzyme complex DCP1/2 and decay of LRRK2 mRNA. AICAr suppresses LRRK2 expression and rescues LRRK2-induced dopaminergic neurodegeneration and neuroinflammation in PD Drosophila and mouse models. Together, this study provides insight into a novel regulatory mechanism of LRRK2 protein levels and function via LRRK2 mRNA decay that is distinct from LRRK2 enzymatic functions.
Collapse
Affiliation(s)
- Qinfang Liu
- Department of NeuroscienceUniversity of Connecticut School of MedicineFarmingtonCTUSA
| | - Dong Zhu
- Department of NeuroscienceUniversity of Connecticut School of MedicineFarmingtonCTUSA
| | - Naren Li
- Department of Physiology & NeurobiologyUniversity of ConnecticutStorrsCTUSA
| | - Shifan Chen
- Department of NeuroscienceUniversity of Connecticut School of MedicineFarmingtonCTUSA
| | - Liang Hu
- Department of Physiology & NeurobiologyUniversity of ConnecticutStorrsCTUSA
| | - Jianzhong Yu
- Department of Physiology & NeurobiologyUniversity of ConnecticutStorrsCTUSA
| | - Yulan Xiong
- Department of NeuroscienceUniversity of Connecticut School of MedicineFarmingtonCTUSA
| |
Collapse
|
14
|
Pathak P, Alexander KK, Helton LG, Kentros M, LeClair TJ, Zhang X, Ho FY, Moore TT, Hall S, Guaitoli G, Gloeckner CJ, Kortholt A, Rideout H, Kennedy EJ. Doubly Constrained C-terminal of Roc (COR) Domain-Derived Peptides Inhibit Leucine-Rich Repeat Kinase 2 (LRRK2) Dimerization. ACS Chem Neurosci 2023. [PMID: 37200505 DOI: 10.1021/acschemneuro.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Missense mutations along the leucine-rich repeat kinase 2 (LRRK2) protein are a major contributor to Parkinson's Disease (PD), the second most commonly occurring neurodegenerative disorder worldwide. We recently reported the development of allosteric constrained peptide inhibitors that target and downregulate LRRK2 activity through disruption of LRRK2 dimerization. In this study, we designed doubly constrained peptides with the objective of inhibiting C-terminal of Roc (COR)-COR mediated dimerization at the LRRK2 dimer interface. We show that the doubly constrained peptides are cell-permeant, bind wild-type and pathogenic LRRK2, inhibit LRRK2 dimerization and kinase activity, and inhibit LRRK2-mediated neuronal apoptosis, and in contrast to ATP-competitive LRRK2 kinase inhibitors, they do not induce the mislocalization of LRRK2 to skein-like structures in cells. This work highlights the significance of COR-mediated dimerization in LRRK2 activity while also highlighting the use of doubly constrained peptides to stabilize discrete secondary structural folds within a peptide sequence.
Collapse
Affiliation(s)
- Pragya Pathak
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Krista K Alexander
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Leah G Helton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Michalis Kentros
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Timothy J LeClair
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Xiaojuan Zhang
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Franz Y Ho
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Timothy T Moore
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Scotty Hall
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | | | - Christian Johannes Gloeckner
- DZNE German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
- Core Facility for Medical Bioanalytics, Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
- YETEM-Innovative Technologies Application and Research Centre, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Hardy Rideout
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Yan X, Li Q, Wu S, Liang J, Li Y, Zhang T, Chen D, Pan X. Acrylamide induces the activation of BV2 microglial cells through TLR2/4-mediated LRRK2-NFATc2 signaling cascade. Food Chem Toxicol 2023; 176:113775. [PMID: 37037409 DOI: 10.1016/j.fct.2023.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Acrylamide (ACR), a potential neurotoxin, is generated from the Maillard reaction between reducing sugars and free amino acids during food processing. Our work focuses on clarifying the role of the leucine-rich repeat kinase 2 (LRRK2) and nuclear factor of activated T cells, cytoplasmic 2 (NFATc2) in the polarization of BV2 cells to the M1 proinflammatory type induced by ACR. Specifically, ACR promoted the phosphorylation of LRRK2 and NFATc2 in BV2 microglia. Furthermore, selectively phosphorylated LRRK2 by ACR induced nuclear translocation of NFATc2 to trigger a neuroinflammatory cascade. Knock-down of LRRK2 by silencing significantly diminished ACR-induced microglial neurotoxic effect with the decline of IL-1β, IL-6, and iNOS levels and the decrease of NFATc2 expression in BV2 cells. After pretreated with Toll-Like Receptor 2 (TLR2) and TLR4 inhibitors separately, both the activation of LRRK2 and the release of pro-inflammatory factors were inhibited in BV2 cells. Gallic acid (GA) is ubiquitous in most parts of the medicinal plant. GA alleviated the increased CD11b expression, IL-6 and iNOS levels induced by ACR in BV2 microglia. In conclusion, this study shows that ACR leads to the cascade activation of LRRK2-NFATc2 mediated by TLR2 and TLR4 to induce microglial toxicity.
Collapse
Affiliation(s)
- Xiaoyu Yan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qiuju Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan, 610075, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shuangyue Wu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jie Liang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuanyuan Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Tingting Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Dayi Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Sichuan, 610075, China.
| |
Collapse
|
16
|
Jennings D, Huntwork-Rodriguez S, Vissers MFJM, Daryani VM, Diaz D, Goo MS, Chen JJ, Maciuca R, Fraser K, Mabrouk OS, van de Wetering de Rooij J, Heuberger JAAC, Groeneveld GJ, Borin MT, Cruz-Herranz A, Graham D, Scearce-Levie K, De Vicente J, Henry AG, Chin P, Ho C, Troyer MD. LRRK2 Inhibition by BIIB122 in Healthy Participants and Patients with Parkinson's Disease. Mov Disord 2023; 38:386-398. [PMID: 36807624 DOI: 10.1002/mds.29297] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising therapeutic approach for the treatment of Parkinson's disease (PD). OBJECTIVE The aim of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the potent, selective, CNS-penetrant LRRK2 inhibitor BIIB122 (DNL151) in healthy participants and patients with PD. METHODS Two randomized, double-blind, placebo-controlled studies were completed. The phase 1 study (DNLI-C-0001) evaluated single and multiple doses of BIIB122 for up to 28 days in healthy participants. The phase 1b study (DNLI-C-0003) evaluated BIIB122 for 28 days in patients with mild to moderate PD. The primary objectives were to investigate the safety, tolerability, and plasma pharmacokinetics of BIIB122. Pharmacodynamic outcomes included peripheral and central target inhibition and lysosomal pathway engagement biomarkers. RESULTS A total of 186/184 healthy participants (146/145 BIIB122, 40/39 placebo) and 36/36 patients (26/26 BIIB122, 10/10 placebo) were randomized/treated in the phase 1 and phase 1b studies, respectively. In both studies, BIIB122 was generally well tolerated; no serious adverse events were reported, and the majority of treatment-emergent adverse events were mild. BIIB122 cerebrospinal fluid/unbound plasma concentration ratio was ~1 (range, 0.7-1.8). Dose-dependent median reductions from baseline were observed in whole-blood phosphorylated serine 935 LRRK2 (≤98%), peripheral blood mononuclear cell phosphorylated threonine 73 pRab10 (≤93%), cerebrospinal fluid total LRRK2 (≤50%), and urine bis (monoacylglycerol) phosphate (≤74%). CONCLUSIONS At generally safe and well-tolerated doses, BIIB122 achieved substantial peripheral LRRK2 kinase inhibition and modulation of lysosomal pathways downstream of LRRK2, with evidence of CNS distribution and target inhibition. These studies support continued investigation of LRRK2 inhibition with BIIB122 for the treatment of PD. © 2023 Denali Therapeutics Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Danna Jennings
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Sarah Huntwork-Rodriguez
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Maurits F J M Vissers
- Centre for Human Drug Research, Leiden, the Netherlands
- Department of Clinical Neuropharmacology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vinay M Daryani
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Dolores Diaz
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Marisa S Goo
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - John J Chen
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Romeo Maciuca
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | | | | | - Jeroen van de Wetering de Rooij
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
- PRA Health Sciences, Groningen, the Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, the Netherlands
- Department of Clinical Neuropharmacology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie T Borin
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Andrés Cruz-Herranz
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | | | - Kimberly Scearce-Levie
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Javier De Vicente
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Anastasia G Henry
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Peter Chin
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Carole Ho
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| | - Matthew D Troyer
- SeniorClinical Scientist - Clinical Development, Denali Therapeutics Inc, South San Francisco, California, USA
| |
Collapse
|
17
|
Wei Y, Awan MUN, Bai L, Bai J. The function of Golgi apparatus in LRRK2-associated Parkinson's disease. Front Mol Neurosci 2023; 16:1097633. [PMID: 36896008 PMCID: PMC9989030 DOI: 10.3389/fnmol.2023.1097633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease associated with the intracellular organelles. Leucine-rich repeat kinase 2 (LRRK2) is a large multi-structural domain protein, and mutation in LRRK2 is associated with PD. LRRK2 regulates intracellular vesicle transport and function of organelles, including Golgi and lysosome. LRRK2 phosphorylates a group of Rab GTPases, including Rab29, Rab8, and Rab10. Rab29 acts in a common pathway with LRRK2. Rab29 has been shown to recruit LRRK2 to the Golgi complex (GC) to stimulate LRRK2 activity and alter the Golgi apparatus (GA). Interaction between LRRK2 and Vacuolar protein sorting protein 52 (VPS52), a subunit of the Golgi-associated retrograde protein (GARP) complex, mediates the function of intracellular soma trans-Golgi network (TGN) transport. VPS52 also interacts with Rab29. Knockdown of VPS52 leads to the loss of LRRK2/Rab29 transported to the TGN. Rab29, LRRK2, and VPS52 work together to regulate functions of the GA, which is associated with PD. We highlight recent advances in the roles of LRRK2, Rabs, VPS52, and other molecules, such as Cyclin-dependent kinase 5 (CDK5) and protein kinase C (PKC) in the GA, and discuss their possible association with the pathological mechanisms of PD.
Collapse
Affiliation(s)
- Yonghang Wei
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
18
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
19
|
Eroglu B, Jin X, Deane S, Öztürk B, Ross OA, Moskophidis D, Mivechi NF. Dusp26 phosphatase regulates mitochondrial respiration and oxidative stress and protects neuronal cell death. Cell Mol Life Sci 2022; 79:198. [PMID: 35313355 PMCID: PMC10601927 DOI: 10.1007/s00018-022-04162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
The dual specificity protein phosphatases (Dusps) control dephosphorylation of mitogen-activated protein kinases (MAPKs) as well as other substrates. Here, we report that Dusp26, which is highly expressed in neuroblastoma cells and primary neurons is targeted to the mitochondrial outer membrane via its NH2-terminal mitochondrial targeting sequence. Loss of Dusp26 has a significant impact on mitochondrial function that is associated with increased levels of reactive oxygen species (ROS), reduction in ATP generation, reduction in mitochondria motility and release of mitochondrial HtrA2 protease into the cytoplasm. The mitochondrial dysregulation in dusp26-deficient neuroblastoma cells leads to the inhibition of cell proliferation and cell death. In vivo, Dusp26 is highly expressed in neurons in different brain regions, including cortex and midbrain (MB). Ablation of Dusp26 in mouse model leads to dopaminergic (DA) neuronal cell loss in the substantia nigra par compacta (SNpc), inflammatory response in MB and striatum, and phenotypes that are normally associated with Neurodegenerative diseases. Consistent with the data from our mouse model, Dusp26 expressing cells are significantly reduced in the SNpc of Parkinson's Disease patients. The underlying mechanism of DA neuronal death is that loss of Dusp26 in neurons increases mitochondrial ROS and concurrent activation of MAPK/p38 signaling pathway and inflammatory response. Our results suggest that regulation of mitochondrial-associated protein phosphorylation is essential for the maintenance of mitochondrial homeostasis and dysregulation of this process may contribute to the initiation and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Binnur Eroglu
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
| | - Xiongjie Jin
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
| | - Sadiki Deane
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Bahadır Öztürk
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA
- Medical Biochemistry Department, Selcuk University Medical Faculty, Konya, Turkey
| | - Owen A Ross
- Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Department of Medicine, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Georgia Cancer Center, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Departments of Radiation Oncology, Medical College of Georgia at Augusta University, 1120 15th St., CN3153, Augusta, GA, 30912, USA.
- Charlie Norwood VAMC, One Freedom Way, Augusta, GA, 30904, USA.
| |
Collapse
|
20
|
Tan S, Zhang Q, Wang J, Gao P, Xie G, Liu H, Yao X. Molecular Modeling Study on the Interaction Mechanism between the LRRK2 G2019S Mutant and Type I Inhibitors by Integrating Molecular Dynamics Simulation, Binding Free Energy Calculations, and Pharmacophore Modeling. ACS Chem Neurosci 2022; 13:599-612. [PMID: 35188741 DOI: 10.1021/acschemneuro.1c00726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been reported in the pathogenesis of Parkinson's disease (PD). G2019S mutant is the most common pathogenic mutation in LRRK2-related PD patients. Inhibition of LRRK2 kinase activity is proposed to be a new therapeutic approach for PD treatment. Therefore, understanding the molecular basis of the interaction between LRRK2 and its inhibitors will be valuable for the discovery and design of LRRK2 inhibitors. However, the structure of human LRRK2 in complex with the inhibitor has not been determined, and the inhibitory mechanism underlying LRRK2 still needs to be further investigated. In this study, molecular dynamics (MD) simulation combined with the molecular mechanics generalized born surface area (MM-GBSA) binding free energy calculation and pharmacophore modeling methods was employed to explore the critical residues in LRRK2 for binding of inhibitors and to investigate the general structural features of the inhibitors with diverse scaffolds. The results from MD simulations suggest that the hinge region residues Glu1948 and Ala1950 play a significant role in maintaining the intermolecular hydrogen bond interaction with the G2019S LRRK2 protein and inhibitor. The strong hinge hydrogen bond with an occupancy rate of more than 95% represents the high activity of LRRK2 inhibitors, and the hydrogen bond interaction with the kinase catalytic loop region could compromise selectivity. Further pharmacophore modeling reveals that the high activity LRRK2 inhibitor should have one aromatic ring, one hydrogen bond acceptor, and one hydrogen bond donor. Hence, the obtained results can provide valuable information to understand the interactions of LRRK2 inhibitors at the atomic level that will be helpful in designing potent inhibitors of LRRK2.
Collapse
Affiliation(s)
- Shuoyan Tan
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jun Wang
- Ping An Healthcare Technology, Beijing 100000, China
| | - Peng Gao
- Ping An Healthcare Technology, Beijing 100000, China
| | - Guotong Xie
- Ping An Healthcare Technology, Beijing 100000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Mabrouk R. Principal Component Analysis versus Subject’s Residual Profile Analysis for Neuroinflammation Investigation in Parkinson Patients: A PET Brain Imaging Study. J Imaging 2022; 8:jimaging8030056. [PMID: 35324611 PMCID: PMC8954189 DOI: 10.3390/jimaging8030056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Dysfunction of neurons in the central nervous system is the primary pathological feature of Parkinson’s disease (PD). Despite different triggering, emerging evidence indicates that neuroinflammation revealed through microglia activation is critical for PD. Moreover, recent investigations sought a potential relationship between Lrrk2 genetic mutation and microglia activation. In this paper, neuroinflammation in sporadic PD, Lrrk2-PD and unaffected Lrrk2 mutation carriers were investigated. The principal component analysis (PCA) and the subject’s residual profile (SRP) techniques were performed on multiple groups and regions of interest in 22 brain-regions. The 11C-PBR28 binding profiles were compared in four genotypes depending on groups, i.e., HC, sPD, Lrrk2-PD and UC, using the PCA and SPR scores. The genotype effect was found as a principal feature of group-dependent 11C-PBR28 binding, and preliminary evidence of a MAB-Lrrk2 mutation interaction in manifest Parkinson’s and subjects at risk was found.
Collapse
Affiliation(s)
- Rostom Mabrouk
- Department of Computer Science, Bishop's University, Sherbrooke, QC J1M 1Z7, Canada
| |
Collapse
|
22
|
Patel A, Patel S, Mehta M, Patel Y, Langaliya D, Bhalodiya S, Bambharoliya T. Recent Update on the Development of Leucine- Rich Repeat Kinase 2 (LRRK2) Inhibitors: A Promising Target for the Treatment of Parkinson's Disease. Med Chem 2022; 18:757-771. [PMID: 35168510 DOI: 10.2174/1573406418666220215122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease is a relatively common neurological disorder with incidence increasing with age. Since current medications only relieve the symptoms and do not change the course of the disease, therefore, finding disease-modifying therapies is a critical unmet medical need. However, significant progress in understanding how genetics underpins Parkinson's disease (PD) has opened up new opportunities for understanding disease pathogenesis and identifying possible therapeutic targets. One such target is leucine-rich repeat kinase 2 (LRRK2), an elusive enzyme implicated in both familial and idiopathic PD risk. As a result, both academia and industry have promoted the development of potent and selective inhibitors of LRRK2. In this review, we have summarized recent progress on the discovery and development of LRKK2 inhibitors as well as the bioactivity of several small-molecule LRRK2 inhibitors that have been used to inhibit LRRK2 kinase activity in vitro or in vivo.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Stuti Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Meshwa Mehta
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Yug Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Dhruv Langaliya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Shyam Bhalodiya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
23
|
Chang EES, Ho PWL, Liu HF, Pang SYY, Leung CT, Malki Y, Choi ZYK, Ramsden DB, Ho SL. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Transl Neurodegener 2022; 11:10. [PMID: 35152914 PMCID: PMC8842874 DOI: 10.1186/s40035-022-00285-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are one of the most frequent genetic causes of both familial and sporadic Parkinson's disease (PD). Mounting evidence has demonstrated pathological similarities between LRRK2-associated PD (LRRK2-PD) and sporadic PD, suggesting that LRRK2 is a potential disease modulator and a therapeutic target in PD. LRRK2 mutant knock-in (KI) mouse models display subtle alterations in pathological aspects that mirror early-stage PD, including increased susceptibility of nigrostriatal neurotransmission, development of motor and non-motor symptoms, mitochondrial and autophagy-lysosomal defects and synucleinopathies. This review provides a rationale for the use of LRRK2 KI mice to investigate the LRRK2-mediated pathogenesis of PD and implications from current findings from different LRRK2 KI mouse models, and ultimately discusses the therapeutic potentials against LRRK2-associated pathologies in PD.
Collapse
Affiliation(s)
- Eunice Eun Seo Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Philip Wing-Lok Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| | - Hui-Fang Liu
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Chi-Ting Leung
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Zoe Yuen-Kiu Choi
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - David Boyer Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
24
|
Parkinson's Disease Subtyping Using Clinical Features and Biomarkers: Literature Review and Preliminary Study of Subtype Clustering. Diagnostics (Basel) 2022; 12:diagnostics12010112. [PMID: 35054279 PMCID: PMC8774435 DOI: 10.3390/diagnostics12010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
The second most common progressive neurodegenerative disorder, Parkinson’s disease (PD), is characterized by a broad spectrum of symptoms that are associated with its progression. Several studies have attempted to classify PD according to its clinical manifestations and establish objective biomarkers for early diagnosis and for predicting the prognosis of the disease. Recent comprehensive research on the classification of PD using clinical phenotypes has included factors such as dominance, severity, and prognosis of motor and non-motor symptoms and biomarkers. Additionally, neuroimaging studies have attempted to reveal the pathological substrate for motor symptoms. Genetic and transcriptomic studies have contributed to our understanding of the underlying molecular pathogenic mechanisms and provided a basis for classifying PD. Moreover, an understanding of the heterogeneity of clinical manifestations in PD is required for a personalized medicine approach. Herein, we discuss the possible subtypes of PD based on clinical features, neuroimaging, and biomarkers for developing personalized medicine for PD. In addition, we conduct a preliminary clustering using gait features for subtyping PD. We believe that subtyping may facilitate the development of therapeutic strategies for PD.
Collapse
|
25
|
LRRK2 signaling in neurodegeneration: two decades of progress. Essays Biochem 2021; 65:859-872. [PMID: 34897411 DOI: 10.1042/ebc20210013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a complex GTPase/kinase orchestrating cytoskeletal dynamics and multiple steps of the endolysosomal pathway through interaction with a host of partners and phosphorylation of a subset of Rab GTPases. Mutations in LRRK2 cause late-onset Parkinson's disease (PD) and common variants in the locus containing LRRK2 have been associated with sporadic PD, progressive supranuclear palsy as well as a number of inflammatory diseases. This review encompasses the major discoveries in the field of LRRK2 pathobiology, from the initial gene cloning to the latest progress in LRRK2 inhibition as a promising therapeutic approach to fight neurodegeneration.
Collapse
|
26
|
LRRK2 along the Golgi and lysosome connection: a jamming situation. Biochem Soc Trans 2021; 49:2063-2072. [PMID: 34495322 PMCID: PMC8589420 DOI: 10.1042/bst20201146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder, clinically characterized by bradykinesia, rigidity, and resting tremor. Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein containing two enzymatic domains. Missense mutations in its coding sequence are amongst the most common causes of familial PD. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence supports a role for LRRK2 in membrane and vesicle trafficking, mainly functioning in the endosome-recycling system, (synaptic) vesicle trafficking, autophagy, and lysosome biology. LRRK2 binds and phosphorylates key regulators of the endomembrane systems and is dynamically localized at the Golgi. The impact of LRRK2 on the Golgi may reverberate throughout the entire endomembrane system and occur in multiple intersecting pathways, including endocytosis, autophagy, and lysosomal function. This would lead to overall dysregulation of cellular homeostasis and protein catabolism, leading to neuronal dysfunction and accumulation of toxic protein species, thus underlying the possible neurotoxic effect of LRRK2 mutations causing PD.
Collapse
|
27
|
Fenner BM, Fenner ME, Prowse N, Hayley SP. LRRK2 and WAVE2 regulate microglial-transition through distinct morphological phenotypes to induce neurotoxicity in a novel two-hit in vitro model of neurodegeneration. J Cell Physiol 2021; 237:1013-1032. [PMID: 34543438 DOI: 10.1002/jcp.30588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022]
Abstract
We report a novel in vitro classification system that tracks microglial activation state and their potential neurotoxicity. Mixed live-cell imaging was used to characterize transition through distinct morphological phenotypes, production of reactive oxygen species (ROS), formation of reactive microglial aggregates, and subsequent cytokine production. Transwell cultures were used to determine microglial migration (control and lipopolysaccharide (LPS) treated) to glutamate pre-stressed or healthy neurons. This two-hit paradigm was developed to model the vast evidence that neurodegenerative conditions, like Parkinson's disease (PD), may stem from the collective impact of multiple environmental stressors. We found that healthy neurons were resistant to microglial-mediated inflammation, whereas glutamate pre-stressed neurons were highly susceptible and in fact, appeared to recruit microglia. The LPS treated microglia progressed through distinct morphological states and expressed high levels of ROS and formed large cellular aggregates. Recent evidence implicates leucine-rich repeat kinase 2 (LRRK2) as an important player in the microglial inflammatory state, as well as in the genesis of PD. We found that inhibition of the LRRK2 signaling pathway using the kinase inhibitor cis-2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine (MLi2) or inhibition of the actin regulatory protein, Wiskott-Aldrich syndrome family Verprolin-homologous Protein-2 (WAVE2), stunted microglial activation and prevented neurotoxicity. Furthermore, inhibition of LRRK2 kinase activity reduced pro-inflammatory chemokines including MIP-2, CRG-2, and RANTES. These data together support the notion that LRRK2 and WAVE2 are important mediators of cytokine production and cytoskeletal rearrangement necessary for microglial-induced neurotoxicity. Furthermore, our model demonstrated unique microglial phenotypic changes that might be mechanistically important for better understanding neuron-microglial crosstalk.
Collapse
Affiliation(s)
- Barbara M Fenner
- Department of Biology, King's College, Wilkes-Barre, Pennsylvania, USA
| | - Mark E Fenner
- Fenner Training and Consulting, LLC, Kingston, Pennsylvania, USA
| | - Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Shawn P Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Murali Mahadevan H, Hashemiaghdam A, Ashrafi G, Harbauer AB. Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson's Disease. Adv Biol (Weinh) 2021; 5:e2100663. [PMID: 34382382 DOI: 10.1002/adbi.202100663] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria are the main suppliers of neuronal adenosine triphosphate and play a critical role in brain energy metabolism. Mitochondria also serve as Ca2+ sinks and anabolic factories and are therefore essential for neuronal function and survival. Dysregulation of neuronal bioenergetics is increasingly implicated in neurodegenerative disorders, particularly Parkinson's disease. This review describes the role of mitochondria in energy metabolism under resting conditions and during synaptic transmission, and presents evidence for the contribution of neuronal mitochondrial dysfunction to Parkinson's disease.
Collapse
Affiliation(s)
| | - Arsalan Hashemiaghdam
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Ghazaleh Ashrafi
- Department of Cell Biology and Physiology, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Angelika Bettina Harbauer
- Max-Planck-Institute for Neurobiology, 82152, Martinsried, Germany.,Technical University of Munich, Institute of Neuronal Cell Biology, 80333, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
29
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.
Collapse
Affiliation(s)
- Gabriel E Vázquez-Vélez
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.,Program in Developmental Biology and Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; .,Howard Hughes Medical Institute, Houston, Texas 77030, USA
| |
Collapse
|
30
|
Wang Y, Zhang X, Chen F, Chen L, Wang J, Xie J. LRRK2-NFATc2 Pathway Associated with Neuroinflammation May Be a Potential Therapeutic Target for Parkinson's Disease. J Inflamm Res 2021; 14:2583-2586. [PMID: 34168481 PMCID: PMC8217840 DOI: 10.2147/jir.s301531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of Parkinson's disease (PD). However, the molecular mechanisms involved in extracellular α‑synuclein-induced proinflammatory microglial responses through Toll-like receptor 2 (TLR2) are unclear. Leucine-rich repeat kinase 2 (LRRK2) is a serine/threonine kinase, and its mutations are closely related to autosomal dominant PD. Recently, Masliah et al characterized a novel-specific neuroinflammation cascade dependent on LRRK2-NFATc2 in microglia activated by neuron-released α-synuclein. LRRK2 selectively phosphorylated and induced nuclear translocation of NFATc2 to activate a neuroinflammation cascade. In this cascade, LRRK2 kinase was activated by neuron-released α-synuclein in microglia via TLR2. Further, NFATc2, as a kinase substrate for LRRK2, was directly phosphorylated, which accelerated nuclear translocation of NFATc2, where cytokine/chemokine gene expression including TNF-α and IL-6 is regulated by NFATc2 transcriptional activity, resulting in a neurotoxic inflammatory environment. Moreover, an abnormal increase of NFATc2 in nuclear was observed in the brains of patients and a mouse model of PD. Additionally, the administration of an LRRK2 inhibitor could ameliorate neuroinflammation, prevent neuronal loss, and improve motor function. Therefore, modulation of LRKK2-NFATc2 signaling cascade might be a potential therapeutic target for the treatment of PD.
Collapse
Affiliation(s)
- Youcui Wang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoqin Zhang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, People’s Republic of China
| | - Fenghua Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, People’s Republic of China
| | - Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, People’s Republic of China
| | - Jun Wang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, People’s Republic of China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, People’s Republic of China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
31
|
Myasnikov A, Zhu H, Hixson P, Xie B, Yu K, Pitre A, Peng J, Sun J. Structural analysis of the full-length human LRRK2. Cell 2021; 184:3519-3527.e10. [PMID: 34107286 DOI: 10.1016/j.cell.2021.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations. The kinase domain of LRRK2 is captured in an inactive state, a conformation also adopted by the most common PD-associated mutation, LRRK2G2019S. This conformation serves as a framework for structure-guided design of conformational specific inhibitors. We further determined the structure of COR-mediated LRRK2 dimers and found that single-point mutations at the dimer interface abolished pathogenic filamentation in cells. Overall, our study provides mechanistic insights into physiological and pathological roles of LRRK2 and establishes a structural template for future therapeutic intervention in PD.
Collapse
Affiliation(s)
- Alexander Myasnikov
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Cryo-EM and Tomography Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Patricia Hixson
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiwen Yu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aaron Pitre
- Cell & Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
32
|
Calamini B, Geyer N, Huss-Braun N, Bernhardt A, Harsany V, Rival P, Cindhuchao M, Hoffmann D, Gratzer S. Development of a physiologically relevant and easily scalable LUHMES cell-based model of G2019S LRRK2-driven Parkinson's disease. Dis Model Mech 2021; 14:dmm048017. [PMID: 34114604 PMCID: PMC8214734 DOI: 10.1242/dmm.048017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is a fatal neurodegenerative disorder that is primarily caused by the degeneration and loss of dopaminergic neurons of the substantia nigra in the ventral midbrain. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of late-onset PD identified to date, with G2019S being the most frequent LRRK2 mutation, which is responsible for up to 1-2% of sporadic PD and up to 6% of familial PD cases. As no treatment is available for this devastating disease, developing new therapeutic strategies is of foremost importance. Cellular models are commonly used for testing novel potential neuroprotective compounds. However, current cellular PD models either lack physiological relevance to dopaminergic neurons or are too complex and costly for scaling up the production process and for screening purposes. In order to combine biological relevance and throughput, we have developed a PD model in Lund human mesencephalic (LUHMES) cell-derived dopaminergic neurons by overexpressing wild-type (WT) and G2019S LRRK2 proteins. We show that these cells can differentiate into dopaminergic-like neurons and that expression of mutant LRRK2 causes a range of different phenotypes, including reduced nuclear eccentricity, altered mitochondrial and lysosomal morphologies, and increased dopaminergic cell death. This model could be used to elucidate G2019S LRRK2-mediated dopaminergic neural dysfunction and to identify novel molecular targets for disease intervention. In addition, our model could be applied to high-throughput and phenotypic screenings for the identification of novel PD therapeutics.
Collapse
Affiliation(s)
- Barbara Calamini
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Nathalie Geyer
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Nathalie Huss-Braun
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Annie Bernhardt
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Véronique Harsany
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| | - Pierrick Rival
- BioTherapeutics/e-Biology - Bioinformatics, Sanofi Biologics Research, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - May Cindhuchao
- Molecular Screening Technology, Sanofi Biologics Research, 270 Albany Street, Cambridge, MA 02139, USA
| | - Dietmar Hoffmann
- Molecular Screening Technology, Sanofi Biologics Research, 270 Albany Street, Cambridge, MA 02139, USA
| | - Sabine Gratzer
- Molecular Discovery, Immuno-Oncology Therapeutic Research Area, Sanofi Strasbourg R&D Center, 16 rue d'Ankara, 67000 Strasbourg, France
| |
Collapse
|
33
|
Azeggagh S, Berwick DC. The development of inhibitors of leucine-rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson's disease: the current state of play. Br J Pharmacol 2021; 179:1478-1495. [PMID: 34050929 DOI: 10.1111/bph.15575] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Current therapeutic approaches for Parkinson's disease (PD) are based around treatments that alleviate symptoms but do not slow or prevent disease progression. As such, alternative strategies are needed. A promising approach is the use of molecules that reduce the function of leucine-rich repeat kinase (LRRK2). Gain-of-function mutations in LRRK2 account for a notable proportion of familial Parkinson's disease cases, and significantly, elevated LRRK2 kinase activity is reported in idiopathic Parkinson's disease. Here, we describe progress in finding therapeutically effective LRRK2 inhibitors, summarising studies that range from in vitro experiments to clinical trials. LRRK2 is a complex protein with two enzymatic activities and a myriad of functions. This creates opportunities for a rich variety of strategies and also increases the risk of unintended consequences. We comment on the strength and limitations of the different approaches and conclude that with two molecules under clinical trial and a diversity of alternative options in the pipeline, there is cause for optimism.
Collapse
Affiliation(s)
- Sonia Azeggagh
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Daniel C Berwick
- Institute of Medical and Biomedical Education, St George's, University of London, London, UK
| |
Collapse
|
34
|
Goveas L, Mutez E, Chartier-Harlin MC, Taymans JM. Mind the Gap: LRRK2 Phenotypes in the Clinic vs. in Patient Cells. Cells 2021; 10:981. [PMID: 33922322 PMCID: PMC8145309 DOI: 10.3390/cells10050981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in the Parkinson's disease (PD) protein Leucine Rich Repeat Kinase 2 (LRRK2) have been under study for more than 15 years and our understanding of the cellular phenotypes for the pathogenic mutant forms of LRRK2 has significantly advanced. In parallel to research on LRRK2 mutations in experimental systems, clinical characterization of patients carrying LRRK2 mutations has advanced, as has the analysis of cells that are derived from these patients, including fibroblasts, blood-derived cells, or cells rendered pluripotent. Under the hypothesis that patient clinical phenotypes are a consequence of a cascade of underlying molecular mechanisms gone astray, we currently have a unique opportunity to compare findings from patients and patient-derived cells to ask the question of whether the clinical phenotype of LRRK2 Parkinson's disease and cellular phenotypes of LRRK2 patient-derived cells may be mutually informative. In this review, we aim to summarize the available information on phenotypes of LRRK2 mutations in the clinic, in patient-derived cells, and in experimental models in order to better understand the relationship between the three at the molecular and cellular levels and identify trends and gaps in correlating the data.
Collapse
Affiliation(s)
- Liesel Goveas
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| | - Eugénie Mutez
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
- Neurology and Movement Disorders Department, CHU Lille University Hospital, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| | - Jean-Marc Taymans
- UMR-S 1172—LilNCog—Lille Neuroscience & Cognition, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France; (L.G.); (E.M.)
| |
Collapse
|
35
|
Prasuhn J, Brüggemann N. Genotype-driven therapeutic developments in Parkinson's disease. Mol Med 2021; 27:42. [PMID: 33874883 PMCID: PMC8056568 DOI: 10.1186/s10020-021-00281-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Remarkable advances have been reached in the understanding of the genetic basis of Parkinson's disease (PD), with the identification of monogenic causes (mPD) and a plethora of gene loci leading to an increased risk for idiopathic PD. The expanding knowledge and subsequent identification of genetic contributions fosters the understanding of molecular mechanisms leading to disease development and progression. Distinct pathways involved in mitochondrial dysfunction, oxidative stress, and lysosomal function have been identified and open a unique window of opportunity for individualized treatment approaches. These genetic findings have led to an imminent progress towards pathophysiology-targeted clinical trials and potentially disease-modifying treatments in the future. MAIN BODY OF THE MANUSCRIPT In this review article we will summarize known genetic contributors to the pathophysiology of Parkinson's disease, the molecular mechanisms leading to disease development, and discuss challenges and opportunities in clinical trial designs. CONCLUSIONS The future success of clinical trials in PD is mainly dependent on reliable biomarker development and extensive genetic testing to identify genetic cases. Whether genotype-dependent stratification of study participants will extend the potential application of new drugs will be one major challenge in conceptualizing clinical trials. However, the latest developments in genotype-driven treatments will pave the road to individualized pathophysiology-based therapies in the future.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
36
|
Beylina A, Langston RG, Rosen D, Reed X, Cookson MR. Generation of fourteen isogenic cell lines for Parkinson's disease-associated leucine-rich repeat kinase (LRRK2). Stem Cell Res 2021; 53:102354. [PMID: 34087985 PMCID: PMC8314873 DOI: 10.1016/j.scr.2021.102354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 11/01/2022] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with inherited forms of Parkinson's disease (PD), causing disease by a gain of kinase function. Here, we describe a series of isogenic iPSC lines with any of five pathogenic mutations (N1437H, R1441C, Y1699C, G2019S and I2020T); two hypothesis testing mutations (GTP binding null, T1348N, and kinase dead, K1906M) and two LRRK2 knockouts. This resource could be used to assess effects of mutations on the function of endogenous LRRK2 and/or to study LRRK2 interactors and substrates in iPSC-derived cellular models.
Collapse
Affiliation(s)
- Aleksandra Beylina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebekah G Langston
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorien Rosen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8865611. [PMID: 33224433 PMCID: PMC7671810 DOI: 10.1155/2020/8865611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated primarily from endogenous biochemical reactions in mitochondria, endoplasmic reticulum (ER), and peroxisomes. Typically, ROS/RNS correlate with oxidative damage and cell death; however, free radicals are also crucial for normal cellular functions, including supporting neuronal homeostasis. ROS/RNS levels influence and are influenced by antioxidant systems, including the catabolic autophagy pathways. Autophagy is an intracellular lysosomal degradation process by which invasive, damaged, or redundant cytoplasmic components, including microorganisms and defunct organelles, are removed to maintain cellular homeostasis. This process is particularly important in neurons that are required to cope with prolonged and sustained operational stress. Consequently, autophagy is a primary line of protection against neurodegenerative diseases. Parkinson's is caused by the loss of midbrain dopaminergic neurons (mDANs), resulting in progressive disruption of the nigrostriatal pathway, leading to motor, behavioural, and cognitive impairments. Mitochondrial dysfunction, with associated increases in oxidative stress, and declining proteostasis control, are key contributors during mDAN demise in Parkinson's. In this review, we analyse the crosstalk between autophagy and redoxtasis, including the molecular mechanisms involved and the detrimental effect of an imbalance in the pathogenesis of Parkinson's.
Collapse
|
38
|
The Emerging Role of the Lysosome in Parkinson's Disease. Cells 2020; 9:cells9112399. [PMID: 33147750 PMCID: PMC7692401 DOI: 10.3390/cells9112399] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Lysosomal function has a central role in maintaining neuronal homeostasis, and, accordingly, lysosomal dysfunction has been linked to neurodegeneration and particularly to Parkinson’s disease (PD). Lysosomes are the converging step where the substrates delivered by autophagy and endocytosis are degraded in order to recycle their primary components to rebuild new macromolecules. Genetic studies have revealed the important link between the lysosomal function and PD; several of the autosomal dominant and recessive genes associated with PD as well as several genetic risk factors encode for lysosomal, autophagic, and endosomal proteins. Mutations in these PD-associated genes can cause lysosomal dysfunction, and since α-synuclein degradation is mostly lysosomal-dependent, among other consequences, lysosomal impairment can affect α-synuclein turnover, contributing to increase its intracellular levels and therefore promoting its accumulation and aggregation. Recent studies have also highlighted the bidirectional link between Parkinson’s disease and lysosomal storage diseases (LSD); evidence includes the presence of α-synuclein inclusions in the brain regions of patients with LSD and the identification of several lysosomal genes involved in LSD as genetic risk factors to develop PD.
Collapse
|
39
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
40
|
Divergent Effects of G2019S and R1441C LRRK2 Mutations on LRRK2 and Rab10 Phosphorylations in Mouse Tissues. Cells 2020; 9:cells9112344. [PMID: 33105882 PMCID: PMC7690595 DOI: 10.3390/cells9112344] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in LRRK2 cause familial Parkinson’s disease and common variants increase disease risk. LRRK2 kinase activity and cellular localization are tightly regulated by phosphorylation of key residues, primarily Ser1292 and Ser935, which impacts downstream phosphorylation of its substrates, among which Rab10. A comprehensive characterization of LRRK2 activity and phosphorylation in brain as a function of age and mutations is missing. Here, we monitored Ser935 and Ser1292 phosphorylation in midbrain, striatum, and cortex of 1, 6, and 12 months-old mice carrying G2019S and R1441C mutations or murine bacterial artificial chromosome (BAC)-Lrrk2-G2019S. We observed that G2019S and, at a greater extent, R1441C brains display decreased phospho-Ser935, while Ser1292 autophosphorylation increased in G2019S but not in R1441C brain, lung, and kidney compared to wild-type. Further, Rab10 phosphorylation, is elevated in R1441C carrying mice, indicating that the effect of LRRK2 mutations on substrate phosphorylation is not generalizable. In BAC-Lrrk2-G2019S striatum and midbrain, Rab10 phosphorylation, but not Ser1292 autophosphorylation, decreases at 12-months, pointing to autophosphorylation and substrate phosphorylation as uncoupled events. Taken together, our study provides novel evidence that LRRK2 phosphorylation in mouse brain is differentially impacted by mutations, brain area, and age, with important implications as diagnostic markers of disease progression and stratification.
Collapse
|
41
|
Kim C, Beilina A, Smith N, Li Y, Kim M, Kumaran R, Kaganovich A, Mamais A, Adame A, Iba M, Kwon S, Lee WJ, Shin SJ, Rissman RA, You S, Lee SJ, Singleton AB, Cookson MR, Masliah E. LRRK2 mediates microglial neurotoxicity via NFATc2 in rodent models of synucleinopathies. Sci Transl Med 2020; 12:eaay0399. [PMID: 33055242 PMCID: PMC8100991 DOI: 10.1126/scitranslmed.aay0399] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/04/2019] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Synucleinopathies are neurodegenerative disorders characterized by abnormal α-synuclein deposition that include Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The pathology of these conditions also includes neuronal loss and neuroinflammation. Neuron-released α-synuclein has been shown to induce neurotoxic, proinflammatory microglial responses through Toll-like receptor 2, but the molecular mechanisms involved are poorly understood. Here, we show that leucine-rich repeat kinase 2 (LRRK2) plays a critical role in the activation of microglia by extracellular α-synuclein. Exposure to α-synuclein was found to enhance LRRK2 phosphorylation and activity in mouse primary microglia. Furthermore, genetic and pharmacological inhibition of LRRK2 markedly diminished α-synuclein-mediated microglial neurotoxicity via lowering of tumor necrosis factor-α and interleukin-6 expression in mouse cultures. We determined that LRRK2 promoted a neuroinflammatory cascade by selectively phosphorylating and inducing nuclear translocation of the immune transcription factor nuclear factor of activated T cells, cytoplasmic 2 (NFATc2). NFATc2 activation was seen in patients with synucleinopathies and in a mouse model of synucleinopathy, where administration of an LRRK2 pharmacological inhibitor restored motor behavioral deficits. Our results suggest that modulation of LRRK2 and its downstream signaling mediator NFATc2 might be therapeutic targets for treating synucleinopathies.
Collapse
Affiliation(s)
- Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexandria Beilina
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Smith
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Kaganovich
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Adame
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Somin Kwon
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Won-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Soo-Jean Shin
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Robert A Rissman
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, and Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis 2020; 144:105028. [PMID: 32736085 PMCID: PMC7484088 DOI: 10.1016/j.nbd.2020.105028] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
While glia are essential for regulating the homeostasis in the normal brain, their dysfunction contributes to neurodegeneration in many brain diseases, including Parkinson's disease (PD). Recent studies have identified that PD-associated genes are expressed in glial cells as well as neurons and have crucial roles in microglia and astrocytes. Here, we discuss the role of microglia and astrocytes dysfunction in relation to PD-linked mutations and their implications in PD pathogenesis. A better understanding of microglia and astrocyte functions in PD may provide insights into neurodegeneration and novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared T Hinkle
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Shutinoski B, Hakimi M, Harmsen IE, Lunn M, Rocha J, Lengacher N, Zhou YY, Khan J, Nguyen A, Hake-Volling Q, El-Kodsi D, Li J, Alikashani A, Beauchamp C, Majithia J, Coombs K, Shimshek D, Marcogliese PC, Park DS, Rioux JD, Philpott DJ, Woulfe JM, Hayley S, Sad S, Tomlinson JJ, Brown EG, Schlossmacher MG. Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Sci Transl Med 2020; 11:11/511/eaas9292. [PMID: 31554740 DOI: 10.1126/scitranslmed.aas9292] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 12/27/2018] [Accepted: 05/11/2019] [Indexed: 12/20/2022]
Abstract
Variants in the leucine-rich repeat kinase-2 (LRRK2) gene are associated with Parkinson's disease, leprosy, and Crohn's disease, three disorders with inflammation as an important component. Because of its high expression in granulocytes and CD68-positive cells, LRRK2 may have a function in innate immunity. We tested this hypothesis in two ways. First, adult mice were intravenously inoculated with Salmonella typhimurium, resulting in sepsis. Second, newborn mouse pups were intranasally infected with reovirus (serotype 3 Dearing), which induced encephalitis. In both mouse models, wild-type Lrrk2 expression was protective and showed a sex effect, with female Lrrk2-deficient animals not controlling infection as well as males. Mice expressing Lrrk2 carrying the Parkinson's disease-linked p.G2019S mutation controlled infection better, with reduced bacterial growth and longer animal survival during sepsis. This gain-of-function effect conferred by the p.G2019S mutation was mediated by myeloid cells and was abolished in animals expressing a kinase-dead Lrrk2 variant, p.D1994S. Mouse pups with reovirus-induced encephalitis that expressed the p.G2019S Lrrk2 mutation showed increased mortality despite lower viral titers. The p.G2019S mutant Lrrk2 augmented immune cell chemotaxis and generated more reactive oxygen species during virulent infection. Reovirus-infected brains from mice expressing the p.G2019S mutant Lrrk2 contained higher concentrations of α-synuclein. Animals expressing one or two p.D1994S Lrrk2 alleles showed lower mortality from reovirus-induced encephalitis. Thus, Lrrk2 alleles may alter the course of microbial infections by modulating inflammation, and this may be dependent on the sex and genotype of the host as well as the type of pathogen.
Collapse
Affiliation(s)
- Bojan Shutinoski
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mansoureh Hakimi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Irene E Harmsen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Lunn
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Juliana Rocha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Nathalie Lengacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Yi Yuan Zhou
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Jasmine Khan
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Angela Nguyen
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Quinton Hake-Volling
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Daniel El-Kodsi
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Juan Li
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Azadeh Alikashani
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Claudine Beauchamp
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Jay Majithia
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin Coombs
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Derya Shimshek
- Novartis Institutes of BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Paul C Marcogliese
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - John D Rioux
- Research Centre, Montreal Heart Institute, Montréal, QC, Canada.,Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - John M Woulfe
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Julianna J Tomlinson
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Earl G Brown
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Medicine, Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
44
|
Mancini A, Mazzocchetti P, Sciaccaluga M, Megaro A, Bellingacci L, Beccano-Kelly DA, Di Filippo M, Tozzi A, Calabresi P. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Front Cell Neurosci 2020; 14:158. [PMID: 32848606 PMCID: PMC7399363 DOI: 10.3389/fncel.2020.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is thought to rely on a complex interaction between the patient’s genetic background and a variety of largely unknown environmental factors. In this scenario, the investigation of the genetic bases underlying familial PD could unveil key molecular pathways to be targeted by new disease-modifying therapies, still currently unavailable. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for the majority of inherited familial PD cases and can also be found in sporadic PD, but the pathophysiological functions of LRRK2 have not yet been fully elucidated. Here, we will review the evidence obtained in transgenic LRRK2 experimental models, characterized by altered striatal synaptic transmission, mitochondrial dysfunction, and α-synuclein aggregation. Interestingly, the processes triggered by mutant LRRK2 might represent early pathological phenomena in the pathogenesis of PD, anticipating the typical neurodegenerative features characterizing the late phases of the disease. A comprehensive view of LRRK2 neuronal pathophysiology will support the possible clinical application of pharmacological compounds targeting this protein, with potential therapeutic implications for patients suffering from both familial and sporadic PD.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Petra Mazzocchetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alfredo Megaro
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Dayne A Beccano-Kelly
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Neuroscience Department, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
45
|
Wint JM, Sirotkin HI. Lrrk2 modulation of Wnt signaling during zebrafish development. J Neurosci Res 2020; 98:1831-1842. [PMID: 32623786 DOI: 10.1002/jnr.24687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (lrrk2) are the most common genetic cause of Parkinson's disease. Difficulty in elucidating the pathogenic mechanisms resulting from disease-associated Lrrk2 variants stems from the complexity of Lrrk2 function and activities. Lrrk2 contains multiple protein-protein interacting domains, a GTPase domain, and a kinase domain. Lrrk2 is implicated in many cellular processes including vesicular trafficking, autophagy, cytoskeleton dynamics, and Wnt signaling. Here, we generated a zebrafish lrrk2 allelic series to study the requirements for Lrrk2 during development and to dissect the importance of its various domains. The alleles are predicted to encode proteins that either lack all functional domains (lrrk2sbu304 ), the GTPase, and kinase domains (lrrk2sbu71 ) or the kinase domain (lrrk2sbu96 ). All three lrrk2 mutants are viable, morphologically normal, and display wild-type-like locomotion. Because Lrrk2 modulates Wnt signaling in some contexts, we assessed Wnt signaling in all three mutant lines. Analysis of Wnt signaling by studying the expression of target genes using whole mount RNA in situ hybridization and a transgenic Wnt reporter revealed wild-type domains of Wnt activity in each of the mutants. However, we found that Wnt pathway activation is attenuated in lrrk2sbu304/sbu304 , which lacks both scaffolding and catalytic domains, but not in the other alleles during late embryogenesis. This supports a model in which Lrrk2 scaffolding functions are key to a context-dependent role in promoting canonical Wnt signaling.
Collapse
Affiliation(s)
- Jinelle M Wint
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Howard I Sirotkin
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
46
|
Heaton GR, Landeck N, Mamais A, Nalls MA, Nixon-Abell J, Kumaran R, Beilina A, Pellegrini L, Li Y, Harvey K, Cookson MR. Sequential screening nominates the Parkinson's disease associated kinase LRRK2 as a regulator of Clathrin-mediated endocytosis. Neurobiol Dis 2020; 141:104948. [PMID: 32434048 PMCID: PMC7339134 DOI: 10.1016/j.nbd.2020.104948] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.
Collapse
Affiliation(s)
- George R Heaton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Natalie Landeck
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adamantios Mamais
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Laura Pellegrini
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yan Li
- Mass spectrometry Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 20814, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
47
|
Obergasteiger J, Frapporti G, Lamonaca G, Pizzi S, Picard A, Lavdas AA, Pischedda F, Piccoli G, Hilfiker S, Lobbestael E, Baekelandt V, Hicks AA, Corti C, Pramstaller PP, Volta M. Kinase inhibition of G2019S-LRRK2 enhances autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. Cell Death Discov 2020; 6:45. [PMID: 32550012 PMCID: PMC7280235 DOI: 10.1038/s41420-020-0279-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Parkinson's disease (PD)-associated kinase Leucine-Rich Repeat Kinase 2 (LRRK2) is a crucial modulator of the autophagy-lysosome pathway, but unclarity exists on the precise mechanics of its role and the direction of this modulation. In particular, LRRK2 is involved in the degradation of pathological alpha-synuclein, with pathogenic mutations precipitating neuropathology in cellular and animal models of PD, and a significant proportion of LRRK2 patients presenting Lewy neuropathology. Defects in autophagic processing and lysosomal degradation of alpha-synuclein have been postulated to underlie its accumulation and onset of neuropathology. Thus, it is critical to obtain a comprehensive knowledge on LRRK2-associated pathology. Here, we investigated a G2019S-LRRK2 recombinant cell line exhibiting accumulation of endogenous, phosphorylated alpha-synuclein. We found that G2019S-LRRK2 leads to accumulation of LC3 and abnormalities in lysosome morphology and proteolytic activity in a kinase-dependent fashion, but independent from constitutively active Rab10. Notably, LRRK2 inhibition was ineffective upon upstream blockade of autophagosome-lysosome fusion events, highlighting this step as critical for alpha-synuclein clearance.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Giulia Lamonaca
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Francesca Pischedda
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers University - New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000 Leuven, Belgium
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
- Department of Neurology, General Central Hospital, Via Böhler 5, 39100 Bolzano, Italy
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| |
Collapse
|
48
|
Sanyal A, Novis HS, Gasser E, Lin S, LaVoie MJ. LRRK2 Kinase Inhibition Rescues Deficits in Lysosome Function Due to Heterozygous GBA1 Expression in Human iPSC-Derived Neurons. Front Neurosci 2020; 14:442. [PMID: 32499675 PMCID: PMC7243441 DOI: 10.3389/fnins.2020.00442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
A growing number of genes associated with Parkinson's disease are implicated in the regulation of lysosome function, including LRRK2, whose missense mutations are perhaps the most common monogenic cause of this neurodegenerative disease. These mutations are collectively thought to introduce a pathologic increase in LRRK2 kinase activity, which is currently a major target for therapeutic intervention. Heterozygous carriers of many missense mutations in the GBA1 gene have dramatically increased risk of Parkinson's disease. A critical question has recently emerged regarding the potential interplay between the proteins encoded by these two disease-linked genes. Our group has recently demonstrated that knockin mutation of a Parkinson's-linked GBA1 variant induces severe lysosomal and cytokine abnormalities in murine astrocytes and that these deficits were normalized via inhibition of wild-type LRRK2 kinase activity in these cells. Another group independently found that LRRK2 inhibition increases glucocerebrosidase activity in wild-type human iPSC-derived neurons, as well as those whose activity is disrupted by GBA1 or LRRK2 mutation. Fundamental questions remain in terms of the lysosomal abnormalities and the effects of LRRK2 kinase inhibition in human neurons deficient in glucocerebrosidase activity. Here, we further elucidate the physiological crosstalk between LRRK2 signaling and glucocerebrosidase activity in human iPSC-derived neurons. Our studies show that the allelic loss of GBA1 manifests broad defects in lysosomal morphology and function. Furthermore, our data show an increase in both the accumulation and secretion of oligomeric α-synuclein protein in these GBA1-heterozygous-null neurons, compared to isogenic controls. Consistent with recent findings in murine astrocytes, we observed that multiple indices of lysosomal dysfunction in GBA1-deficient human neurons were normalized by LRRK2 kinase inhibition, while some defects were preserved. Our findings demonstrate a selective but functional intersection between glucocerebrosidase dysfunction and LRRK2 signaling in the cell and may have implications in the pathogenesis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | - Matthew J. LaVoie
- Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Delic V, Beck KD, Pang KCH, Citron BA. Biological links between traumatic brain injury and Parkinson's disease. Acta Neuropathol Commun 2020; 8:45. [PMID: 32264976 PMCID: PMC7137235 DOI: 10.1186/s40478-020-00924-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder with no cure. Clinical presentation is characterized by postural instability, resting tremors, and gait problems that result from progressive loss of A9 dopaminergic neurons in the substantia nigra pars compacta. Traumatic brain injury (TBI) has been implicated as a risk factor for several neurodegenerative diseases, but the strongest evidence is linked to development of PD. Mild TBI (mTBI), is the most common and is defined by minimal, if any, loss of consciousness and the absence of significant observable damage to the brain tissue. mTBI is responsible for a 56% higher risk of developing PD in U.S. Veterans and the risk increases with severity of injury. While the mounting evidence from human studies suggests a link between TBI and PD, fundamental questions as to whether TBI nucleates PD pathology or accelerates PD pathology in vulnerable populations remains unanswered. Several promising lines of research point to inflammation, metabolic dysregulation, and protein accumulation as potential mechanisms through which TBI can initiate or accelerate PD. Amyloid precursor protein (APP), alpha synuclein (α-syn), hyper-phosphorylated Tau, and TAR DNA-binding protein 43 (TDP-43), are some of the most frequently reported proteins upregulated following a TBI and are also closely linked to PD. Recently, upregulation of Leucine Rich Repeat Kinase 2 (LRRK2), has been found in the brain of mice following a TBI. Subset of Rab proteins were identified as biological substrates of LRRK2, a protein also extensively linked to late onset PD. Inhibition of LRRK2 was found to be neuroprotective in PD and TBI models. The goal of this review is to survey current literature concerning the mechanistic overlap between TBI and PD with a particular focus on inflammation, metabolic dysregulation, and aforementioned proteins. This review will also cover the application of rodent TBI models to further our understanding of the relationship between TBI and PD.
Collapse
Affiliation(s)
- Vedad Delic
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA.
| | - Kevin D Beck
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kevin C H Pang
- NeuroBehavioral Research Laboratory, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research and Development (Mailstop 15), 385 Tremont Ave, East Orange, NJ, 07018, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers- New Jersey Medical School, Newark, NJ, 07103, USA
| |
Collapse
|
50
|
Calogero AM, Mazzetti S, Pezzoli G, Cappelletti G. Neuronal microtubules and proteins linked to Parkinson's disease: a relevant interaction? Biol Chem 2020; 400:1099-1112. [PMID: 31256059 DOI: 10.1515/hsz-2019-0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Neuronal microtubules are key determinants of cell morphology, differentiation, migration and polarity, and contribute to intracellular trafficking along axons and dendrites. Microtubules are strictly regulated and alterations in their dynamics can lead to catastrophic effects in the neuron. Indeed, the importance of the microtubule cytoskeleton in many human diseases is emerging. Remarkably, a growing body of evidence indicates that microtubule defects could be linked to Parkinson's disease pathogenesis. Only a few of the causes of the progressive neuronal loss underlying this disorder have been identified. They include gene mutations and toxin exposure, but the trigger leading to neurodegeneration is still unknown. In this scenario, the evidence showing that mutated proteins in Parkinson's disease are involved in the regulation of the microtubule cytoskeleton is intriguing. Here, we focus on α-Synuclein, Parkin and Leucine-rich repeat kinase 2 (LRRK2), the three main proteins linked to the familial forms of the disease. The aim is to dissect their interaction with tubulin and microtubules in both physiological and pathological conditions, in which these proteins are overexpressed, mutated or absent. We highlight the relevance of such an interaction and suggest that these proteins could trigger neurodegeneration via defective regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Alessandra M Calogero
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy.,Parkinson Institute, ASST "G.Pini-CTO", via Bignami 1, I-20133 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, via Balzaretti, I-20133 Milan, Italy
| |
Collapse
|